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Crystal Graph and Littlewood Richardson rule

Toshiki NAKASHIMA (RIMS)

§0. Introduction

Recently, Professor Kashiwara constructed “Crystal base”. We shall introduce the crystal

base and the crystal graph associated with it, and their applications.

§1. Crystal base

1.1 Let g be a finite dimensional simple Lie algebra with the Cartan subalgebra t the
set of simple roots {a; € t*} and the set of simple coroots {h; € t}. We take an inner

product ( , )on t* suchthat (a;,0;) € Zyoand < h;, A >= 2:"’\ for A € t*. Then the

g-analogue U,(g) is the algebra over Q(g) generated by e;, f; and the invertible elements

t; satisfying the following relations;

(1.1.1) t;t; =1t;t;

tiejthl = qz(c‘i-ai)ej

(1.1.2) '
t{fjti-l — q—2(a,-,a,-)fj

t; —t!t

(1.1.3) les, 5] = 5;,5"“—'_—1 where ¢q; = q(“""“)

LI

For i # j, we have, setting b=1— < h;, a; >

eg“)ejegb—") =0

v
o ”MQ’
)

(1.1.4)
: f(#)f] f-(b_#) =0
1]

.
i

k ek k e T
Here eg ) = O f‘.(k) = T%]lﬁ’ [n); = q—;{—_-::_—;— and [k);! = Hizl[n],-.
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For a finite dimensional U,(g)-module M, we set for A € P ={A € t*; < h;, A >€ Z}
My={ue M;t;u = g¥=})y}. We call M integrable if M = ®M,. Then we have

(1.1.5) M= @ P nKee)
05h5<h;,l>

We define the operators é;, f, acting on M by
(1.1.6) EfMu= 7 "y gnd fifFlu= fFty
for u € M) NKer ¢; and (A, k) as above.

Definition 1.1.1. A pair (L, M) is called a crystal base of a finite-dimensional integrable

representation M if the following condition are satisfied:
(1.1.7) L is a free sub-A-module of M such that Q(q) @4 L = M.
Here A is the ring of rational functions regular at ¢ = 0

(1.1.8) B is a base of the Q-vector space L/qL

(1.1.9) L=oL,, B=]]Ba

where Ly = LN M, and B, '—"Bﬂ(LA/qLA)

(1.1.10) fiLcL, &LCL
(1.1.11) fiBCBU{0} and &B cC BU{0}
(1.1.12) Foru,v€B and i€l, u=é&v if and only if v = fiu.

Then the following results are proved in j when g = 4,, B,,,C, and D,, and announce
in fig] in general.case. Let A € Py = {A € t'; < hi,A >€ Zyo} and V(XA) be the
irreducible integrable U,(g)-module generated by the highest weight vector uy of weight
A. Let L(A) be the sub A-module generated by the vectors of the form fiy -+ fi,ux and
let B()) be the subset of the L(A)/qL()) consisting of the non-zero vector of the form
fir -+ fixua mod gL(2). |
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Theorem 1.1.2. (L(A), B(})) is a crystal base of V().

Theorem 1.1.3. Let M € O;n¢ and (L,B) is a crystal base of M. Then there is

an isomorphism

M= @jV(/\J‘) by which (L, B) = @j(L(/\j), B(/\J))

Theorem 1.1.4. Let (L;, B;) be a crystal base of an integrable U,(g)-module

MJ‘ (]-: 1,2). SetL=L1 ®AL2 CM]_@M; andB={b1 ®b2; bJ EB, (]=

1,2)} € L/qL. Then we have

z fb,®b
,b®b — f:l ~2
fi(br ®F2) {b1®f;bz

) by ® &b
&i(b1®bs) = { ity b,

if there ezists n > 1 such that fb; # 0 and el'b; = 0.
otherwise.

if there ezists n > 1 such that b, # 0 and fb; = 0.
otherwise.

Defintion 1.1.5. A crystal graph of a crystal base (L, B) is the colored oriented

graph B, by the rule:

Example 1.1.6

Let V; is the i + 1-dimensional irreducible representation of Ug(slz).

(1) For g = sl,, the crystal graph of V; is given by as follows;

e —>r e —> 0

(ii) For g = sl,, the crystal graph of V5 is given by as follows;

e —> 0 —r 0 — @

(iii) By Theorem 1.1.4, the crystal graph of Vs ® V; is described by as follows;

Va

o — ® — @

Vi ¢ — o — o — o

!
! !
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Here, we get that the crystal graph of Vs ® V2 are decomposed into three connected

components. They corrspond to Vs, Vs and V; respectively.

§2. Remarks on the crystal graphs

2.1 Let us investigate first the crystal graph of the tensor product of the vector repre-
sentation of U,(sl;). The crystal graph of thé vector representation is vy —u_. The
crystal graph of the trivial iepresenta.tion is ug. We shall calculate é(u;, ® --- ® u;, ) and

F(ui, ® -+ ® u;,, ), where e and f are generators of U,(sl2), and #y,--+,in = +,—,0.

Proposition 2.1.1. For v = %, ® --- ® %;,, (i; = +,—,0), the actions of € and f are

given by the following three steps;

(I) We neglect wug
(II) If thereis uy @ u_ in u, then we neglect such a pair.
(IIT) Then € changes the u_ iﬁ the most right to u, and f changes the u, in the
most left to u_. If thereis no u_ (resp. uy), then &u =0 (resp. fu = 0).

m——
Example Foru=2_Quo®u; Qu;i Qu_ @u_ @ uy,

~"

é'ﬁ: U QU QUL QUi Qu_ Qu_ Quy

fu=u__ Que®®u; Quy Qu_ Qu_ @u_
2.2 Now let Uy(g) be the g-analogue as in §1. and let Ay, --,Any € Py and A = Y, Ax.
Tﬁen thereis a unique embedding V(A) < V(A1)®---®@V(An) sending u) to uy,® - -®@uy -
Hence B()) is embedded into ®, B(};). |
Proposition 2.2.1. Assume the following condition for any k (1 < k < N).
(2.2.1) Ifu € B(Ax41) satisfies

| (i) ua, ® u € B(As + Musi1)
(iI) éx = 0 for any i such that < h;, A, >=0 for v < k,

then v = uy,
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Then we have
N-1
(2.2.2) V(X)= ﬂ V(M) ® - @ V(Ak-1) ® V(Ak + Ar41) ® V(Ak42) ® - - - B(Aw),

N-1
(2.2.3)  B(A)2 () B(M)® - ® B(Ak-1) ® B(Ak + Aiy1) ® B(Aryz) ® -+ B(Aw).

§3. Crystal Graphs for U,(C,)-modules

3.1 Notation

In the rest of this paper we shall treat the C,-case. Let (¢1,-+-,€,) be the orthonormal
base of the dual of the Cartan subalgébra of C, such that o; = €; —€;41 (1 <i< n) and
on = 2¢€, form the set of simple roots. Hence, «, is the long roots and oy, -+, a,_1 are
short roots. Let {A;}1<i<n be the dual base of {h;}1<i<n. Hence A; = ¢ 4ot & (1<
1 < n).
3.2 The crystal graph of the vector representation.

First let us conmsider the vector representation V(A;) = Vo Letting [i], [7] (1 <

i < n) be the base of Q(q)®?", the vector representation of U,(C, ) is explicitly constructed

as follows;
t; ' — qz(h.'.z,-) 1 =q2(h.'.—¢,-)
(3.2.1) e = i41,; [ )€ = &;,;17]. (1<i<n,1<j<n)
£ ] =& ;[ i G = i+1,5 [
and
€n =0) €n = J'v"-E
(3.2.2) (1<j<n)
fn. —'SJ‘". ).fn =0
Here, we understand (] = [(] =0 unless 1< j < n. Then the crystal base

(L(Va), B(Vn)) is ginen by
VD)_@(A HE-VIHD
{ B E] 1< <L n}

5

(3.2.3)
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and the crystal graph of Vp is given by;
(3.2.4) OLeE2..23 LN unt S IN _1_,

Remark that we have
(3.2.5) & =f'=0 on B(Vp)

Hence, the actions of €; and f; on B(Vn)®™ is given by Proposition 2.1.1.
3.3 The crystal graph of the fundamental representations -

The representation V(Apy) with highest weighgt Ay (1 < N < n) is embedded into
Vg N Similarly to the A,-case, the connected component of the crystal graph of B(Vg)®N
containing ®---® [~] is that of B(An).

[ i2)
~We write I for @@---@

We denote by u,, the highest weight vector ®:---® . We give the linear order on

{i,1;1<i<n} by
(3.3.1) 1<2<--n<a<--<2<1

This ordering is derived by the crystal graph (3.2.4) of V. We set

i1 ] (1) 1Zé<---iy X1,
() & N
(3.3.2) Iy = . € B(Vo)®"; (2) i ix=p and iy =35, .
| then k+(N-1+1)<p
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Proposition 3.3.2. B(Ay) coincides with I](VC)

Remark 3.3.3.
(1) &=f=0for1<i<nandé& =f2=0onB(Ay).
(i) If w € B(Ay) satisfies f?u # 0, then w contains i and 7 + 1 but neither i + 1 nor i. If
u € B(AN) satisfies é2u # 0, then u contains i + 1 and T but neither i nor T 1.

(iii) If « € B(AN) satisfies fiu # 0 and &u # 0, then w contains i+ 1, i+ 1 but neither i

nor .

3.4 The crystal graph of V(A + An)
Now, we shall investigate the crystal graph of V(Apr+An) with1 <M < N < n. By
embedding V(A + An) into V(Apr) @ V(AN), B(Apr + AN) is the connected component

of B(Aym) ® B(An) containning uy,, ® ua,,.

N
For « = = B(AM) and v = € B(AN)a

M

the vector u ® v € B(Apm) ® B(An) will be denoted by

Definition 3.3.1. For1 <i < j < n, we say that w € B(Ap) ® B(AN) Is in (4, j)-
configuration if w holds the following; (3.4.1) There exist 1 <p < g << r < s such that
=1, jo=17, J»r=1J, Jo =100, =1, i, =7, i, = 7, J, =1 Remark that when
i; 7, we understand that p = q and r = s. Now, we define p(4,j;w) = (g —p) + (s — 7),
remark that if there exist another 1 < p’ < ¢' < r' < &' such that gives (¢, j)-configuration

on w, we take the largest one as p(i, j;w). Let us set

7
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w satisfles the conditions
€ B(Am) ® B(AN); ' }

(3.4.2) I ={w=
(M.N) (M.N.1) and (M.N.2)

(M.N.2) if w is in the (i, j)-configuration, then p(i, j;w) < j — 1.
()

Remarmk that any vector of I(M.N) is not in the (i, 1)-configuration, because p(z,j; w) > 0.

Proposition 3.4.3. B(Ap + An) coincides with I{y) .

3.5 The crystal graph of V(})

Let A=57 A, (1<l;<Il;<---<n)beadominant integral weight. Let us consider

the crystal graph of B()). By Lemma 3.4.4, we can apply Proposition 2.2.1 and hence
V( Ji . .

B(A) = {.u1®"-®up €EB(Va)®---®B(A ); wi ®uipr € B(A; +Ay,,,) for 1<:i< p}

~

For the Young diagram Y with the columns of [; (1 <i < p), we define a C-semi-standard

tableau with shape ¥ with elements {1,2,--+,n,7,---,2,1} in each boxes of Y satisfying

the following conditions;

(3.5.1) Letting ¢; ; be the element of {1,2,---,n,7,---,2,1} at the i-th column and j-th

row, we have

tij Stig,; and ti; <tiji1

(83.5.2) Forl <p<gqg<nift;; =p, tiy1; =pandilt;, =gq, ¢t = q (resp.
tivih = ¢, tiyiw =79) then (k—j)+ (' — k) <g-—p.
Theorem 3.5.1. B(A) coincides with the set of the C-semi-standard tableaux with shape

Y. The actions of & and f; are described by Proposition 2.1.2 by 1dentifying ¢ and 1+ 1

with wy, i+ 1 and i with u_, and others with ug.
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§4. Littlewood Richardson rule for C,.

In this section, we give the rule to decompose Vy ® Vy: (Y and Y' are Young diagrams
with depth n) in terms of crystal graph.

4.1 The following lemma plays a significant role in this rule.

Lemma 4.1.1. For v € B(Vy) and v € B(Vy.),

. L E,-'u, =0
&(u®v) =0 (for any i) <
o &fh0A>F1y — 0 (for any i)

where ) is the weight of Y.
4.2. Decomposition of Vy ® V3

Lemma 4.2.1. For a Young diagram Y = (l3,13,---,l,), when we identify Y and the

highest element uy of B(Vy), where uy is the following;

111 eeeveeennnn 111
999 etannns 229

Gieeennn i #licuy} =1L
n- n

a) For € BVo) (j=1,2,--+,n),Y® is the highest element of B(Vy ® Vo) if
and only if I;_y —1l; > 0. b) For €B(Vo) =1,2,---,n),Y® is the highest

element of B(Vy ® Vo) if and only if I; — 141 > 0

Remark that we assume Iy = oo and [, ; = 0.
Proof We can easily obtain the result by Lemma 4.1.1 and the followinf facts;

For any 1,
éi<h;,k>+1 =0 << < hj—-l:A >= lj_.l - lJ > 0

é-i<h.',3\>+1 =0 < < h,‘,A >= Ij _ Ij+1 >0
q.ed.

Now, we get the following proposition.
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Proposition 4.2.2. LetY = (I,l3,---,1,) be a Young diagram and Vy be a finite di-

mensional irreducible C,-module characterized by Y,

Vw@Vp @jle(y.__j) ® @jﬂv(y*—;)
where (Y «— j)=(l1,---,; +1,---, 1) and (Y — ) = (L, -+, ; = 1,---,1a).

Remark 4.2.3. I{Y is not a Young diagram, then Vy means a 0-dimensional vector
space. |

Proof By Lemma 4.1.1 and Lemma 4.2.1 we can identify ©® (resp. u® ) with
highest condition with a Young diagram (Y «— j) (resp. (Y «— j)) Hence, Y® (zesp.
u® ’ ) is the highest element of B(Vy ® V) if and only if (Y «— j) (resp. (Y «— 7))
is a Young diagram. Since both Y® (resp. Y® ) and (Y «— j) (zesp. (Y — 7))
have the same weight, u® (resp. u® ) (1 < j < n) with the highest condition can

be identified with a Young diagram (Y «— j) (resp. (Y «— 7)) g.e.d.

Example 4.2.4. For g=Cs;and Y =(2,2,1) =

||
Bvo)={[].[2]. 5.5, & O}

Ye [1] = «—1)=(3,2,1) = ] Y® 3] =(Y «— 3)=(2,2,0) =
_ |
Yo 2]l = (¥ —2)=(2,3,1) x Yo 2] =(Y — 2)=(2,1,1) = ||
L
Yo 3] =(Y —3)=(2,2,2) = YQ [I] =(Y — 1) =(1,2,1) x
Then, we get
-
e [ 1= | @ ® ® |

10



89

4.3. Decomposition of Vy @ Vy:+

We shall treat a general case. Let Y and Y’ be Young diagrams. We give a combina-
torial description for irreducible decomposition of Vy ® Vy:. By the following lemma and
the way of the construction of the crystal graph, we know that the previous elementary

case plays a significant role in a general case.

Lemma 4.3.1. Let J = {1,2,---,p} be a finite index set and V; (j € J) be a finite
dimensional irreducible representation of Uy(C,). For u; ® u; ® --- ® u, € B(®;csV5),

following two assertions are equivalent;

(A) 41 ®ua®---Q®u, Is the highest element of B(® Vi)

. jeJ
(B) Forany j€J, u; ®us®---®u, is the highest element of B(V; ® ---® V)
Proof First assuming (B), we get (A) easily. Next we assume (A). For any j € J we can
consider ¥ ®@u;®- + -@up = (41®- - - Qu;j ®u; 410+ -®up) € B(V1®---®V;)®B(Vj41®---V,).
By Lemma 4.1.1, if (41 ®- - -®u; ®u; +1® - -Qu, ) satisfies the highest condition, #, ®- - Qu;
also satisfies the highest condition. Hence, we get (B). q.ed.

Here, by Proposition 4.2.2 and Lemma 4.3.1, we obtain the following theorem.

Theorem 4.3.2. Let Y and Y' be Young diagrams. Let m be #Y'. Then we obtain the

following; ‘
Vy @ Vy: & @ I/((((Y’—J'x)“—jﬁ)'“)"“—"jm)
[71]®--@[m] €B(Vy:)
where V(Y «—j1)—ja )} —jum) 15 & O-dimensional vector space if there exists k€ {1,---, m}}}

such that ((((Y «— 1) «— 72):++) -+ < jx) is not a Young diagram.

11
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Example 4.3.3. Forg=C,, Y = =(2,2) and Y’ =B; (1,1).
w5585
ve [H = (( 1= (9=
Y®=(( —1) —2) = ( —3)= [ ]
Y® = (( —2) —2)=( J‘—2) X
Y®—(( —2) —T)=( =D
ve 2] = —2—T=( () —1D=

Then we get (we omit “V”)

®

(1]
I
®

1]

:DeB

Remark We have already obtained the similar conclusions for A,, B, and D,.
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