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The evolution of harmonic mappings with free boundaries

Michael Struwe

Mathematik, ETH-Zentrum, CH-8092 Ziirich

Abstract: We establish the existence of a global, partially regular weak solution to
the evolution problem for harmonic maps with free boundaries on a suitable support

hypersurface.

1. Let (M, g) be a m-dimensional manifold with boundary OM and let N be a com-
pact £-dimensional manifold, which for convenience we may regard as isométrically
embedded in some Euclidean space IR™. Also let ¥ be a k-dimensional sub-manifold
of R®, $ = £ N N. Finally, let uy = (ug,...,uy) : M — N with uo(8M) C S be
given.

We study the existence of harmonic maps v : M — N <— R™ solving the free

boundary problem

(1.1) —Av = I'(u)(Vu, Vu) LT, (N) ,
(1.2) uw(0M)C S ,
(1.3) %u.LTuS on OM,

where n denotes a unit normal vector field along M, A = Ajs is the Laplace-
Beltrami operator on M, and I' denotes a bilinear form related to the second fun-
damental form of the embedding N — R™. Finally, T, N denotes the tangent space
(in R™) of N at p, and L means orthogonal (in R™). That is, we look for critical
points of the er;ergy - "‘

(1.4) E(u) = %/qu[sz
M

on the space of maps
Hy*(M;N) = {u € HY*(M;R™);u(M) C N,u(dM) C 5}.
Here, H}?(M;R™) is the Sobolev space of L%-maps u : M — IR™ with Vu € L?;

the norm |Vu|? is computed in the metric on M.
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As in [13] for a related problem, we approach (1.1)-(1.3) by means of the evolution

problem

(1.5) uy — Au = T'(u)(Vu,Vu) on M X [0,00],
(1.6) u(z,t) C S, for z € 8M,t > 0,

(1.7) %u(m,t)_LTu(,'t)S, for z € OM,t >0 ,
(1.8) u(+,0) =ug on M.

If m = 2 this strategy has been sucessfully implemented by Ma Li [10]. See also
Dierkes-Hildebrandt-Wohlrab [5] and Hildebrandt-Nitsche [7] for further material
on the two-dimensional case. Here we confront the higher dimensional case m > 3.

Assume all data are smooth. For simplicity, we consider only the case
M =B = B;(0) = {z € R™;|z| < 1}.

Moreover, we make the following assumption about X, the global “extension” of S

to the ambient Euclidean space:

There exists a ball U C IR™ containing N, whose boundary 8U
(1.9) intersects ¥ orthogonally in the sense that the normal vy to OU at
a point p € 3 lies in T, X.

In addition assume that the nearest neighbor projection 7y : U — X N U is well-

defined and smooth in U, and
(1.10) |D*rg| . diam(U) < 1/2 .

Let Rz(p) = 27g(p) — p be the reflection of a point p € U in X. Also we suppose
¥ is oriented by a smooth normal frame v = (vq,...,v,_k). An example of a
configuration (N, ¥) satisfying (1.9-10)is N = §*~! c R*, ¥ = R*x {0}, k < n—1,
or a perturbation of IR* x {0} by a diffeomorphism & = id+ e, with a smooth map
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r : IR®™ — IR™ having compact support, and |¢| < €9 = €o(7). Then we obtain the
following result reminiscent of the results in [2] for the evolution of harmonic maps

on closed domains, that is, with &M = 0.

Theorem 1.1: Suppose M = B, N, S,uy are as above and S satisfies conditions
(1.9-10). Then there exists a global weak solution u of problem (1.5-8) satisfying
the energy inequality

T
// [us|*dz dt + E(u(T)) < E(uo),
o B

for all T' > 0, and smooth off a singular set of codimension > 2. As t — oo suitably,
u(t) converges weakly in H**(B;N) to a weak solution uq, of (1.1-3) which is

smooth off a set of codimension > 2.

Remark 1.1: (i) If the range u(B x [0, 0o) lies in a convex neighborhood of a point
p on N, u is globally smooth and converges uniformly on B to a smooth solution
Uoo Of (1.1-3) homotopic to ug.

(ii) Conversely, for instance in the case of a sphere as target manifold, it is known
that solutions to (1.5) may develop singularities in finite time, see [4], [1].

(iii) A result like Theorem 1.1 should also hold without the hypotheses (1.9-10)
on S; however, for a general support manifold S - already in the Euclidean case
N = R™ and in contrast to the two-dimensional case - in higher dimensions m > 3
the problem of boundary regularity for (1.5) poses considerable difficulties and the
construction of global, partially regular solutions to (1.5-8) or (2.1), (1.6-8) below
is not yet within reach.

(iv) Similar results should hold on a general compact domain with boundary. In
fact, much of what follows is true for such general domains and we keep the notation

M in that case.

2. Let Us(N) be the §-tubular neighborhood of N in R®. We may choose § > 0
such that Us(N) C U, see (1.9), and such that the nearest neighbor projection
7 : Us(N) — N is well-defined and smooth in Us(N). Let x € Cs°(IR) be a non-
decreasing function satisfying x(s) = s for 0 < s < %2—, x(s) = 82 for s > &%
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Following the approach of [2], we approximate (1.5-8) by the following evolution
problem for maps with range in R™:

dist?(u, N)) _o

d
1 33042
(2.1) uy — Au + Ky (dlst (u,N))—— (

in M x [0, 00|, with boundary and initial conditions (1.6-8). (2.1) is the evolution

equation for the functional

(2.2) Ex(u) = % / [qu|2 + Kx(distz(u,N))]dM
M

for maps v : M — IR".

Lemma 2.1: Let u be a smooth solution to (2.1), (1.6-8). Then we have

T
/ / luel?dM dt + Bxc (u(T)) < Exc(uo) = E(uo)
M

0

forall T > 0.

Proof: Multiply (2.1) by u; and integrate by parts. The boundary term vanishes

on account of (1.6-7).

a

For the following result hypotheses (1.9-10) on S are essential.

Lemma 2.2: Suppose u € C1(M x [0,T[;R™) is a smooth solution to (2.1), (1.6-8)
on M x [0, T[; then u and its first spatial derivatives are uniformly bounded and u
extends to a smooth solution of (2.1), (1.6-8) on M x [0, T.

Proof: The interior estimates easily follow from the energy estimate Lemma 2.1
and the interior regularity estimates for the heat equation; see for instance [9].
To obtain the estimates at the boundary we argue as follows. Note that by the
maximum principle for the heat equation and (1.6-7), (1.9) the image of u satisfies
u(z,t) € U for all (z,t), and by (1.10) the reflection of u in ¥ is defined. Thus, in
the special case M = B, for z € IR™,¢ > 0 we may let

u(z, 1) Jif |z < 1,

i(z,t) = {Rz (w(z/|z|?)) ,if [z > 1.
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Then 4 is of class C! on IR™ x [0, T'[ and satisfies

i i CK yif 2| <1
<
(2.3) i + Adi| < { C K +T's(a)(Va,Va) , if |z| > 1,

where A is an elliptic operator in divergence form with Lipschitz coeflicients, 4 =

—A for |z| < 1, and where I'y, is a bilinear form related to the second fundamental

form of ¥ C R™.

In fact, from

(iig + A) (i) = (2(at — A)rg(u) — (8 — A)u) (z,8) =

|=|?

— (2 [Drs(u) — id) [(8 — A)u] — 2D27rg(u)(Vu,Vu)) (z,1),

we can read off the precise form of A4 and I'y. (2.3) is a parabolic system of the
type
uy + Au = f(-,u, Vu),

on any ball B, = B,(0), where
|£(,u,p)| < alp® + b

with constants a,b € IR. Moreover, by (1.10), for p > 1 sufficiently close to 1 there
holds

a-suplu|l < A,

where A > 0 denotes the ellipticity constant of the operator A on B,. By the
results of [6] for such systems, # is locally Holder continuous on B,x]0,T]. Higher
regularity |V2i| € L2, (B, x [0,T)), |Va| € L}, (B, % [0,T]) then follows as in [9].

loc loc

Finally, by [9; p. 593{.] we also obtain uniform bounds for Vi in L?fc and hence 1,

25 . P
and V*a@ in L,

3.3] this then implies the desired bound.

for all p < co. By the Sobolev embedding theorem [9; Lemma II.

O
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The a-priori bounds of Lemma 2.2 now yield the following global existence result.

Proposition 2.1: Under the hypotheses of Theorem 1.1, for any K € IN there
exists a global solution u = ug € C(B x [0, 00[; R™) to (2.1), (1.6-8). The solution

u is smooth in B x [0, 00[ and satisfies the energy inequality Lemma 2.1.

Proof: Local existence follows from a fixed point argument as in [13]. For com-

pleteness we sketch the argument. Extend uo to IR™ by letting

(2.4) uo(z) = Ry ('u. (-lfl—z))

for z € B, and fix p > 0, T > 0 sufficiently small. Let
Vo(T) = {u € C¥/2(B, x [0,T];IR™);u(0) = uo },

where C11/2(...) is the space of functions u which are continuously differentiable in
the spatial variable z and uniformly Holder continuous in time with Holder exponent
. A norm is given by the Hélder constant and ||Vu||p~. - In [9;p.7f.] this space is

introduced as H1:1/2,

For u € V,(T) let v solve

13342 d_( dist’(u,N) .
(2.5) ve+ Av = {KX (dist®(u, N)) 7 (—2 ), if 2| <1

Kx'(.)& () + () (VuVa), if |z| > 1,

on B, x [0,T] with boundary and initial data u. By the interior estimates for the
heat equation we can bound v and its first and second derivatives in Holder norm
on 8By, x [0,T] in terms of the C11/2_.norm of u on B, x [0,T] and . Define
new CZ2-Dirichlet data by letting

w(z,t) = Ry (v (ﬁ;t)) ,z € 8B, ,

and let @ solve (2.5) with initial data 4o and boundary data w. By (2.4) w and
ug are compatible. Moreover, by the linear estimates for the heat equation (see
[7; Theorem IV. 9.1] ) the map F : u — @ is bounded from C1+3 (B, x [0,T]) into

the space

wit = {u e 17(B, x [0,T]);u,, V?u € 17}
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for all p < oo, which for p > m + 2 is compactly embedded into cl3 (73_; X [O,T]);
see [9; Lemma I1.3.3]. Finally, if T > 0 is sufficiently small, F maps a convex
C1+3-neighborhood of the function u(t) = ug to itself. Hence F has a fixed point

u = F(u), satisfying (2.5) and the condition
u(z,t) = w(z,t) = Ry (v(m/|z|2,t))

on 8B, x [0,T]. But then also u;(z,t) = Ry (u (T—fr;,t)) is a solution of (2.5) in
{(z,t);1/p < |z| < p} with the same initial and boundary data. It follows that

u = u; and thus u satisfies (2.1), (1.6-8). The local solution can be continued

globally on account of Lemma 2.2.
a

To derive uniform interior estimates independent of K we need the following ana-

logue of the monotonicity formula from [14]. Fix zo = (%0,%) € M x]0,00[. Let

1 ]z]z)
G :c,t = ——m X — e
(2:%) Ani] P ( 4l¢|
be the fundamental solution to the heat equation. Then let
1
®.(R)=9, (Ru,K) = -Z-R2 /[]Vu[2 + K'x(distz(u,N))} G(- — zp)dz ,

where we integrate over B X {t{; — R%}. On a general domain we would need to

localize ® in coordinate charts via suitable cut-off functions, as in [2].

Lemma 2.3: There exist constants depending only on M and N such that for all
29 = (zo,%0) and 0 < R < Ry < /%, there holds

$,,(R) < exp(c(Ro — R))®.,(R) + c E(uo)(Ro — R).
Proof: At interior points this result was obtained in [2; Lemma 4.2]. At the bound-
ary, for simplicity we present the proof only for a half-space M = IR, where
RY = {a: =(z',zm) ER™;2m > 0} ,

and zp = (0,0). (The general case then follows as in [2].) Consider the family of

scaled maps
ug(z,t) = u(Rz, R*t).
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Note that ug satisfies (2.1) with R?K instead of K, and also satisfies (1.6), (1.7).
Moreover,

QO(R;UWK) = @0(1;71’12’ RzK) ’
whence (at R = 1, say)

d d
E‘I’o(R; u,K) = :i_R(DO(l;uR’ R’K)

-/ {Vuv (e + Kx(aist*(u, )

Sy _
d (dist’(w,N)\ d
1 ?
+ Kx ()du ( 5 ) dRuR}Gdz,

where S = IRT x {—1}. Integrating by parts in the first term, on account of (2.1)
and the fact that VG = £ G, this gives

[ |z Vu+ 2tu)?

20| Gdz + /Kx(distz(u,N))G dz >0,
S+

St

as desired. Note that by (1.6-7) no boundary terms appear.

Denote by
1
ex(u) = —2-{|Vu[2 + Kx(distz(u, N))}

the energy density for the penalized equation. For a point zy = (zg,%0) € R™ x IR,
p > 0 also denote

Py(z) = {z = (z,t);|lz —zo| < p, to—p> <t < to}
the parabolic cylinder of radius p centered at z, P, = P,(0) for brevity, and let
Pp+(7"0) =P,(20) N {zm > 0},
P (z0) =Pp(20) N {zm < 0},

respectively.

Lemma 2.4: There exists a constant g > 0 depending only on M and N with the
following property: If for some zy = (z0,%9) € M x]0,00[ and R < ¢, the inequality

¢, (R;uk,K) < g
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is satisfied, then
sup ex(ugk) < c(cSR)—2 ,

Psr(zo)
with constants ¢ depending only on M and N and § > 0 possibly depending also
on E(ug) and min {R,1}.

Proof: The proof for interior points o € M is the same as that of Lemmas 2.4,

4.4 of [2]. We sketch the modifications at a boundary point z,. Again assume for

simplicity that M = IR} and shift zo to 0. By reflection we may extend u to a

solution % of ‘

(26) i Ad— {Kx’ (dist?(a, N)) & (5B | if 2, > 0
Kx'(.)&(...) + Te(8)(VE, Vi), ifzm <0

on a full neighborhood of zy. Scaling as in [2; p. 92|, we obtain a solution v of

problem (2.6) for some K = e—’g on P, satisfying
ex(v) <4
and
ex(0)(0) =1 .

Moreover, we have the differential inequality
(2.7) (8 — A)eg () + [V?o]? < Ceg (o),

separately in P;" and P;". (The proof of this Bochner-type estimate can be conveyed
very easily from [2; p. 90].) Let us for brevity write egz(v) = e(v) in the sequel.
Our aim is to extend (2.7) to P;.

Due to the structure of (2.6), Ae(v) may have a singular component on the hy-
persurface {z,, = 0} - in our old coordinates. As in [13], we may control this

component in the following way.

Given ¢ € C§°(B), —1 <t < 0, we have

— / Ae(v)pde = / [6....6(v)] T ?dz’ + 2 / Ve(v)Vyppde |

{zm=0}

where [ ... denotes integration over B x {t}, and where we denote

[f(z', 0)]—1- = 21”1.1{1'0 f(z:',a?m) - :»:EIB‘O f(;z:’,wm)
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for any function f.

To estimate the boundary integral we decompose

O] = 3[oen (9] 4 5 [oraxtaise e, )]

[Bzm(]V'v]Z)]
= : v]_ + [a,m(vz,v)vz,v]f
= [Av8,, ]t — 2[A,v8,, v]t + [Var - (Bzmvv,,rv)]t

But by (1.6), (1.7)
0, vVayv=0.

Hence, and on account of (2.6), (1.6), we have

[0z, e(v)] " = (T2(v)(Vv, Vv),8,,.v) — 2[Av8, o],

where for clarity we now denote < -, > the scalar product in IR". Using the normal
frame v = (v1,...,vn—k) for X, the last term by (1.7) may be more conveniently

written

Apvd, v = Z(Az:v, uj(v)><uj(v), Bzm'v>
= — Z<V=:v, Vo (Vj(v))><1/j(v), Bz,,v) .

Smoothly extend v; to IR™. Then by the divergence theorem

-/[Bzme('u)] *o2ds! = / div ((Fg('v)(V'v, Vo), Vv>¢,02) dz

{zm=0} Pl

>3 / div(<V,rv,Vz: (yj(v))><uj(v),vv>¢2)dz

<c / (7%l [Vof? +[Vol)g?dz + C [ 9919 lplds
P

Se/lvzvlzgozdaz+C(s)/IVv|4gozda:
Pl Pl

+C(e) / Vol Ve 2de
Py
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and - choosing € > 0 sufficiently small - it follows that the inequality (2.7) - up to a
factor - holds on P; in the distribution sense. But then the remainder of the proof

of [2] applies also in this case.
O

As in [2], we may now pass to the limit K — oco. Let ug be a sequence of smooth
solutions to (2.1), (1.6-8). We may assume that ux converges weakly to « in the

sense
Vug — Vu  weakly — xin L°°([0, oof; Lz(M)) ,
3} 7]

5K T 5 wgakly in L? (M X [0,00[) ,

ug — u strongly in L}, (M x [0, c0]),

and almost everywhere, where u : M x [0, co[— N.

Proposition 2.2: The limit u weakly solves problem (1.5-8). Moreover, u is
smooth and solves (1.5) classically on a dense relatively open set Qo C M X [0, o0]
whose complement Q' has locally finite (m — 2)-dimensional Hausdorff measure on

each time slice M x {t = const.}. Moreover, u satisfies the energy inequality

T

/ / lu¢|?*dM dt + E(u(T)) < E(uo) ,

0 M

for all T > 0. Finally, as ¢ — oo suitably, a sequence u(-,t) converges weakly in
HY2(M;N) to a solution us, of (1.1-3) with E(uw) < E(u¢) and smooth away

from a closed set Q" of finite (m — 2)-dimensional Hausdorff measure.

Proof: All proofs except (1.3), (1.7) are identical with those of [ 12; Theorem 6.1],
resp. [2; Theorem 1.5] in the case of harmonic maps on domains without boundary.
See [3] for an estimate of H™~2(Q'N{t = const.}). To see (1.3), (1.7) in the case of a
half-plane we extend ug by reflection to solutions g of equations (2.6), converging
weakly locally to a function 4. On Qq, as in [2; p. 94], we have C'-convergence
ug — u, and (1.7) holds on Qo. Moreover, there holds K- dist (u, N) — X weakly

in L2 _(Qo), whence

(2.7) @y — A € Lf,(Qo) -
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Now let ¢ be an arbitrary testing function and let n € H»*°,0<np<1,p=0ina
neighborhood of @', as in [2; p. 95]. Multiplying (2.7) by ¢7, we obtain that

oo oo

/ /('&t — Aw)pndzdt = / /{ﬁgp + ViaVelndzdt + F

0 IR™ 0o R™

where

1/2

F1 [1vlionlpldear <o | [ VuPetasa

upp(V7)

As in [2] we may choose a sequence of maps 7 as above with a uniform constant
C(n) = C such that n — 1 almost everywhere and (supp (Vn)) — 0 in measure.
By absolute continuity of the Lebesgue integral, thus F — 0, and (1.7) also holds

in the distribution sense. The proof of (1.3) is similar.

O

Theorem 1.1 is an immediate consequence of Proposition 2.2. Remark 1.1 follows
by adapting the argument of [8] to our problem. Since this technique is by now

well-known we may omit the details.
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