A levelsurface approach to motion of hypersurfaces

九大工 後藤俊- (Shun'ichi Goto)

We consider the motion of a hypersurface whose speed locally depends on the normal vector field and its derivatives. Let D_t be a open set in $R^N(N \ge 2)$ and $\Gamma_t = \partial D_t$ (generally a closed set in $R^N \setminus D_t$ containing ∂D_t). Let \vec{n} denote the unit exterior normal vector field to Γ_t . It is convenient to extend \vec{n} to a vector field (still denote by \vec{n}) on a tubular neighburhood of Γ_t such that \vec{n} is constant in the normal direction of Γ_t . Let V = V(t, x) denote the speed of Γ_t at $x \in \Gamma_t$ in the exterior normal direction. The family $\{(\Gamma_t, D_t)\}_{t\ge 0}$ satisfies the initial value problem

(1a)
$$V = f(\vec{n}, \nabla \vec{n})$$
 on Γ_t ,

(1b)
$$(\Gamma_t, D_t)|_{t=0} = (\Gamma_0, D_0).$$

Here f is a given function and ∇ stands for spatial derivatives. More generally, the equation is

$$V = f(t, x, \vec{n}, \nabla \vec{n}) \quad \text{on } \Gamma_t.$$

A typical example is the mean curvature flow equation

$$(2) V = -\operatorname{div} \vec{n}.$$

A fundamental analytic question to (1a,b) is to construct a global-intime unique solution family $\{(\Gamma_t, D_t)\}_{t \ge 0}$ for a given initial data (Γ_0, D_0) . In material science Γ_t is an interface bounding two phases of materials. It is also important to consider anisotropic properties of materials. A typical model (see [Gu1, 2]) is

$$\beta(\vec{n})V = -\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} (\frac{\partial H}{\partial p_{i}}(\vec{n})) + c,$$

where β is a positive function on a unit sphere in \mathbb{R}^N , H is convex and positively homogeneous of degree one and c is a constant. This equation includes (2) as a particular example with $\beta = 1$, H(p) = |p| and c = 0.

For the mean curvature flow equation (2) Huisken [H] constructed a unique smooth solution which shrinks to a point in a finite time provided that $N \ge 3$ and Γ_0 is uniformly convex, C^2 and compact. A similar result was proved by Gage and Hamilton [GH] when N = 2. Moreover, Grayson [Gr1] proved that any embedded closed curve moved by (2) never becomes singular unless it shrinks to a point. However, for $N \ge 3$ even embedded surface may develop singularities before it shrinks to a point. For example, a barbell with a long and thin handle actually becomes singular in the middle in short time (see [Gr2]).

Therefore, Chen, Giga and the author [CGG] introduced a weak notion to construct a unique evolution family even after the time when there appear singularities (see also [GG] and for the special case (2) [ES]). When the initial data (Γ_0 , D_0) are bounded, the problem has been studied in [CGG]. In this note, we discuss the evolution for unbounded initial data.

Our approach is to describe a surface Γ_t as a level set of a function u

satisfying an initial value problem

(3a)
$$\partial_t u + F(\nabla u, \nabla^2 u) = 0$$
 in \mathbb{R}^N ,

(3b)
$$u(t,x)|_{t=0} = a(x).$$

Here F is determined by f and a is a function denoted Γ_0 as a level set. We use the viscosity solution to construct a solution of (3a,b). The method of viscosity solutions was introduced for weak solutions of Hamilton-Jacobi equations and extended to fully nonlinear degenarate elliptic equations (for example, see [I]).

Let u be a real valued function on $(0, \infty) \times \mathbb{R}^N$ such that u > 0 in D_t and u = 0 on Γ_t . We call u a definition function of (Γ_t, D_t) . If u is C^2 and $\nabla u \neq 0$ near Γ_t , we see

(4)
$$\vec{n} = -\frac{\nabla u}{|\nabla u|}, \quad \nabla \vec{n} = -\frac{Q_{\bar{p}}(\nabla^2 u)}{|\nabla u|} \quad \text{on } \Gamma_t.$$

Here $\bar{p} = \nabla u / |\nabla u|$ and $Q_{\bar{p}}(X) = R_{\bar{p}} X R_{\bar{p}}$ with $R_{\bar{p}} = I - \bar{p} \otimes \bar{p}$, and X is an $N \times N$ real symmetric matrix and I denotes the identity matrix. It follows from (4) and $V = \partial_t u / |\nabla u|$ that (1a) is formally equivalent to (3a) on Γ_t with

(5)
$$F(p,X) = -|p|f(-\bar{p}, -\frac{Q_{\bar{p}}(X)}{|p|}), \quad \bar{p} = \frac{p}{|p|},$$

where p is a nonzero vector in \mathbb{R}^N . We note that the equation (3a) is singular at $\nabla u = 0$. A direct caluculation shows that F has the scaling invariance

(6)
$$F(\lambda p, \lambda X + p \otimes y + y \otimes p) = \lambda F(p, X) \text{ for } \lambda > 0, \ y \in \mathbb{R}^N.$$

We say F is strongly geometric if F satisfies (6). Recently, Giga and the author shown f is (essentially) uniquely determined by F (see [GG]).

We define $a \in B_0$ if $a \in C(\mathbb{R}^N)$ and there are a constant $K_0 > 0$ and a modulus function m_0 such that

$$|a(x) - a(y)| \le K_0(|x - y| + 1), \quad |a(x) - a(y)| \le m_0(|x - y|) \quad \text{for } x, y \in \mathbb{R}^N.$$

Here we say a function m a modulus function if $m : R \to R$, m(0) = 0 and m is nondecreasing. Similarly, we also define $u \in B$ if $u \in C([0, \infty) \times R^N)$ and for any T > 0 there are a constant $K_T > 0$ and a modulus function m_T such that

$$|u(t,x) - u(t,y)| \leq K_T(|x-y|+1)$$

for $0 \leq t \leq T, x, y \in \mathbb{R}^N$.
$$|u(t,x) - u(t,y)| \leq m_T(|x-y|)$$

DEFINITION: Let $D_0 \subset \mathbb{R}^N$ be a open set and $\Gamma_0 \subset \mathbb{R}^N \setminus D_0$ a closed set containing ∂D_0 . Let $a \in B_0$ be a definition function of (Γ_0, D_0) . A family of closed sets and open sets $\{(\Gamma_t, D_t)\}_{t \ge 0}$ is a "weak solution" of (1a,b) if there is a definition function $u \in B$ of (Γ_t, D_t) and u is a viscosity solution of (3a,b).

First, we discuss the initial value problem (3a,b). We assume the following conditions (F1)-(F6).

(F1)
$$F: \mathbb{R}^N \setminus \{0\} \times \mathbf{S}_N \longrightarrow \mathbb{R} \text{ is continuous,}$$

where \mathbf{S}_N denotes the space of real $N \times N$ symmetric matrices.

(F2)
$$F$$
 is degenerate elliptic, i.e., $F(p, X) \leq F(p, Y)$ for $X \geq Y$.

(F3)
$$-\infty < F_*(0, O) = F^*(0, O) < \infty,$$

where F_* and F^* are the lower and upper semi-continuous relaxation of F, respectively, i.e.,

$$F_*(z) = \lim_{\varepsilon \downarrow 0} \inf_{\substack{|w-z| < \varepsilon \\ w \in \mathbb{R}^N \setminus \{0\} \times \mathbf{S}_N}} F(w), \quad z \in \mathbb{R}^N \times \mathbf{S}_N$$

and $F^* = -(-F_*)$.

(F4)
$$\sup\{|F(p,X)|; 0 < |p| \leq R, |X| \leq R\} < \infty$$
 for every $R > 0$.

(F5)

F is geometric, i.e., $F(\lambda p, \lambda X + \sigma p \otimes p) = \lambda F(p, X)$ for $\lambda > 0, \sigma \in R$.

(F6)
$$F_*(p,-I) \leq \nu_0 |p|, \quad F^*(p,I) \geq -\nu_0 |p| \text{ for some } \nu_0 > 0.$$

Then we have the following

THEOREM 1. Suppose that (F1)-(F6) hold. Let $a \in B_0$. Then there is a unique viscosity solution $u \in B$ of (3a,b).

Assumptions (F1)-(F4) needs to prove the following comparison principle, which is an important tool in the notion of viscosity solutions.

LEMMA 2([GGIS]). Suppose that F satisfies (F1)-(F4). Let u and v be, respectively, viscosity sub- and supersolutions of (3a) in $Q = (0,T] \times \mathbb{R}^N$ (T > 0). Assume that

(A1) $u(t,x) \leq K(|x|+1)$, $v(t,x) \geq -K(|x|+1)$ on Q for some K > 0;

(A2)
$$u^*(0,x) - v_*(0,y) \leq K(|x-y|+1)$$
 on $\mathbb{R}^N \times \mathbb{R}^N$ for some $K > 0$;

there is a modulus function m_T such that

(A3)
$$u^*(0,x) - v_*(0,y) \leq m_T(|x-y|) \text{ on } \mathbb{R}^N \times \mathbb{R}^N.$$

Then there is a modulus function m such that

$$u^{*}(t,x) - v_{*}(t,y) \leq m(|x-y|) \text{ for } 0 \leq t \leq T, \ x,y \in \mathbb{R}^{N}.$$

In particular $u^* \leq v_*$ on \overline{Q} .

We recall one of equivalent definitions of viscosity sub- and supersolutions of (3a). A function $u: Q \to R$ is called a viscosity sub- (resp. super-) solution of (3a) in Q if $u^* < \infty$ (resp. $u_* > -\infty$) on \overline{Q} and

 $\begin{aligned} \tau+F_*(p,X)&\leqslant 0 \quad \text{for all } (\tau,p,X)\in \mathcal{P}_Q^{2,+}u^*(t,x), \ (t,x)\in Q\\ (\text{resp. } \tau+F^*(p,X)&\geqslant 0 \quad \text{for all } (\tau,p,X)\in \mathcal{P}_Q^{2,-}u_*(t,x), \ (t,x)\in Q). \end{aligned}$ Here $\mathcal{P}_Q^{2,+}u^*(t,x)$ is the set of $(\tau,p,X)\in R\times R^N\times \mathbf{S}_N$ such that $u^*(s,y)\leqslant u^*(t,x)+\tau(s-t)+\langle p,y-x\rangle+\frac{1}{2}\langle X(y-x),y-x\rangle$ $o(|s-t|+|y-x|^2) \quad \text{as } (s,y)\longrightarrow (t,x) \text{ in } Q, \end{aligned}$ where \langle , \rangle denotes the Euclidean innerproduct; similarly, $\mathcal{P}_Q^{2,-}u_*(t,x) = -\mathcal{P}_Q^{2,+}(-u_*(t,x)).$

We construct viscosity sub- and supersolutions of (3a,b), which leads to existence of a viscosity solution of (3a,b) by Perron's method. Using assumptions (F5)-(F6) and some properties of viscosity solutions we show an outline of construction of sub- and supersolutions (in detail, see §6 in [CGG]).

We set

$$u^{\pm}(t,x) = \pm (t + \frac{|x|^2}{2\nu_0}).$$

A direct caluculation shows that u^- (resp. u^+) is a C^2 viscosity sub- (resp. super-) solution of (3a) in $R \times R^N$. For u^{\pm} we set

$$U^{\pm}_{\xi h}(t,x) = h(u^{\pm}(t,\xi-x)), \quad \xi \in \mathbb{R}^N,$$

where h is a continuous nondecreasing function in R. Then $U_{\xi h}^-$ (resp. $U_{\xi h}^+$) is a sub- (resp. super-) solution of (3a) in $R \times R^N$.

Since u^- (resp. $-u^+$) is decreasing in |x| and t, for all $\xi \in \mathbb{R}^N$ the continuity of a guarantees that there is a continuous nondecreasing function $h = h_{\xi} : \mathbb{R} \to \mathbb{R}$ with $h(0) = a(\xi)$ such that $U_{\xi h}^- \leq a(x)$ (resp. $U_{\xi h}^+(t, x) \geq a(x)$) for $t \geq 0$. Since $U_{\xi h}^-$ (resp. $U_{\xi h}^+$) is a sub- (resp. super-) solution of (3a), we see the function

 $\begin{aligned} v^{-}(t,x) &= \sup\{U^{-}_{\xi h}(t,x); h = h_{\xi}, \xi \in \mathbb{R}^{N}\} \leqslant a(x) \\ (\text{resp.} \quad v^{+}(t,x) &= \inf\{U^{+}_{\xi h}(t,x); h = h_{\xi}, \xi \in \mathbb{R}^{N}\} \geqslant a(x)) \end{aligned}$

is again a sub- (resp. super-) solution of (3a) in $[0, \infty) \times \mathbb{R}^N$, which is lower (resp. upper) semi-continuous and satisfies

$$v^- \leq a \leq v^+$$
 for $t \geq 0$ and $v^{\pm} = a$ at $t = 0$.

To apply Lemma 2 we introduce "barrier functions"

$$\phi^{\pm}(t,x) = \pm K(|x| + 1 + \nu_0 t).$$

We see ϕ^- (resp. ϕ^+) is a sub- (resp. super-) solution of (3a). We set

$$f = \max(v^-, \phi^-), \quad g = \min(v^+, \phi^+).$$

Then f (resp. g) is a sub- (resp. super-) solution of (3a,b). By Perron's method there is a viscosity solution u_a of (3a,b) with $f \leq u_a \leq g$. Since u_a satisfies (A1)-(A3), we apply Lemma 2 and see that u_a uniquely solves (3a,b) and $u_a \in B$. This completes the proof of Theorem 1.

We set

$$\Gamma_t = \{ x \in \mathbb{R}^N ; u_a(t, x) = 0 \}, \quad D_t = \{ x \in \mathbb{R}^N ; u_a(t, x) > 0 \}.$$

Then $\{(\Gamma_t, D_t)\}_{t \ge 0}$ is a weak solution of (1a,b). Our goal is to show that $\{(\Gamma_t, D_t)\}_{t \ge 0}$ is uniquely determined by (Γ_0, D_0) . To do this we need the comparison lemma (Theorem 5.2 in [CGG]; if u is a viscosity sub- (super-) solution then $\theta(u)$ is so, provided that θ is continuous and nondecreasing) and the following

LEMMA 3. Let $a, b \in B_0$ be definition functions of (D_0, Γ_0) . If b satisfies

(7)
$$\liminf_{|x|\to\infty, x\in D_0, x\notin\Gamma_0^{\sigma}} b(x) > 0 \quad \text{for every } \sigma > 0,$$

where $\Gamma_0^{\sigma} = \{x \in \mathbb{R}^N; \operatorname{dist}(x, \Gamma_0) < \sigma\}$. Then there is a continuous (strictly) increasing function $\theta : \mathbb{R} \to \mathbb{R}$ such that

$$a(x) \leq \theta(b(x))$$
 in D_0 with $\theta(0) = 0$.

This lemma is proved similar to one of Lemma 7.2 in [CGG]. We set, for $r \ge 0$,

$$a_1(r) = \sup\{a(x); x \in D_0, \operatorname{dist}(x, \Gamma_0) \leq r\},$$

$$b_1(r) = \inf\{b(x); x \in D_0, \operatorname{dist}(x, \Gamma_0) \geq r\}$$

or

$$\bar{a}(r) = a_1(r) + r, \quad \bar{b}(r) = b_1(r) \frac{r}{r+1},$$

which are increasing and satisfy

$$\bar{a}(0) = b(0) = 0, \quad \bar{a}(r), b(r) > 0 \quad \text{for } r > 0,$$
$$a(x) \leq \bar{a}(r), \quad b(x) \geq \bar{b}(r) \quad \text{for } x \in D_0, \operatorname{dist}(x, \Gamma_0) = r.$$

The property $\bar{b}(r) > 0$ for r > 0 follows from (7). The function $\theta = \bar{a} \circ \bar{b}^{-1}$ is increasing on $[0, \infty)$, then we proved Lemma 3.

We note that our definition function a of (Γ_0, D_0) satisfies (7) if a is the signed distance function, i.e.,

$$a(x) = \begin{cases} \operatorname{dist}(x, \Gamma_0) & \text{for } x \in D_0 \\ -\operatorname{dist}(x, \Gamma_0) & \text{for } x \in R^N \setminus D_0 \end{cases}$$

Finally, we state the existence theorem for the initial value problem (1a,b). We rewrite our conditions in terms of f where F is of the form (5) (see [GG]). The condition (F1) is equivalent to

(f1) $f: E \longrightarrow R$ is continuous,

where $E = \{(\bar{p}, Q_{\bar{p}}(X)); \bar{p} \in S^{N-1}, X \in \mathbf{S}_N\}$. The condition (F2) is clearly equivalent to

(f2)
$$f(-\bar{p}, -Q_{\bar{p}}(X)) \ge f(-\bar{p}, -Q_{\bar{p}}(Y))$$
 for $X \ge Y, \bar{p} \in S^{N-1}$

This condition means that -f is degenerate elliptic. The conditions (F3), (F4) and (F6) follow from

(f3)
$$-\inf_{0<\rho<1}\rho\inf_{|\bar{p}|=1}f(-\bar{p},\frac{I-\bar{p}\otimes\bar{p}}{\rho})<\infty,$$
$$-\sup_{0<\rho<1}\rho\sup_{|\bar{p}|=1}f(-\bar{p},\frac{-I+\bar{p}\otimes\bar{p}}{\rho})>-\infty.$$

This condition is fulfilled if $f(\bar{p}, \lambda Z) = \lambda f(\bar{p}, Z)$ for $\lambda > 0, (\bar{p}, Z) \in E$. The condition (F5) holds automatically. Then we have the following

THEOREM 4. Suppose that (f1)-(f3) hold. Let $D_0 \subset \mathbb{R}^N$ be a open set and $\Gamma_0 \subset \mathbb{R}^N \setminus D_0$ a closed set containing ∂D_0 . Then there is a unique weak solution $\{(\Gamma_t, D_t)\}_{t \ge 0}$ of (1a,b).

REFERENCES

[CGG] Y.-G.Chen, Y.Giga and S.Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, to appear in J. Diff. Geom.

- [ES] L.C.Evans and J.Spruck, Motion of level sets by mean curvature I, to appear in J. Diff. Geom.
- [GH] M.Gage and R.Hamilton, The heat equation shrinking of convex plane curves, J. Diff. Geom. 23 (1986), p. 69–96.
- [GG] Y.Giga and S.Goto, Motion of hypersurfaces and geometric equations, to appear in J. Math. Soc. Japan.
- [GGIS] Y.Giga, S.Goto, H.Ishii and M.-H.Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, to appear in Indiana Univ. Math. J.
- [Gr1] M.Grayson, The heat equation shrinks embedded plane curves to round points, J. Diff. Geom. 26 (1987), p. 285–314.
- [Gr2] _____, A short note on the evolution of a surface by its mean curvature, Duke Math. J. 58 (1989), 555–558.
- [Gu1] M.Gurtin, Towards a nonequilibrium thermodynamics of two phase materials, Arch. Rat. Mech. Anal. 100 (1988), 275–312.
- [Gu2] _____, Multiphase thermomechanics with interfacial structure.
- 1. Heat conduction and the capillary balance law, Arch. Rat. Mech. Anal. 104 (1988), 195–221.
- [H] G.Huisken, Flow by mean curvature of convex surfaces into spheres,J. Diff. Geom. 20 (1984), p. 237-266.
- [I] H.Ishii, On uniqueness and existence of viscosity solutions of fully nonlinear second order elliptic PDE's, Comm. Pure Appl. Math. 42 (1989), 15-45.