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EXTENDED ABSTRACT

1. Definitions. Let $r$ be a positive integer. An r-differential poset is a partially ordered
set $P$ satisfying the following three axioms:

(D1) $P$ is locally finite with unique minimal element $\hat{0}$ , and is graded (i.e., for any $x\in P$ ,
all saturated chains between $\hat{0}$ and $’\iota$: have the same length).

(D2) For any $x,$ $y\in P$ , if exactly $k$ elements 01 $l^{2}$ are covered by both $x$ and $y$ , then exactly
$k$ elements of $P$ cover both $x$ and $y$ .

(D3) If $x\in P$ covers $k$ elements of $P,$ $l1_{1\langle}>J1^{\cdot}$ is covered by $k+r$ elements of $P$ .

A poset which is r-differential for some ,/
$\cdot$ is ci,$IIc(1$ a $rl^{J}i/\gamma C^{J}te\cdot ntial$ po.set. Let us note two simple

properties of differential posets: (a) Axiom $(]^{-})1)$ implies that the integer $k$ of (D2) is $0$ or 1,
and (b) if $P$ is a lattice satisfying (D1) and (D3), (

$.$

]}($-\backslash n$ (D2) is equivalent to modularity.

2. Examples of differential posets. There are tw$0$ principal examples of l-differential
posets. The first is Young $s$ lattice}’’, ( $1$ ($>.fi_{11}c^{s}c1$ to $|$ ) $e$ tlte set of all sequences $\lambda=(\lambda_{1}, \lambda_{2}, \ldots)$

of nonnegative integers $\lambda_{1}\geq\lambda_{2}\geq\cdots\geq 0$ . $\backslash vi1_{:}11$ only finitely many $\lambda_{i}\neq 0$ , ordered com-
ponentwise. Thus the element $\lambda$ of ]” is $j$ ust, il $\int$) $m\cdot/ltion$ of the integer $n= \sum\lambda_{i}$ (denoted
$\lambda\vdash n)$ . Equivalently, ]’ is isomorphic to $t$ be $\backslash _{-};(11oI^{\cdot}$ finile order ideals of $N\cross N$ , ordered by
inclusion (where $N$ denotes the chain $0<1<\cdots$ ). ]‘ is the unique l-differential distributive
lattice. If $Y_{i}$ denotes the ith level of]“ ( $i.$ ($!.$ : tlie $\backslash s\cdot c^{s}\downarrow,$ of

$\cdot$

all partitions of $i$ ), then the subposet
$Y_{i}\cup Y_{i+1}$ is the Bratteli diagram of the pai $1$

’ of algebras $(CS_{n}, CS_{7\iota+1})$ , where $CS_{m}$ denotes
the group algebra (over the complex nu mbers C) of the symmetric group $S_{m}$ . For this reason
many combinatorial and algcbraic properties of]’ $\dot{\subset}\backslash \iota\cdot e$ related to the representation theory
of $S_{m}$ . For instance, if $e(\lambda)$ denotcs tlie number of saturated chains between $\hat{0}$ and $\lambda$ , then
the $e(\lambda)s$ , where $\lambda\vdash\uparrow\tau$ , are just the $dc^{J}g_{1\}}(()s’01^{\cdot}\{_{J}|_{1}\epsilon^{Y}i_{1}\cdot\iota\cdot ec1ncil-\supset le$ (complex) representations of
$S_{n}$ . Hence by well known results in represenlat ion theory,

$\sum_{\lambda\vdash n}e(\lambda)=\#\{t\{\in S,-, |_{1l}^{\underline{\prime}}=1\}$

/
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$\sum_{\lambda\vdash n}e(\lambda)^{2}=n!$

The theory of differential posets shows that these formulae are consequences only of proper-
ties $(D1)-(D3)$ of Young’s lattice Y.

The second principal example of a l-differential poset is denoted $Z$ or $Z(1)$ and is called
the Fibonacci l-differential poset. For the precise definition see [1], and for further combina-
torial properties see [3]. $Z$ is the unique l-differential lattice for which every complemented
interval has length at most two. The number $p_{i}$ of elements of $Z$ of rank $i$ is the ith Fibonacci
number $F_{i}$ . Define complex semisimple algebras $\mathcal{F}_{n}$ by the property that $Z_{n}\cup Z_{n+1}$ is the
Bratteli diagram of the pair $(\mathcal{F}_{n}, \mathcal{F}_{n+1})$ . Then $\dim \mathcal{F}_{n}=n!$ , and it would be interesting to
find a “nice” combinatorial definition of $\mathcal{F}_{n}$ .

Conjecture. The only l-differential lattices are $Y$ and $Z$ .

3. The operators $U$ and $D$ , and enumerative properties of differential posets.
The basic tools for investigating differential posets are two linear operators denoted $U$ and
$D$ . Let $K$ be a field of characteristic $0$ . For any locally finite poset $P$ with $\hat{0}$ such that every
element is covered by finitely many elements, let $K^{P}$ be the vector space of all (infinite)
linear combinations of elements of $P$ . Define linear transformations $U,$ $D$ : $K^{P}arrow K^{P}$ by

$U(x)= \sum_{\langle y\in C+x)}y$

$D(x)= \sum_{y\in C^{-}\langle x)}y$
,

where $x\in P$ , and where $C^{+}(x)$ (respectively, $C^{-}(x)$ ) is the set of elements which cover $x$

(respectively, which $x$ covers). Moreover, $U$ and $D$ are extended to all of $K^{P}$ by requiring
them to preserve infinite linear combinations.

Theorem. The following two conditions are equivalent:
$(a)$ DU–UD $=rI$ (where I denotes the identity $ope\uparrow\cdot ator$)
$(b)P$ is r-differential.

Proposition. Let $P$ be r-differential. Let $P=\Sigma_{x\in P}x$ . Then $UP=(D+r)P$ .

Thus a differential poset affords a representation of the Weyl algebra $C[x, d/dx]$ , where
$U$ represents $x$ and $D/r$ represents $d/dx$ . This explains the terminology “differential poset.”
The commutation rule DU–UD $=rI$ leads to many formulae involving the counting of
certain paths in the Hasse diagram of $P$ . We will just state a sample of these results here.
See Section 3 of [1] for further details.
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Theorem. Let $P$ be an r-differential poset.
$(a)$ Let $\alpha(0arrow n)$ denote the number of saturated chains $\hat{0}=x_{0}<x_{1}<\cdots<x_{n}$ in $P$

(so $x_{i}\in P_{i}$ , the set of elements of $P$ of rank $i$ ). Then

$\sum_{n\geq 0}\alpha(0arrow n)\frac{t^{n}}{n!}=\exp(rt+\frac{1}{2}rt^{2})$ .

Equivalently,
$\alpha(0arrow n)=\sum_{w^{2}=1}r^{c(w)}$ ,

summed over all involutions $w$ in $S_{n}$ , where $c(w)$ denotes the number of cycles of $w$ .
$(b)$ Let $\alpha(0arrow narrow 0)$ denote the number of “Hasse walks “ $\hat{0}=x_{0}<x_{1}<\cdots<x_{n}>$

$y_{n-1}>\cdots>y_{0}=\hat{0}$ (so $x_{i}$ and $y_{i}$ have rank $i$ ). Then

$\alpha(0arrow narrow 0)=r^{n}n!$

Equivalently,
$\sum_{x\in P_{n}}e(x)^{2}=r^{n}??!$

,

where $e(x)$ is the number of saturated chains in $Pfi^{\sim}om\hat{0}$ to $x$ .
$(c)$ Let $\delta_{n}$ denote the number of Hasse walks in $P$ of length $n$ beginning at $\hat{0},$ $i.e$, the

number of sequences $\hat{0}=x_{0},$
$x_{1},$ $\ldots,$ $x_{n}$ such that for all $i$ either $x_{t}$ covers or is covered by

$x_{i-1}$ . Then

$\sum_{n\geq 0}\delta_{n}\frac{t^{n}}{n!}=\exp(\uparrow\cdot t+rt^{2})$ .

$(d)$ Let $\kappa_{2n}$ denote the number of Hasse walks in $P$ of length $2n$ beginning and ending at
$\hat{0}$ . Then

$\kappa_{2n}=1\cdot 3\cdot 5\cdots(2n-1)r^{n}$ .

4. Eigenvalues and eigenvectors. For certain linear transformations connected with
the operators $U$ and $D$ on a differential poset, we can explicitly compute their eigenvalues
and eigenvectors. We state here the simplest results in this direction; see Section 4 of [1] for
further results.

Theorem. Let $P$ be an r-differential poset. Let $UD_{j}$ denote the linear transformation
$UD$ restricted to the subspace $K^{P_{j}}$ of $K^{P}$ . Then the characteristic polynomial (normalized
to be monic) of $UD_{j}$ is given by

$\prod_{i=0}^{j}(\lambda-ri)^{p_{g-};-p_{y-\cdot-1}}$ ,
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where $p_{i}=\neq P_{i}$ . Moreover, the eigenvector $E_{j}$ corresponding to the largest eigenvalue $rj$ is
given by

$E_{j}= \sum_{x\in P_{\dot{J}}}e(x)x$
,

where $e(x)$ is the number of saturated chains from $\hat{0}$ to $x$ .

There is also a recursive formula for the other eigenvectors of $UD_{j}$ . In the case of Young’s
lattice $Y$ we can be more explicit about these other eigenvectors.

Theorem. Let $\chi^{\lambda}$ denote the irreducible character of $S_{j}$ corresponding to the partition
$\lambda ofj$ . Then for any partition $\mu ofj$ the vector

$X_{\mu}= \sum_{\lambda\vdash j}\chi’\backslash (\mu)\lambda$

is an eigenvector for $UD_{j}$ : $K^{Y_{J}}arrow K^{Y_{J}}$ corresponding to the eigenvalue $m_{1}(\mu)$ (the number
of parts of $\mu$ equal to 1). Moreover, the $X_{\mu}$ ’s give a complete set of $0$ rthogonal eigenvectors
for $UD_{j}$ (with respect to the scalar product which makes $Y_{j}$ an orthonormal basis).

5. Variations on differential posets. There are several ways to extend the notion
of a differential poset and still retain some of the basic theory. Two of the most interesting
variations are the following.

Variation 1. Let $r=(\uparrow 0, r_{1}, \ldots)$ be a sequence of integers. An r-differential poset is a
poset $P$ satisfying axioms (D1) and (D2) above, together with

(D3’) If $x\in P_{j}$ covers $k$ elements of $P$ , then $x$ is covered by $k+r_{j}$ elements of $P$ .

A poset which is r-differential for some $r$ is called sequentially differential. There are many
more interesting examples of sequentially differential posets than of just differential posets.
For instance, the boolean algebra $B_{n}=2^{n}$ , as well as a product $3^{n}$ of three-element chains,
is sequentially differential. All the properties of differential posets discussed above carry
over to the sequential case, though the statements of the results are often more complicated
(since they involve infinitely many variables $r_{0},$ $r_{1}\ldots$ . rather than just the single variable $r$ ).

Variation 2. Just as Young’s lattice is associated with the ordinary representations of
$S_{n}$ , so the shifted Young’s lattice $\tilde{Y}$ is associated with the projective representations of $S_{n}$ .
$\tilde{Y}$ is defined to be the subposet (actually a sublattice) of $Y$ consisting of all partitions with
distinct parts. By a suitable modification of the linear transformation $U$ ( $D$ is unchanged)
we still have the fundamental relation DU–UD $=I$ . This allows “differential” proofs of
well-known formulae and some new generalizations of them concerning shifted tableaux. The
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most well-known of these formulae is

$\sum_{\mu}2^{n-\ell(\mu)}(g^{\mu})^{2}=n!$ ,

where $\mu$ ranges over all partitions of $n$ into distinct parts, where $\ell(\mu)$ is the length of $\mu$ , and
where $g^{\mu}$ is the number of standard shifted tableaux of shape $\mu$ (i.e., the number of saturated
chains in $\tilde{Y}$ from $\emptyset$ to $\mu$ ).

For further information on generalizations and extensions of differential posets, see [2].

6. Open problems. We mentioned in Section 2 the problem of characterizing differen-
tial lattices, and of finding a “nice” combinatorial description of the lattices $\mathcal{F}_{n}$ . we mention
one further open problem here; more can be found in Section 6 of [1].

Problem. Fix a positive integer $r$ . What is the greatest (respectively, least) number of
elements of rank $n$ that an r-differential poset can have? It seems plausible that the extreme
values are achieved by $Z(r)$ (the r-differential Fibonacci lattice) and $Y^{r}$ , respectively. Along
the same lines, given that $Pj=\# P_{j}$ for some $j$ , what is the largest (respectively, smallest)
cardinality of $P_{j+1}$ ? Do we always have $p_{j+1}\leq rp_{j}+p_{j-1}$ ? Do we always have $p_{J+1}>p_{j}$ ,
except when $r=1$ and $j=0$? (It’s easy to see that we always have $p_{J+1}\geq p_{j}.$ )
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