A levelsurface approach to motion of hypersurfaces

九大工 後藤俊一 (Shun’ichi Goto)

We consider the motion of a hypersurface whose speed locally depends on the normal vector field and its derivatives．Let D_{t} be a open set in $R^{N}(N \geqslant 2)$ and $\Gamma_{t}=\partial D_{t}$（generally a closed set in $R^{N} \backslash D_{t}$ containing ∂D_{t} ）．Let \vec{n} denote the unit exterior normal vector field to Γ_{t} ．It is convenient to extend \vec{n} to a vector field（still denote by \vec{n} ）on a tubular neighburhood of Γ_{t} such that \vec{n} is constant in the normal direction of Γ_{t} ． Let $V=V(t, x)$ denote the speed of Γ_{t} at $x \in \Gamma_{t}$ in the exterior normal direction．The family $\left\{\left(\Gamma_{t}, D_{t}\right)\right\}_{t \geqslant 0}$ satisfies the initial value problem

$$
\begin{equation*}
V=f(\vec{n}, \nabla \vec{n}) \quad \text { on } \Gamma_{t} \tag{1a}
\end{equation*}
$$

$$
\begin{equation*}
\left.\left(\Gamma_{t}, D_{t}\right)\right|_{t=0}=\left(\Gamma_{0}, D_{0}\right) \tag{1b}
\end{equation*}
$$

Here f is a given function and ∇ stands for spatial derivatives．More gen－ erally，the equation is

$$
V=f(t, x, \vec{n}, \nabla \vec{n}) \quad \text { on } \Gamma_{t} .
$$

A typical example is the mean curvature flow equation

$$
\begin{equation*}
V=-\operatorname{div} \vec{n} . \tag{2}
\end{equation*}
$$

A fundamental analytic question to（ $1 \mathrm{a}, \mathrm{b}$ ）is to construct a global－in－ time unique solution family $\left\{\left(\Gamma_{t}, D_{t}\right)\right\}_{t \geqslant 0}$ for a given initial data $\left(\Gamma_{0}, D_{0}\right)$ ．

In material science Γ_{t} is an interface bounding two phases of materials. It is also important to consider anisotropic properties of materials. A typical model (see [Gu1, 2]) is

$$
\beta(\vec{n}) V=-\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}}\left(\frac{\partial H}{\partial p_{i}}(\vec{n})\right)+c,
$$

where β is a positive function on a unit sphere in R^{N}, H is convex and positively homogeneous of degree one and c is a constant. This equation includes (2) as a particular example with $\beta=1, H(p)=|p|$ and $c=0$.

For the mean curvature flow equation (2) Huisken $[\mathrm{H}]$ constructed a unique smooth solution which shrinks to a point in a finite time provided that $N \geqslant 3$ and Γ_{0} is uniformly convex, C^{2} and compact. A similar result was proved by Gage and Hamilton [GH] when $N=2$. Moreover, Grayson [Gr1] proved that any embedded closed curve moved by (2) never becomes singular unless it shrinks to a point. However, for $N \geqslant 3$ even embedded surface may develop singularities before it shrinks to a point. For example, a barbell with a long and thin handle actually becomes singular in the middle in short time (see [Gr2]).

Therefore, Chen, Giga and the author [CGG] introduced a weak notion to construct a unique evolution family even after the time when there appear singularities (see also [GG] and for the special case (2) [ES]). When the initial data (Γ_{0}, D_{0}) are bounded, the problem has been studied in [CGG]. In this note, we discuss the evolution for unbounded initial data.

Our approach is to describe a surface Γ_{t} as a level set of a function u
satisfying an initial value problem

$$
\begin{equation*}
\partial_{t} u+F\left(\nabla u, \nabla^{2} u\right)=0 \quad \text { in } R^{N} \tag{3a}
\end{equation*}
$$

$$
\begin{equation*}
\left.u(t, x)\right|_{t=0}=a(x) \tag{3b}
\end{equation*}
$$

Here F is determined by f and a is a function denoted Γ_{0} as a level set. We use the viscosity solution to construct a solution of (3a,b). The method of viscosity solutions was introduced for weak solutions of Hamilton-Jacobi equations and extended to fully nonlinear degenarate elliptic equations (for example, see [I]).

Let u be a real valued function on $(0, \infty) \times R^{N}$ such that $u>0$ in D_{t} and $u=0$ on Γ_{t}. We call u a definition function of $\left(\Gamma_{t}, D_{t}\right)$. If u is C^{2} and $\nabla u \neq 0$ near Γ_{t}, we see

$$
\begin{equation*}
\vec{n}=-\frac{\nabla u}{|\nabla u|}, \quad \nabla \vec{n}=-\frac{Q_{\bar{p}}\left(\nabla^{2} u\right)}{|\nabla u|} \quad \text { on } \Gamma_{t} \tag{4}
\end{equation*}
$$

Here $\bar{p}=\nabla u /|\nabla u|$ and $Q_{\bar{p}}(X)=R_{\bar{p}} X R_{\bar{p}}$ with $R_{\bar{p}}=I-\bar{p} \otimes \bar{p}$, and X is an $N \times N$ real symmetric matrix and I denotes the identity matrix. It follows from (4) and $V=\partial_{t} u /|\nabla u|$ that (1a) is formally equivalent to (3a) on Γ_{t} with

$$
\begin{equation*}
F(p, X)=-|p| f\left(-\bar{p},-\frac{Q_{\bar{p}}(X)}{|p|}\right), \quad \bar{p}=\frac{p}{|p|} \tag{5}
\end{equation*}
$$

where p is, a nonzero vector in R^{N}. We note that the equation (3a) is singular at $\nabla u=0$. A direct caluculation shows that F has the scaling
invariance

$$
\begin{equation*}
F(\lambda p, \lambda X+p \otimes y+y \otimes p)=\lambda F(p, X) \quad \text { for } \lambda>0, y \in R^{N} . \tag{6}
\end{equation*}
$$

We say F is strongly geometric if F satisfies (6). Recently, Giga and the author shown f is (essentially) uniquely determined by F (see [GG]).

We define $a \in B_{0}$ if $a \in C\left(R^{N}\right)$ and there are a constant $K_{0}>0$ and a modulus function m_{0} such that

$$
|a(x)-a(y)| \leqslant K_{0}(|x-y|+1), \quad|a(x)-a(y)| \leqslant m_{0}(|x-y|) \quad \text { for } x, y \in R^{N} .
$$

Here we say a function m a modulus function if $m: R \rightarrow R, m(0)=0$ and m is nondecreasing. Similary, we also define $u \in B$ if $u \in C\left([0, \infty) \times R^{N}\right)$ and for any $T>0$ there are a constant $K_{T}>0$ and a modulus function m_{T} such that

$$
\begin{aligned}
& |u(t, x)-u(t, y)| \leqslant K_{T}(|x-y|+1) \\
& |u(t, x)-u(t, y)| \leqslant m_{T}(|x-y|)
\end{aligned}
$$

Definition: Let $D_{0} \subset R^{N}$ be a open set and $\Gamma_{0} \subset R^{N} \backslash D_{0}$ a closed set containing ∂D_{0}. Let $a \in B_{0}$ be a definition function of (Γ_{0}, D_{0}). A family of closed sets and open sets $\left\{\left(\Gamma_{t}, D_{t}\right)\right\}_{t \geqslant 0}$ is a "weak solution" of $(1 \mathrm{a}, \mathrm{b})$ if there is a definition function $u \in B$ of $\left(\Gamma_{t}, D_{t}\right)$ and u is a viscosity solution of $(3 a, b)$.

First, we discuss the initial value problem (3a,b). We assume the following conditions (F1)-(F6).

$$
\begin{equation*}
F: R^{N} \backslash\{0\} \times \mathbf{S}_{N} \longrightarrow R \text { is continuous, } \tag{F1}
\end{equation*}
$$

where \mathbf{S}_{N} denotes the space of real $N \times N$ symmetric matrices.
(F2) $\quad F$ is degenerate elliptic, i.e., $F(p, X) \leqslant F(p, Y)$ for $X \geqslant Y$.

$$
\begin{equation*}
-\infty<F_{*}(0, O)=F^{*}(0, O)<\infty \tag{F3}
\end{equation*}
$$

where F_{*} and F^{*} are the lower and upper semi-continuous relaxation of F, respectively, i.e.,

$$
F_{*}(z)=\lim _{\varepsilon \mid 0}^{\substack{|w-z|<\varepsilon \\ w \in R^{N} \backslash\{0\} \times \mathbf{S}_{N}}} \inf _{\substack{|w|}} F(w), \quad z \in R^{N} \times \mathbf{S}_{N}
$$

and $F^{*}=-\left(-F_{*}\right)$.
(F4) $\sup \{|F(p, X)| ; 0<|p| \leqslant R,|X| \leqslant R\}<\infty \quad$ for every $R>0$.
F is geometric, i.e., $F(\lambda p, \lambda X+\sigma p \otimes p)=\lambda F(p, X)$ for $\lambda>0, \sigma \in R$.

$$
\begin{equation*}
F_{*}(p,-I) \leqslant \nu_{0}|p|, \quad F^{*}(p, I) \geqslant-\nu_{0}|p| \quad \text { for some } \nu_{0}>0 . \tag{F6}
\end{equation*}
$$

Then we have the following

Theorem 1. Suppose that (F1)-(F6) hold. Let $a \in B_{0}$. Then there is a unique viscosity solution $u \in B$ of $(3 a, b)$.

Assumptions (F1)-(F4) needs to prove the following comparison principle, which is an important tool in the notion of viscosity solutions.

Lemma 2([GGIS]). Suppose that F satisfies (F1)-(F4). Let u and v be, respectively, viscosity sub- and supersolutions of (3a) in $Q=(0, T] \times R^{N}$ ($T>0$). Assume that
(A1) $u(t, x) \leqslant K(|x|+1), \quad v(t, x) \geqslant-K(|x|+1) \quad$ on Q for some $K>0$;
(A2) $u^{*}(0, x)-v_{*}(0, y) \leqslant K(|x-y|+1)$ on $R^{N} \times R^{N}$ for some $K>0$;
there is a modulus function m_{T} such that

$$
\begin{equation*}
u^{*}(0, x)-v_{*}(0, y) \leqslant m_{T}(|x-y|) \quad \text { on } R^{N} \times R^{N} . \tag{A3}
\end{equation*}
$$

Then there is a modulus function m such that

$$
u^{*}(t, x)-v_{*}(t, y) \leqslant m(|x-y|) \quad \text { for } 0 \leqslant t \leqslant T, x, y \in R^{N} .
$$

In particular $u^{*} \leqslant v_{*}$ on \bar{Q}.

We recall one of equivalent definitions of viscosity sub- and supersolutions of (3a). A function $u: Q \rightarrow R$ is called a viscosity sub- (resp. super-) solution of (3a) in Q if $u^{*}<\infty$ (resp. $u_{*}>-\infty$) on \bar{Q} and

$$
\begin{array}{lll}
& \tau+F_{*}(p, X) \leqslant 0 \quad \text { for all }(\tau, p, X) \in \mathcal{P}_{Q}^{2,+} u^{*}(t, x),(t, x) \in Q \\
\text { (resp. } & \left.\tau+F^{*}(p, X) \geqslant 0 \quad \text { for all }(\tau, p, X) \in \mathcal{P}_{Q}^{2,-} u_{*}(t, x),(t, x) \in Q\right) .
\end{array}
$$

Here $\mathcal{P}_{Q}^{2,+} u^{*}(t, x)$ is the set of $(\tau, p, X) \in R \times R^{N} \times \mathbf{S}_{N}$ such that

$$
\begin{gathered}
u^{*}(s, y) \leqslant u^{*}(t, x)+\tau(s-t)+\langle p, y-x\rangle+\frac{1}{2}\langle X(y-x), y-x\rangle \\
o\left(|s-t|+|y-x|^{2}\right) \quad \text { as }(s, y) \longrightarrow(t, x) \text { in } Q,
\end{gathered}
$$

where \langle,$\rangle denotes the Euclidean innerproduct; similarly, \mathcal{P}_{Q}^{2,-} u_{*}(t, x)=$ $-\mathcal{P}_{Q}^{2,+}\left(-u_{*}(t, x)\right)$.

We construct viscosity sub- and supersolutions of (3a,b), which leads to existence of a viscosity solution of (3a,b) by Perron's method. Using assumptions (F5)-(F6) and some properties of viscosity solutions we show an outline of construction of sub- and supersolutions (in detail, see $\S 6$ in [CGG]).

We set

$$
u^{ \pm}(t, x)= \pm\left(t+\frac{|x|^{2}}{2 \nu_{0}}\right)
$$

A direct caluculation shows that u^{-}(resp. u^{+}) is a C^{2} viscosity sub- (resp. super-) solution of (3a) in $R \times R^{N}$. For $u^{ \pm}$we set

$$
U_{\xi \boldsymbol{h}}^{ \pm}(t, x)=h\left(u^{ \pm}(t, \xi-x)\right), \quad \xi \in R^{N},
$$

where h is a continuous nondecreasing function in R. Then $U_{\xi h}^{-}$(resp. $U_{\xi h}^{+}$) is a sub- (resp. super-) solution of (3a) in $R \times R^{N}$.

Since u^{-}(resp. $-u^{+}$) is decreasing in $|x|$ and t, for all $\xi \in R^{N}$ the continuity of a guarantees that there is a continuous nondecreasing function $h=h_{\xi}: R \rightarrow R$ with $h(0)=a(\xi)$ such that $U_{\xi h}^{-} \leqslant a(x)$ (resp. $U_{\xi h}^{+}(t, x) \geqslant$ $a(x))$ for $t \geqslant 0$. Since $U_{\xi h}^{-}$(resp. $U_{\xi h}^{+}$) is a sub- (resp. super-) solution of (3a), we see the function

$$
\left.\left.\left.\begin{array}{rl}
& v^{-}(t, x) \\
\text { (resp. } \quad & v^{+}(t, x)
\end{array}\right)=\inf \left\{U_{\xi \boldsymbol{\xi} h}^{-}(t, x) ; h=h_{\xi}, \xi \in R^{N}\right\} \leqslant a(x) ; h=h_{\xi}, \xi \in R^{N}\right\} \geqslant a(x)\right)
$$

is again a sub- (resp. super-) solution of (3a) in $[0, \infty) \times R^{N}$, which is lower (resp. upper) semi-continuous and satisfies

$$
v^{-} \leqslant a \leqslant v^{+} \quad \text { for } t \geqslant 0 \quad \text { and } \quad v^{ \pm}=a \quad \text { at } t=0
$$

To apply Lemma 2 we introduce "barrier functions"

$$
\phi^{ \pm}(t, x)= \pm K\left(|x|+1+\nu_{0} t\right)
$$

We see ϕ^{-}(resp. ϕ^{+}) is a sub- (resp. super-) solution of (3a). We set

$$
f=\max \left(v^{-}, \phi^{-}\right), \quad g=\min \left(v^{+}, \phi^{+}\right)
$$

Then f (resp. g) is a sub- (resp. super-) solution of (3a,b). By Perron's method there is a viscosity solution u_{a} of $(3 \mathrm{a}, \mathrm{b})$ with $f \leqslant u_{a} \leqslant g$. Since u_{a} satisfies (A1)-(A3), we apply Lemma 2 and see that u_{a} uniquely solves $(3 \mathrm{a}, \mathrm{b})$ and $u_{a} \in B$. This completes the proof of Theorem 1 .

We set

$$
\Gamma_{t}=\left\{x \in R^{N} ; u_{a}(t, x)=0\right\}, \quad D_{t}=\left\{x \in R^{N} ; u_{a}(t, x)>0\right\}
$$

Then $\left\{\left(\Gamma_{t}, D_{t}\right)\right\}_{t \geqslant 0}$ is a weak solution of (1a,b). Our goal is to show that $\left\{\left(\Gamma_{t}, D_{t}\right)\right\}_{t \geqslant 0}$ is uniquely determined by $\left(\Gamma_{0}, D_{0}\right)$. To do this we need the comparison lemma (Theorem 5.2 in [CGG]; if u is a viscosity sub- (super-) solution then $\theta(u)$ is so, provided that θ is continuous and nondecreasing) and the following

Lemma 3. Let $a, b \in B_{0}$ be definition functions of $\left(D_{0}, \Gamma_{0}\right)$. If b satisfies

$$
\begin{equation*}
\liminf _{|x| \rightarrow \infty, x \in D_{0}, x \notin \Gamma_{0}^{\sigma}} b(x)>0 \quad \text { for every } \sigma>0, \tag{7}
\end{equation*}
$$

where $\Gamma_{0}^{\sigma}=\left\{x \in R^{N} ; \operatorname{dist}\left(x, \Gamma_{0}\right)<\sigma\right\}$. Then there is a continuous (strictly) increasing function $\theta: R \rightarrow R$ such that

$$
a(x) \leqslant \theta(b(x)) \quad \text { in } D_{0} \quad \text { with } \theta(0)=0 .
$$

This lemma is proved similar to one of Lemma 7.2 in [CGG]. We set, for $r \geqslant 0$,

$$
\begin{aligned}
& a_{1}(r)=\sup \left\{a(x) ; x \in D_{0}, \operatorname{dist}\left(x, \Gamma_{0}\right) \leqslant r\right\}, \\
& b_{1}(r)=\inf \left\{b(x) ; x \in D_{0}, \operatorname{dist}\left(x, \Gamma_{0}\right) \geqslant r\right\}
\end{aligned}
$$

or

$$
\bar{a}(r)=a_{1}(r)+r, \quad \bar{b}(r)=b_{1}(r) \frac{r}{r+1},
$$

which are increasing and satisfy

$$
\begin{gathered}
\bar{a}(0)=\bar{b}(0)=0, \quad \bar{a}(r), \bar{b}(r)>0 \quad \text { for } r>0 \\
a(x) \leqslant \bar{a}(r), \quad b(x) \geqslant \bar{b}(r) \quad \text { for } x \in D_{0}, \operatorname{dist}\left(x, \Gamma_{0}\right)=r .
\end{gathered}
$$

The property $\bar{b}(r)>0$ for $r>0$ follows from (7). The function $\theta=\bar{a} \circ \bar{b}^{-1}$ is increasing on $[0, \infty)$, then we proved Lemma 3.

We note that our definition function a of (Γ_{0}, D_{0}) satisfies (7) if a is the signed distance function, i.e.,

$$
a(x)=\left\{\begin{aligned}
\operatorname{dist}\left(x, \Gamma_{0}\right) & \text { for } x \in D_{0} \\
-\operatorname{dist}\left(x, \Gamma_{0}\right) & \text { for } x \in R^{N} \backslash D_{0} .
\end{aligned}\right.
$$

Finally, we state the existence theorem for the initial value problem (1a,b). We rewrite our conditions in terms of f where F is of the form (5) (see [GG]). The condition (F1) is equivalent to

$$
\begin{equation*}
f: E \longrightarrow R \text { is continuous, } \tag{f1}
\end{equation*}
$$

where $E=\left\{\left(\bar{p}, Q_{\bar{p}}(X)\right) ; \bar{p} \in S^{N-1}, X \in \mathbf{S}_{N}\right\}$. The condition (F2) is clearly equivalent to

$$
\begin{equation*}
f\left(-\bar{p},-Q_{\bar{p}}(X)\right) \geqslant f\left(-\bar{p},-Q_{\bar{p}}(Y)\right) \text { for } X \geqslant Y, \bar{p} \in S^{N-1} . \tag{f2}
\end{equation*}
$$

This condition means that $-f$ is degenerate elliptic. The conditions (F3), (F4) and (F6) follow from

$$
\begin{align*}
& -\inf _{0<\rho<1} \rho \inf _{|\bar{p}|=1} f\left(-\bar{p}, \frac{I-\bar{p} \otimes \bar{p}}{\rho}\right)<\infty, \\
& -\sup _{0<\rho<1} \rho \sup _{|\bar{p}|=1} f\left(-\bar{p}, \frac{-I+\bar{p} \otimes \bar{p}}{\rho}\right)>-\infty . \tag{f3}
\end{align*}
$$

This condition is fulfilled if $f(\bar{p}, \lambda Z)=\lambda f(\bar{p}, Z)$ for $\lambda>0,(\bar{p}, Z) \in E$. The condition (F5) holds automatically. Then we have the following

Theorem 4. Suppose that (fl)-(f3).hold. Let $D_{0} \subset R^{N}$ be a open set and $\Gamma_{0} \subset R^{N} \backslash D_{0}$ a closed set containing ∂D_{0}. Then there is a unique weak solution $\left\{\left(\Gamma_{t}, D_{t}\right)\right\}_{t \geqslant 0}$ of $(1 \mathrm{a}, \mathrm{b})$.

References

[CGG] Y.-G.Chen, Y.Giga and S.Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, to appear in J. Diff. Geom.
[ES] L.C.Evans and J.Spruck, Motion of level sets by mean curvature I, to appear in J. Diff. Geom.
[GH] M.Gage and R.Hamilton, The heat equation shrinking of convex plane curves, J. Diff. Geom. 23 (1986), p. 69-96.
[GG] Y.Giga and S.Goto, Motion of hypersurfaces and geometric equations, to appear in J. Math. Soc. Japan.
[GGIS] Y.Giga, S.Goto, H.Ishii and M.-H.Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, to appear in Indiana Univ. Math. J.
[Gr1] M.Grayson, The heat equation shrinks embedded plane curves to round points, J. Diff. Geom. 26 (1987), p. 285-314.
$[\mathbf{G r 2}] \longrightarrow, A$ short note on the evolution of a surface by its mean curvature, Duke Math. J. 58 (1989), 555-558.
[Gu1] M.Gurtin, Towards a nonequilibrium thermodynamics of two phase materials, Arch. Rat. Mech. Anal. 100 (1988), 275-312.
[Gu2] —, Multiphase thermomechanics with interfacial structure. 1. Heat conduction and the capillary balance law, Arch. Rat. Mech. Anal. 104 (1988), 195-221.
[H] G.Huisken, Flow by mean curvature of convex surfaces into spheres, J. Diff. Geom. 20 (1984), p. 237-266.
[I] H.Ishii, On uniqueness and existence of viscosity solutions of fully nonlinear second order elliptic PDE's, Comm. Pure Appl. Math. 42 (1989), 15-45.

