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A levelsurface approach to motion of hypersurfaces

九大工 後藤俊一 (Shun’ichi Goto)

We consider the motion of a hypersurface whose speed locally depends

on the normal vector field and its derivatives. Let $D_{t}$ be a open set in
$R^{N}(N\geq 2)$ and $\Gamma_{t}=\partial D_{t}$ (generally a closed set in $R^{N}\backslash D_{t}$ containing
$\partial D_{t})$ . Let $arrow n$ denote the unit exterior normal vector field to $\Gamma_{t}$ . It is

convenient to $extendarrow n$ to a vector field (still denote by $arrow n$ ) on a tubular

neighburhood of $\Gamma_{t}$ such $thatarrow n$ is constant in the normal direction of $\Gamma_{t}$ .

Let $V=V(t, x)$ denote the speed of $\Gamma_{t}$ at $x\in\Gamma_{t}$ in the exterior normal

direction. The family $\{(\Gamma_{t}, D_{t})\}_{t\geq 0}$ satisfies the initial value problem

(1a) $V=f(n\nabla n)arrow,arrow$ on F7,

(1b) $(\Gamma_{t}, D_{t})|_{t=0}=(\Gamma_{0}, D_{0})$ .

Here $f$ is a given function and $\nabla$ stands for spatial derivatives. More gen-

erally, the equation is

$V=f(t, x, arrow,arrow n\nabla n)$ on $\Gamma_{t}$ .

A typical example is the mean curvature flow equation

(2) $V=-divarrow n$ .

A fundamental analytic question to (la,b) is to construct a global-in-

time unique solution family $\{(\Gamma_{t}, D_{t})\}_{t\geq 0}$ for a given initial data $(\Gamma_{0}, D_{0})$ .
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In material science $\Gamma_{t}$ is an interface bounding two phases of materials. It

is also important to consider anisotropic properties of materials. A typical

model (see [Gul, 2]) is

$\beta(n)Varrow=-\sum_{i=1}^{N}\frac{\partial}{\partial x_{i}}(\frac{\partial H}{\partial p_{i}}(n))+carrow$ ,

where $\beta$ is a positive function on a unit sphere in $R^{N},$ $H$ is convex and

positively homogeneous of degree one and $c$ is a constant. This equation

includes (2) as a particular example with $\beta=1,$ $H(p)=|p|$ and $c=0$ .

For the mean curvature flow equation (2) Huisken [H] constructed a

unique smooth solution which shrinks to a point in a finite time provided

that $N\geq 3$ and $\Gamma_{0}$ is uniformly convex, $C^{2}$ and compact. A similar result

was proved by Gage and Hamilton [GH] when $N=2$ . Moreover, Grayson

[Grl] proved that any embedded closed curve moved by (2) never becomes

singular unless it shrinks to a point. However, for $N\geq 3$ even embedded

surface may develop.singularities before it shrinks to a point. For example,

a barbell with a long and thin handle actually becomes singular in the

middle in short time (see [Gr2]).

Therefore, Chen, Giga and the author [CGG] introduced a weak notion

to construct a unique evolution family even after the time when there appear

singularities (see also [GG] and for the special case (2) [ES]). When the

initial data $(\Gamma_{0}, D_{0})$ are bounded, the problem has been studied in [CGG].

In this note, we discuss the evolution for unbounded initial data.

Our approach is to describe a surface $\Gamma_{t}$ as a level set of a function $u$
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satisfying an initial value problem

(3a) $\partial_{t}u+F(\nabla u, \nabla^{2}u)=0$ in $R^{N}$ ,

(3b) $u(t, x)|_{t=0}=a(x)$ .

Here $F$ is determined by $f$ and $a$ is a function denoted $\Gamma_{0}$ as a level set.

We use the viscosity solution to construct a solution of $(3a,b)$ . The method

of viscosity solutions was intr\’oduced for weak solutions of Hamilton-Jacobi

equations and extended to fully nonlinear degenarate elliptic equations (for

example, see [I]).

Let $u$ be a real valued function on $(0, \infty)\cross R^{N}$ such that $u>0$ in $D_{t}$

and $u=0$ on $F_{t}$ . We call $u$ a definition function of $(\Gamma_{t}, D_{t})$ . If $u$ is $C^{2}$ and

$\nabla u\neq 0$ near $\Gamma_{t}$ , we see

(4) $arrow n=-\frac{\nabla u}{|\nabla u|}$ , $\nabla narrow=-\frac{Q_{\overline{p}}(\nabla^{2}u)}{|\nabla u|}$ on $\Gamma_{t}$ .

Here $\overline{p}=\nabla u/|\nabla u|$ and $Q_{\overline{p}}(X)=R_{\overline{p}}XR_{\overline{p}}$ with $R_{\overline{p}}=I-\overline{p}\otimes\overline{p}$ , and $X$ is an
$N\cross N$ real symmetric matrix and $I$ denotes the identity matrix. It follows

from (4) and $V=\partial_{t}u/|\nabla u|$ that (1a) is formally equivalent to (3a) on $\Gamma_{t}$

with

(5) $F(p, X)=-|p|f(- \overline{p}, -\frac{Q_{\overline{p}}(X)}{|p|})$ , $\overline{p}=\frac{p}{|p|}$

where $p$ is.a nonzero vector in $R^{N}$ . We note that the equation (3a) is

singular at $\nabla u=0$ . A direct caluculation shows that $F$ has the scaling
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invariance

(6) $F(\lambda p, \lambda X+p\otimes y+y\otimes p)=\lambda F(p, X)$ for $\lambda>0,$ $y\in R^{N}$ .

We say $F$ is strongly geometric if $F$ satisfies (6). Recently, Giga and the

author shown $f$ is (essentially) uniquely determined by $F$ (see [GG]).

We define $a\in B_{0}$ if $a\in C(R^{N})$ and there are a constant $K_{0}>0$ and

a modulus function $m_{0}$ such that

$|a(x)-a(y)|\leq K_{0}(|x-y|+1)$ , $|a(x)-a(y)|\leq m_{0}(|x-y|)$ for $x,$ $y\in R^{N}$ .

Here we say a function $m$ a modulus function if $m:Rarrow R,$ $m(O)=0$ and

$m$ is nondecreasing. Similary, we also define $u\in B$ if $u\in C([0, \infty)\cross R^{N})$

and for any $T>0$ there are a constant $K_{T}>0$ and a modulus function

$m_{T}$ such that

$|u(t, x)-u(t, y)|\leq K_{T}(|x-y|+1)$

for $0\leq t\leq T,$ $x,$ $y\in R^{N}$ .
$|u(t, x)-u(t, y)|\leq m_{T}(|x-y|)$

DEFINITION: Let $D_{0}\subset R^{N}$ be a open set and $\Gamma_{0}\subset R^{N}\backslash D_{0}$ a closed set

containing $\partial D_{0}$ . Let $a\in B_{0}$ be a definition function of $(\Gamma_{0}, D_{0})$ . A family

of closed sets and open sets $\{(\Gamma_{t}, D_{t})\}_{t\geq 0}$ is a “weak solution” of (la,b) if

there is a definition function $u\in B$ of $(\Gamma_{t}, D_{t})$ and $u$ is a viscosity solution

of $(3a,b)$ .

First, we discuss the initial value problem $(3a,b)$ . We assume the fol-

lowing conditions $(F1)-(F6)$ .

(F1) $F:R^{N}\backslash \{0\}\cross S_{N}arrow R$ is continuous,



133

where $S_{N}$ denotes the space of real $N\cross N$ symmetric matrices.

(F2) $F$ is degenerate elliptic, i.e., $F(p, X)\leq F(p, Y)$ for $X\geq$ Y.

(F3) $-\infty<F_{*}(O, O)=F^{*}(O, O)<\infty$ ,

where $F_{*}$ and $F^{*}$ are the lower and upper semi-continuous relaxation of $F$ ,

respectively, i.e.,

$F_{*}(z)= \lim$ $\inf$ $F(w)$ , $z\in R^{N}\cross S_{N}$

$\epsilon\downarrow 0|w_{N}-z|<\epsilon w\in R\backslash \{O\}\cross S_{N}$

and $F^{*}=-(-F_{*})$ .

(F4) $\sup\{|F(p,X)|;0<|p|\leq R, |X|\leq R\}<\infty$ for every $R>0$ .

(F5)

$F$ is geometric, i.e., $F(\lambda p, \lambda X+\sigma p\otimes p)=\lambda F(p, X)$ for $\lambda>0,$ $\sigma\in R$ .

(F6) $F_{*}(p, -I)\leq\iota/0|p|$ , $F^{*}(p, I)\geq-\iota/0|p|$ for some $\iota/0>0$ .

Then we have the following

THEOREM 1. Suppos$e$ that $(Fl)-(F6)$ hold. Let $a\in B_{0}$ . Then there $is$ a

unique viscosi $ty$ solution $u\in B$ of $(3a,b)$ .

Assumptions $(F1)-(F4)$ needs to prove the following comparison prin-

ciple, which is an important tool in the notion of viscosity solutions.
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LEMMA 2 ([GGIS]). Suppose that $F$ satisfies $(Fl)-(F4)$ . Let $u$ and $v$ be,

respectively, viscosi$ty$ sub- and $\sup$ersolutions of $(3a)$ in $Q=(0, T$] $\cross R^{N}$

$(T>0)$ . $Ass$ume that

(A1) $u(t,x)\leq K(|x|+1)$ , $v(t,x)\geq-K($国$+1)$ on $Q$ for some $K>0$ ;

(A2) $u^{*}(O, x)-v_{*}(O, y)\leq K(|x-y|+1)$ on $R^{N}\cross R^{N}$ for $someK>0$ ;

there $is$ a modulus $fu$nction $m_{T}$ such that

(A3) $u^{*}(O, x)-v_{*}(O, y)\leq m_{T}(|x-y|)$ on $R^{N}\cross R^{N}$ .

Then there is a modulus function $m$ such that

$u^{*}(t, x)-v_{*}(t, y)\leq m(|x-y|)$ for $0\leq t\leq T,$ $x,$ $y\in R^{N}$ .

In $particul$ar $u^{*}\leq v_{*}$ on $\overline{Q}$ .

We recall one of equivalent definitions of viscosity sub- and supersolu-

tions of (3a). A function $u:Qarrow R$ is called a viscosity sub- (resp. super-)

solution of (3a) in $Q$ if $u^{*}<\infty$ (resp. $u_{*}>-\infty$ ) on $\overline{Q}$ and

$\tau+F_{*}(p,X)\leq 0$ for all $(\tau,p,X)\in \mathcal{P}_{Q}^{2,+}u^{*}(t, x),$ $(t, x)\in Q$

(resp. $\tau+F^{*}(p,$ $X)\geq 0$ for all $(\tau,p,X)\in \mathcal{P}_{Q}^{2,-}u_{*}(t,$ $x),$ $(t,$ $x)\in Q$ ).

Here $\mathcal{P}_{Q}^{2,+}u^{*}(t, x)$ is the set of $(\tau,p, X)\in R\cross R^{N}\cross S_{N}$ such that

$u^{*}(s, y) \leq u^{*}(t, x)+\tau(s-t)+\langle p, y-x\rangle+\frac{1}{2}\langle X(y-x),$ $y-x$ }

$o(|s-t|+|y-x|^{2})$ as $(s, y)arrow(t, x)$ in $Q$ ,
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where {, \rangle denotes the Euclidean innerproduct; similarly, $\mathcal{P}_{Q}^{2,-}u_{*}(t, x)=$

$-\mathcal{P}_{Q}^{2,+}(-u_{*}(t, x))$ .

We construct viscosity sub- and supersolutions of $(3a,b)$ , which leads

to existence of a viscosity solution of $(3a,b)$ by Perron’s method. Using

assumptions $(F5)-(F6)$ and some properties of viscosity solutions we show

an outline of construction of sub- and supersolutions (in detail, see \S 6 in

[CGG]).

We set

$u^{\pm}(t, x)= \pm(t+\frac{|x|^{2}}{2\nu_{0}})$ .

A direct caluculation shows that $u^{-}$ (resp. $u^{+}$ ) is a $C^{2}$ viscosity sub- (resp.

super-) solution of (3a) in $R\cross R^{N}$ . For $u^{\pm}$ we set

$U_{\xi h}^{\pm}(t, x)=h(u^{\pm}(t,\xi-x))$ , $\xi\in R^{N}$ ,

where $h$ is a continuous nondecreasing function in $R$ . Then $U_{\xi h}^{-}$ (resp. $U_{\xi h}^{+}$ )

is a sub- (resp. super-) solution of (3a) in $R\cross R^{N}$ .

Since $u$ (resp. $-u^{+}$ ) is decreasing in $|x|$ and $t$ , for all $\xi\in R^{N}$ the
’

continuity of $a$ guarantees that there is a continuous nondecreasing function

$h=h_{\xi}$ : $Rarrow R$ with $h(O)=a(\xi)$ such that $U_{\xi h}^{-}\leq a(x)$ (resp. $U_{\xi h}^{+}(t, x)\geq$

$a(x))$ for $t\geq 0$ . Since $U_{\xi^{-}h}$ (resp. $U_{\xi h}^{+}$ ) is a sub- (resp. super-) solution of

(3a), we see the function

$v^{-}(t, x)= \sup\{U_{\xi h}^{-}(t, x);h=h_{\xi}, \xi\in R^{N}\}\leq a(x)$

(resp. $v^{+}(t,$ $x)= \inf\{U_{\xi h}^{+}(t,$ $x);h=h_{\xi},$ $\xi\in R^{N}\}\geq a(x)$ )
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is again a sub- (resp. super-) solution of (3a) in $[0, \infty$ ) $\cross R^{N}$ , which is lower

(resp. upper) semi-continuous and satisfies

$v^{-}\leq a\leq v^{+}$ for $t\geq 0$ and $v^{\pm}=a$ at $t=0$ .

To apply Lemma 2 we introduce “barrier functions”

$\phi^{\pm}(t, x)=\pm K(|x|+1+\nu_{0}t)$ .

We see $\phi^{-}$ (resp. $\phi^{+}$ ) is a sub- (resp. super-) solution of (3a). We set

$f= \max(v^{-}, \phi^{-})$ , $g= \min(v^{+}, \phi^{+})$ .

Then $f$ (resp. g) is a sub- (resp. super-) solution of $(3a,b)$ . By Perron’s

method there is a viscosity solution $u_{a}$ of $(3a,b)$ with $f\leq u_{a}\leq g$ . Since

$u_{a}$ satisfies $(A1)-(A3)$ , we apply Lemma 2 and see that $u_{a}$ uniquely solves

$(3a,b)$ and $u_{a}\in B$ . This completes the proof of Theorem 1.

We set

$\Gamma_{t}=\{x\in R^{N};u_{a}(t, x)=0\}$ , $D_{t}=\{x\in R^{N};u_{a}(t, x)>0\}$ .

Then $\{(\Gamma_{t}, D_{t})\}_{t\geq 0}$ is a weak solution of (la,b). Our goal is to show that

$\{(\Gamma_{t}, D_{t})\}_{t\geq 0}$ is uniquely determined by $(\Gamma_{0}, D_{0})$ . To do this we need the

comparison lemma (Theorem 5.2 in [CGG]; if $u$ is a viscosity sub- (super-)

solution then $\theta(u)$ is so, provided that $\theta$ is continuous and nondecreasing)

and the following
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LEMMA 3. Let $a,$ $b\in B_{0}$ be definition function$s$ of $(D_{0}, \Gamma_{0})$ . If $b$ satisfies

(7) $\lim_{|x|arrow\infty,x\in}\inf_{D_{0},x\not\in\Gamma_{o}^{\sigma}}b(x)>0$ for every $\sigma>0$ ,

where $\Gamma_{0}^{\sigma}=$ { $x\in R^{N}$ ; dist $(x,$ $\Gamma_{0})<\sigma$ }. Then there is a continuous (strictly)

increasing function $\theta$ : $Rarrow R$ such that

$a(x)\leq\theta(b(x))$ in $D_{0}$ with $\theta(0)=0$ .

This lemma is proved similar to one of Lemma 7.2 in [CGG]. We set,

for $r\geq 0$ ,

$a_{1}(r)= \sup\{a(x);x\in D_{0}, dist(x, \Gamma_{0})\leq r\}$ ,

$b_{1}(r)= \inf\{b(x);x\in D_{0}, dist(x, \Gamma_{0})\geq r\}$

or

$\overline{a}(r)=a_{1}(r)+r$ , $\overline{b}(r)=b_{1}(r)\frac{r}{r+1}$ ,

which are increasing and satisfy

$\overline{a}(0)=\overline{b}(0)=0$ , $\overline{a}(r),\overline{b}(r)>0$ for $r>0$ ,

$a(x)\leq\overline{a}(r)$ , $b(x)\geq\overline{b}(r)$ for $x\in D_{0},$ $dist(x, \Gamma_{0})=r$ .

The property $\overline{b}(r)>0$ for $r>0$ follows from (7). The function $\theta=\overline{a}\circ\overline{b}^{-1}$

is increasing on $[0, \infty$ ), then we proved Lemma 3.

We note that our definition function $a$ of $(\Gamma_{0}, D_{0})$ satisfies (7) if $a$ is

the signed distance function, i.e.,

$a(x)=\{\begin{array}{l}dist(x,\Gamma_{0})forx\in D_{0}-dist(x,\Gamma_{0})forx\in R^{N}\backslash D_{0}\end{array}$
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Finally, we state the existence theorem for the initial value problem

(la,b). We rewrite our conditions in terms of $f$ where $F$ is of the form (5)

(see [GG]). The condition (F1) is equivalent to

(f1) $f$ : $Earrow R$ is continuous,

where $E=\{(\overline{p}, Q_{\overline{p}}(X));\overline{p}\in S^{N-1}, X\in S_{N}\}$ . The condition (F2) is clearly

equivalent to

(f2) $f(-\overline{p}, -Q_{\overline{p}}(X))\geq f(-\overline{p}, -Q_{\overline{p}}(Y))$ for $X\geq Y,\overline{p}\in S^{N-1}$ .

This condition means that $-f$ is degenerate elliptic. The conditions (F3),

(F4) and (F6) follow from

$- \inf_{0<\rho<1}pnf_{1}f(-\overline{p}, \frac{I-\overline{p}\otimes\overline{p}}{p})<\infty|^{\frac{i}{p}}|=$

(f3)
$- \sup_{0<\rho<1}\rho_{1}up_{1}f(-\overline{p}, \frac{-I+\overline{p}\otimes\overline{p}}{\rho})>\frac{s}{p}|=-\infty$.

This condition is fulfilled if $f(\overline{p}, \lambda Z)=\lambda f(\overline{p}, Z)$ for $\lambda>0,$ $(\overline{p}, Z)\in E$ . The

condition (F5) holds automatically. Then we have the following

THEOREM 4. Suppose that $(fl)-(f3)\cdot A$old. Let $D_{0}\subset R^{N}$ be a open set

and $\Gamma_{0}\subset R^{N}\backslash D_{0}$ a closed set containing $\partial D_{0}$ . Then there is a unique

weak solu tion $\{(\Gamma_{t}, D_{t})\}_{t\geq 0}$ of $(1a,b)$ .
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