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The evolution of harmonic mappings with free boundaries

Michael Struwe

Mathematik, ETH-Zentrum, CH-8092 Z\"urich

Abstract: We establish the existence of a global, partially regular weak solution to

the evolution problem for harmonic maps with free boundaries on a suitable support

hypersurface.

1. Let $(M,g)$ be a m-dimensional manifold with boundary $\partial M$ and let $N$ be a com-

pact $l$-dimensional manifold, which for convenience we may regard as isometrically

embedded in some Euclidean space $\mathbb{R}^{n}$ . Also let $\Sigma$ be a k-dimensional sub-manifold

of $\mathbb{R}^{n},$ $S=\Sigma\cap N$ . FinaUy, let $u_{0}=(u_{0}^{1}, \ldots,u_{0}^{n})$ : $Marrow N$ with $u_{0}(\partial M)\subset S$ be

glven.

We study the existence of harmonic maps $u$ : $Marrow Narrow R^{n}$ solving the free
$b$ oundary problem

(1.1) $-\Delta u=\Gamma(u)(\nabla u, \nabla u)\perp T_{u}(N)$ ,

(12) $u(\partial M)\subset S$ ,

(1.3) $\frac{\partial}{\partial n}u\perp T_{u}S$ on $\partial M$,

where $n$ denotes a unit normal vector field along $\partial M,$ $\Delta=\Delta_{M}$ is the Laplace-

Beltrami operator on $M$ , and $\Gamma$ denotes a bilinear form related to the second fun-
damental form of the embedding $Nrightarrow R^{n}$ . Finally, $T_{p}N$ denotes the tangent space
(in $R^{n}$ ) of $N$ at $p$ , and $\perp$ means orthogonal (in $R^{n}$ ). That is, we look for critical
points of the energy

(1.4) $E(u)= \frac{1}{2}\int_{M}|\nabla u|^{2}dM$

on the space of maps

$H_{S}^{1,2}(M;N)=\{u\in H^{1,2}(Jf;R^{n});u(M)\subset N,u(\partial M)\subset S\}$.

Here, $H^{1,2}(M;R^{n})$ is the Sobolev space of $L^{2}$ -maps $u$ : $Marrow \mathbb{R}^{n}$ with $\nabla u\in L^{2}$ ;

the norm Vu $|^{2}$ is computed in the metric on $M$ .
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As in [13] for a related problem, we approach $(1.1)-(1.3)$ by means of the evolution

problem

(1.5) $u_{\ell}-\Delta u=\Gamma(u)(\nabla u, \nabla u)$ on $M\cross[0,$ $\infty[$ ,

(1.6) $u(x, t)\subset S$, for $x\in\partial M,$ $t\geq 0$ ,

(1.7) $\frac{\partial}{\partial n}u(x, t)\perp T_{u(x,t)}S$, for $x\in\partial M,$ $t>0$ ,

(1.8) $u(\cdot, 0)=u_{0}$ on $M$.

If $m=2$ this strategy has been sucessfully implemented by Ma Li [10]. See also

Dierkes-Hildebrandt-Wohlrab [5] and Hildebrandt-Nitsche [7] for further material

on the two-dimensional case. Here we confront the higher dimensional case $m\geq 3$ .
Assume all data are smooth. For simplicity, we consider only the case

$M=B=B_{1}(0)=\{x\in IR^{m}; |x|<1\}$ .

Moreover, we make the following assumption about $\Sigma$ , the global “extension” of $S$

to the ambient Euclidean space:

There exists a $baUU\subset IR^{n}$ containing $N$ , whose boundary $\partial U$

(1.9) intersects $\Sigma$ orthogonally in the sense that the normal $\nu u$ to $\partial U$ at

a point $p\in\Sigma$ lies in $T_{p}\Sigma$ .

In addition assume that the nearest neighbor projection $\pi_{\Sigma}$ : $Uarrow\Sigma\cap U$ is well-

defined and smooth in $U$ , and

(1.10) $|D^{2}\pi_{\Sigma}|\cdot diam(U)<1/2$

Let $R_{\Sigma}(p)=2\pi\Sigma(p)-p$ be the reflection of a point $p\in U$ in $\Sigma$ . Also we suppose
$\Sigma$ is oriented by a smooth normal frame $\nu=(\nu_{1}, \ldots, \nu_{n-k})$ . An example of a

configuration $(N, \Sigma)$ satisfying (1.9-10) is $N=S^{n-1}\subset R^{n},$ $\Sigma=\mathbb{R}^{k}\cross\{0\},$ $k\leq n-1$ ,
oraperturbation of IR $\cross\{0\}byadiffeomorphism\Phi=id+\epsilon\tau,$ $withasmoothmap$
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$\tau$ : $\mathbb{R}^{n}arrow \mathbb{R}^{n}$ having compact support, and $|\epsilon|<\epsilon_{0}=\epsilon_{0}(\tau)$ . Then we obtain the

following result reminiscent of the results in [2] for the evolution of harmonic maps

on closed domains, that is, with $\partial M=\emptyset$ .

Theorem 1.1: Suppose $M=B,$ $N,$ $S,$ $u_{0}$ are as above and $S$ satisfies conditions

(1.9-10). Then there exists a global weak solution $u$ of problem (1.5-8) satisfying

the energy inequality

$\int^{T}\int 0B|u_{t}|^{2}dxdt+E(u(T))\leq E(u_{0})$ ,

for all $T\geq 0$ , and smooth off a singular set of codimension $\geq 2$ . As $tarrow\infty$ suitably,
$u(t)$ converges weakly in $H^{1,2}(B;N)$ to a weak solution $u_{\infty}$ of $(1.1-\cdot 3)$ which is

smooth off a set of codimension $\geq 2$ .

Remark 1.1: (i) If the range $u(B\cross[0, \infty[)$ lies in a convex neighborhood of a point

$p$ on $N,$ $u$ is globally smooth and converges uniformly on $\overline{B}$ to a smooth solution
$u_{\infty}$ of (1.1-3) homotopic to $u_{0}$ .

(ii) Conversely, for instance in the case of a sphere as target manifold, it is known

that solutions to (1.5) may develop singularities in finite time, see [4], [1].

(iii) A result like Theorem 1.1 should also hold without the hypotheses (1.9-10)

on $S$ ; however, for a general support manifold $S-$ already in the Euclidean case
$N=R^{n}$ and in contrast to the two-dimensional case-in higher dimensions $m\geq 3$

the problem of boundary regularity for (1.5) poses considerable difficulties and the

construction of global, partially regular solutions to (1.5-8) or (2.1), (1.6-8) below

is not yet within reach.

(iv) Similar results should hold on a general compact domain with boundary. In

fact, much of what follows is true for such general domains and we keep the notation
$M$ in that case.

2. Let $U_{6}(N)$ be the S-tubular neighborhood of $N$ in $R^{n}$ . We may choose $5>0$

such that $U_{\delta}(N)\subset U$ , see (1.9), and such that the nearest neighbor projection
$\pi$ : $U_{\delta}(N)arrow N$ is well-defined and smooth in $U_{\delta}(N)$ . Let $\chi\in C_{0^{\infty}}(\mathbb{R})$ be a non-

decreasing function satisfying $\chi(s)=s$ for $0<s< \frac{\delta^{2}}{2}\chi(s)=\delta^{2}$ for $s\geq\delta^{2}$ .
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Following the approach of [2], we approximate (1.5-8) by the following evolution

problem for maps with range in $R^{n}$ :

(2.1) $u_{t}-\Delta u+K\chi^{\iota}$ (dist2 $(u,$ $N)$) $\frac{d}{du}(\frac{dist^{2}(u,N)}{2})=0$

in $M\cross[0,$ $\infty$ [, with boundary and initial conditions (1.6-8). (2.1) is the evolution

equation for the functional

(2.2) $E_{K}(u)= \frac{1}{2}\int_{M}[|\nabla u|^{2}+K\chi(dist^{2}(u, N))]dM$

for maps $u:Marrow IR^{n}$ .

Lemma 2.1: Let $u$ be a smooth solution to (2.1), (1.6-8). Then we have

$\int^{T}\int 0M|u_{\ell}|^{2}dMdt+E_{K}(u(T))\leq E_{K}(u_{0})=E(u_{0})$

for all $T\geq 0$ .

Proof: Multiply (2.1) by $u_{t}$ and integrate by parts. The boundary term vanishes

on account of (1.6-7).
$\square$

For the following result hypotheses (1.9-10) on $S$ are essential.

Lemma 2.2: Suppose $u\in C^{1}(\overline{M}\cross[0, T[;R^{\tau\iota})$ is a smooth solution to (2.1), (1.6-8)

on $\overline{M}\cross[0,$ $T$ [; then $u$ and its first spatial derivatives are uniformly bounded and $u$

extends to a smooth solution of (2.1), (1.6-8) on $\overline{M}\cross[0, T]$ .

Proof: The interior estimates easily follow from the energy estimate Lemma 2.1

and the interior regularity estimates for the heat equation; see for instance [9].

To obtain the estimates at the boundary we argue as follows. Note that by the

maximum principle for the heat equation and (1.6-7), (1.9) the image of $u$ satisfies
$u(x, t)\in U$ for all $(x, t)$ , and by (1.10) the reflection of $u$ in $\Sigma$ is defined. Thus, in
the special case $M=B$ , for $x\in \mathbb{R}^{m},$ $t\geq 0$ we may let

$\overline{u}(x,t)=t^{u(x,t)}R_{\Sigma}(u(x/|x|^{2}))$ $ifif|\begin{array}{l}xx\end{array}|>1<1.$
’



152

Then $\overline{u}$ is of class $C^{1}$ on $\mathbb{R}^{m}\cross[0,$ $T$ [ and satisfies

(2.3) $|\tilde{u}_{t}+A\tilde{u}|\leqq t_{0^{K}}^{o_{K+\Gamma_{\Sigma}(\tilde{u})(\nabla\overline{u},\nabla\overline{u})}}$ $ifif|\begin{array}{l}xx\end{array}|>1<1$

where $A$ is an elliptic operator in divergence form with Lipschitz coefficients, $A=$

-A for $|x|<1$ , and where $r_{\Sigma}$ is a bilinear form related to the second fundamental

form of $\Sigma\subset R^{n}$ .

In fact, from

$( \overline{u}_{t}+A\tilde{u})(\frac{x}{|x|^{2}})$ $:=(2(\partial_{\ell}-\triangle)\pi_{\Sigma}(u)-(\partial_{\ell}-\Delta)u)(x,t)=$

$=(2[D\pi_{\Sigma}(u)-id][(\partial_{t}-\Delta)u]-2D^{2}\pi_{\Sigma}(u)(\nabla u, \nabla u))(x,t)$ ,

we can read off the precise form of $A$ and $r_{\Sigma}$ . (2.3) is a parabolic system of the

type

$u_{t}+Au=f(\cdot, u, \nabla u)$ ,

on any ball $B_{\rho}=B_{\rho}(0)$ , where

$|f(\cdot,u,p)|\leq a|p|^{2}+b$

with constants $a,$ $b\in \mathbb{R}$ . Moreover, by (1.10), for $\rho>1$ sufficiently close to 1 there

holds

$a \cdot\sup|u|<\lambda$ ,

where A $>0$ denotes the ellipticity constant of the operator $A$ on $B_{\rho}$ . By the

results of [6] for such systems, $\tilde{u}$ is locally H\"older continuous on $B_{\rho}\cross$ ] $0,$ $T$]. Higher
regularity $|\nabla^{2}\tilde{u}|\in L_{loc}^{2}(B_{\rho}\cross[0, T]),$ $|\nabla\overline{u}|\in L_{loc}^{4}(B_{\rho}\cross[0, T])$ then follows as in [9].

Finally, by [9; p. $593f.$ ] we also obtain uniform bounds for $\nabla\tilde{u}$ in $L_{loc}^{2p}$ and hence $\tilde{u}_{t}$

and $\nabla^{2}\overline{u}$ in $L_{loc}^{p}$ for $aUp<\infty$ . By the Sobolev embedding theorem [9; Lemma II.

3.3] this then implies the desired bound.
$\square$
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The a-priori bounds of Lemma 2.2 now yield the following global existence result.

Proposition 2.1: Under the hypotheses of Theorem 1.1, for any $K\in$ IN there

exists a global solution $u=u_{K}\in C^{1}(\overline{B}\cross[0, \infty[;R")$ to (2.1), (1.6-8). The solution

$u$ is smooth in $\overline{B}\cross[0,$ $\infty$ [ and satisfies the energy inequality Lemma 2.1.

Proof: LocaE existence follows from a fixed point argument as in [13]. For com-

pleteness we sketch the argument. Extend $u_{0}$ to $\mathbb{R}^{m}$ by letting

(2.4) $u_{0}(x)=R_{\Sigma}(u( \frac{x}{|x|^{2}}))$

for $x\not\in\overline{B}$, and fix $\rho>0,$ $T>0$ sufficiently small. Let

$V_{\rho}(T)=\{u\in C^{1,1/2}\tau_{\rho}\cross[0,T];\mathbb{R}^{n});u(0)=u_{0}\}$ ,

where $C^{1,1/2}($ ... $)$ is the space of functions $u$ which are continuously differentiable in

the spatial variable $x$ and uniformly Holder continuous in time with Holder exponent

-. A norm is given by the H\"older constant and $||\nabla u||_{L^{\infty}}$ . -In $[9;p.7f.]$ this space is

introduced as $H^{1,1/2}$ .

For $u\in V_{\rho}(T)$ let $v$ solve

(2.5) $v_{t}+Av= \{_{K\chi’(\ldots)(.)+(u)}K\chi(dis_{\frac{t_{d^{2}}}{du}}(u.’.N))\frac{d}{\Gamma_{\Sigma}^{du}}(\frac{dist^{2}(u,N)}{)(\nabla^{2}u\nabla u})$

,
$ifif|\begin{array}{l}xx\end{array}|>1<1$

on $B_{\rho}\cross[0, T]$ with boundary and initial data $u$ . By the interior estimates for the

heat equation we can bound $v$ and its first and second derivatives in H\"older norm
on $\partial B_{1/\rho}\cross[0, T]$ in terms of the $C^{1,1/2}$ -norm of $u$ on $B_{\rho}\cross[0, T]$ and $u_{0}$ . Define
new $C^{2}$ -Dirichlet data by letting

$w(x,t)=R_{\Sigma}(v( \frac{x}{|x|^{2}},t))x\in\partial B_{\rho}$ ,

and let $\overline{u}$ solve (2.5) with initial data $u_{0}$ and boundary data $w$ . By (2.4) $w$ and
$u_{0}$ are compatible. Moreover, by the linear estimates for the heat equation (see

[7; Theorem IV. 9.1]) the map $F:urightarrow\overline{u}$ is bounded from $C^{1,\frac{1}{2}}\tau_{\rho}\cross[0, T]$) into
the space

$W_{p}^{2,1}=\{u\in L^{p}(B_{\rho}\cross[0, T]);u_{t},$ $\nabla^{2}u\in L^{p}\}$
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for all $p<\infty$ , which for $p>m+2$ is compactly embedded into $C^{1,\frac{1}{2}}\tau_{\rho}\cross[0, T]$);
see [9; Lemma II.3.3]. Finally, if $T>0$ is sufficiently small, $F$ maps a convex
$C^{1,\frac{1}{2}}$ -neighborhood of the function $u(t)\equiv u_{0}$ to itself. Hence $F$ has a fixed point

$u=F(u)$ , satisfying (2.5) and the condition

$u(x, t)=w(x, t)=R_{\Sigma}(v(x/|x|^{2},t))$

on $\partial B_{\rho}\cross[0, T]$ . But then also $u_{1}(x, t)=R_{\Sigma}(u(_{Wx^{x}},t))$ is a solution of (2.5) in
$\{(x, t);1/\rho<|x|<\rho\}$ with the same initial and boundary data. It follows that

$u=u_{1}$ and thus $u$ satisfies (2.1), (1.6-8). The local solution can be continued

globaUy on account of Lemma 2.2.
$\square$

To derive uniform interior estimates independent of $K$ we need the following ana-

logue of the monotonicity formula from [14]. Fix $z_{0}=(x_{0},t_{0})\in\overline{M}\cross$] $0,$ $\infty$ [. Let

$G(x,t)= \frac{1}{\sqrt{4\pi|t|}^{m}}\exp(-\frac{|x|^{2}}{4|t|})$

be the fundamental solution to the heat equation. Then let

$\Phi_{z_{O}}(R)=\Phi_{z_{O}}(R;u, K)=\frac{1}{2}R^{2}\int[|\nabla u|^{2}+R^{\cdot}\chi(dist^{2}(u, N))]G(\cdot-z_{0})dx$ ,

where we integrate over $B\cross\{t_{0}-R^{2}\}$ . On a general domain we would need to
localize $\Phi$ in coordinate charts via suitable cut-off functions, as in [2].

Lemma 2.3: There exist constants depending only on $M$ and $N$ such that for all
$z_{0}=(x_{0}, t_{0})$ and $0\leq R\leq R_{0}\leq\sqrt{t_{0}}$ there holds

$\Phi_{z_{O}}(R)\leq\exp(c(R_{0}-R))\Phi_{z_{O}}(R)+cE(u_{0})(R_{0}-R)$.

Proof: At interior points this result was obtained in [2; Lemma 4.2]. At the bound-

ary, for simplicity we present the proof only for a half-space $M=\mathbb{R}_{+}^{m}$ , where

$IR_{+}^{m}=\{x=(x’, x_{m})\in \mathbb{R}^{m}; x_{m}>0\}$ ,

and $z_{0}=(0,0)$ . (The general case then follows as in [2].) Consider the family of
scaled maps

$u_{R}(x, t)=u(Rx, R^{2}t)$ .
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Note that $u_{R}$ satisfies (2.1) with $R^{2}K$ instead of $K$ , and also satisfies (1.6), (1.7).

Moreover,
$\Phi_{0}(R;u,K)=\Phi_{0}(1;u_{R}, R^{2}K)$ ,

whence (at $R=1$ , say)

$\frac{d}{dR}\Phi_{0}(R;u,K)=\frac{d}{dR}\Phi_{0}(1;u_{R}, R^{2}K)$

$= \int_{s_{+}}\{\nabla u\nabla(\frac{d}{dR}u_{R})+K\chi(dist^{2}(u,N))$

$+K \chi’(\ldots)\frac{d}{du}(\frac{dist^{2}(u,N)}{2})\frac{d}{dR}u_{R}\}Gdx$,

where $s_{+}=\mathbb{R}_{+}^{m}\cross\{-1\}$ . Integrating by parts in the first term, on account of (2.1)

and the fact that $\nabla G=\frac{x}{2t}G$ , this gives

$= \int_{s_{+}}\frac{|x\cdot\nabla u+2tu_{\ell}|^{2}}{2|t|}Gdx+\int_{s_{+}}K\chi(dist^{2}(u, N))Gdx\geq 0$
,

as desired. Note that by (1.6-7) no boundary terms appear.
$\square$

Denote by
$e_{K}(u)= \frac{1}{2}\{|\nabla u|^{2}+K\chi(dist^{2}(u, N))\}$

the energy density for the penalized equation. For a point $z_{0}=(x_{0}, t_{0})\in \mathbb{R}^{m}\cross \mathbb{R}$,
$\rho>0$ also denote

$P_{\rho}(z_{0})=\{z=(x,t);|x-x_{0}|<\rho, t_{0}-\rho^{2}<t<t_{0}\}$

the parabolic cylinder of radius $\rho$ centered at $z_{0},$ $P_{\rho}=P_{\rho}(0)$ for brevity, and let

$P_{\rho}^{+}(z_{0})=P_{\rho}(z_{0})\cap\{x_{m}>0\}$ ,

$P_{\rho^{-}}(z_{0})=P_{\rho}(z_{0})\cap\{x_{m}<0\}$ ,

respectively.

Lemma 2.4: There exists a constant $\epsilon_{0}>0$ depending only on $M$ and $N$ with the

following property: If for some $z_{0}=(x_{0}, t_{0})\in\overline{M}\cross$ ] $0,$ $\infty$ [ and $R<\epsilon_{0}$ the inequality

$\Phi_{z_{O}}(R;u_{K}, K)<\epsilon_{0}$
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is satisfied, then

$\sup$ $e_{K}(u_{K})\leq c(SR)^{-2}$ ,
$P_{6R}(z_{O})$

with constants $c$ depending only on $M$ and $N$ and $5>0$ possibly depending also

on $E(u_{0})$ and $\min\{R, 1\}$ .

Proof: The proof for interior points $x_{0}\in M$ is the same as that of Lemmas 2.4,

4.4 of [2]. We sketch the modifications at a boundary point $x_{0}$ . Again assume for

simplicity that $M=\mathbb{R}_{+}^{m}$ and shift $z_{0}$ to $0$ . By reflection we may extend $u$ to a

solution $\tilde{u}$ of

(2.6) $\tilde{u}_{t}-$ Au $= \{_{K\chi’(\ldots)\frac{t_{d}^{2}}{du}(..)+(,\nabla\tilde{u}}K\chi(dis(\tilde{u},.N))\frac{d}{du,\Gamma}(\frac{dist^{2}(\tilde{u},N)}{u\tilde)(\nabla^{2}\tilde{u}})\Sigma;$

,
$ifx_{m}ifx_{m}<0>0$

on a full neighborhoo $d$ of $x_{0}$ . Scaling as in [2; p. 92], we obtain a solution $v$ of

problem (2.6) for some $\overline{K}=\frac{K}{e_{O}}$ on $P_{1}$ , satisfying

$e_{\tilde{K}}(v)\leq 4$

and
$e_{\tilde{K}}(v)(0)=1$

Moreover, we have the differential inequality

(2.7) $(\partial_{t}-\Delta)e_{K}(v)+|\nabla^{2}v|^{2}\leq Ce_{K}(v)$ ,

separately in $P_{1}^{+}$ and $P_{1}^{-}$ . ( $Th_{9}$ proof of this Bochner-type estimate can be conveyed
very easily from [2; p. 90].) Let us for brevity write $e_{\overline{K}}(v)=e(v)$ in the sequel.

Our aim is to extend (2.7) to $P_{1}$ .
Due to the structure of (2.6), $\Delta e(v)$ may have a singular component on the hy-

persurface $\{x_{m}=0\}-$ in our old coordinates. As in [13], we may control this

component in the following way.

Given $\varphi\in C_{0}^{\infty}(B),$ $-1<t<0$ , we have

$- \int\Delta e(v)\varphi^{2}dx=$ $\int$ $[ \partial_{x_{m}}e(v)]_{-}^{+}\varphi^{2}dx’+2\int\nabla e(v)\nabla\varphi\varphi dx$ ,
$\{x_{m}=0\}$

where $\int\ldots$ denotes integration over $B\cross\{t\}$ , and where we denote

$[f(x’, 0)]_{-}^{+}= \lim_{x_{m}\backslash 0}f(x’, x_{m})-\lim_{x_{m}\nearrow 0}f(x’, x_{m})$
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for any function $f$ .
To estimate the boundary integral we decompose

$[ \partial_{x_{m}}e(v)]_{-}^{+}=\frac{1}{2}[\partial_{x_{m}}(|\nabla v|^{2})]_{-}^{+}+\frac{\tilde{K}}{2}[\partial_{x_{m}}\chi(dist^{2}(v, N))]_{-}^{+}$

$= \frac{1}{2}[\partial_{x_{m}}(|\nabla v|^{2})]_{-}^{+}$

$=[\partial_{x_{m}}^{2}v\partial_{x_{m}}v]_{-}^{+}+[\partial_{x_{m}}(\nabla_{x’}v)\nabla_{x’}v]_{-}^{+}$

$=[\triangle v\partial_{x_{m}}v]_{-}^{+}-2[\Delta_{x’}v\partial_{x_{m}}v]_{-}^{+}+[\nabla_{x’}\cdot(\partial_{x_{m}}v\nabla_{x’}v)]_{-}^{+}$

But by (1.6), (1.7)
$\partial_{x_{m}}v\nabla_{x’}v=0$

Hence, and on account of (2.6), (1.6), we have

$[\partial_{x_{m}}e(v)]_{-}^{+}=\langle\Gamma_{\Sigma}(v)(\nabla v, \nabla v),$ $\partial_{x_{m}}v$ } $-2[\Delta_{x’}v\partial_{z_{m}}v]_{-}^{+}$ ,

where for clarity we now denote $<\cdot,$ $\cdot>the$ scalar product in $\mathbb{R}^{n}$ . Using the normal
frame $\nu=(\nu_{1}, \ldots, \nu_{n-k})$ for $\Sigma$ , the last term by (1.7) may be more conveniently

written
$\Delta_{x’}v\partial_{x_{m}}v=\sum_{j}\langle\Delta_{x’}v, \nu_{j}(v)\rangle\langle\nu_{j}(v), \partial_{x_{m}}v\rangle$

$=- \sum_{j}\langle\nabla_{x’}v,$
$\nabla_{x’}(\nu_{j}(v))\rangle\langle\nu_{j}(v), \partial_{x_{m}}v\rangle$ .

Smoothly extend $\nu_{j}$ to $\mathbb{R}^{n}$ . Then by the divergence theorem

$\int[\partial_{x_{m}}e(v)]_{-}^{+}\varphi^{2}dx’=\int_{P_{1}^{-}}div(\langle\Gamma_{\Sigma}(v)(\nabla v, \nabla v), \nabla v\rangle\varphi^{2})dx$

$\{x_{m}=0\}$

$\mp\sum_{jP}\int_{1^{\pm}}div(\{\nabla_{x’}v,$
$\nabla_{x’}(\nu_{j}(v))\}\langle\nu_{j}(v), \nabla v\rangle\varphi^{2})dx$

$\leq C\int_{P_{1}}(|\nabla^{2}v||\nabla v|^{2}+|\nabla v|^{4})\varphi^{2}dx+C\int_{P_{1}}|\nabla v|^{3}|\nabla\varphi||\varphi|dx$

$\leq\epsilon\int_{P_{1}}|\nabla^{2}v|^{2}\varphi^{2}dx+C(\epsilon)\int_{P_{1}}|\nabla v|^{4}\varphi^{2}dx$

$+C( \epsilon)\int_{P_{1}}|\nabla v|^{2}|\nabla\varphi|^{2}dx$
,
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and-choosing $\epsilon>0$ sufficiently small-it follows that the inequality $(2.7)- up$ to a

factor- holds on $P_{1}$ in the distribution sense. But then the remainder of the proof

of [2] applies also in this case.
$\square$

As in [2], we may now pass to the limit $Karrow\infty$ . Let $u_{K}$ be a sequence of smooth

solutions to (2.1), (1.6-8). We may assume that $u_{K}$ converges weakly to $u$ in the

sense
$\nabla u_{K^{\neg}}\nabla u$ $weakly-*inL^{\infty}([0, \infty[;L^{2}(M))$ ,

$\frac{\partial}{\partial t}u_{K}-\frac{\partial}{\partial t}u$ weakly in $L^{2}(M\cross[0, \infty[)$ ,

$u_{K}arrow u$ strongly in $L_{loc}^{2}(M\cross[0, \infty[)$ ,

and almost everywhere, where $u$ : $\overline{M}\cross[0,$ $\infty[arrow N$ .

Proposition 2.2: The limit $u$ weakly solves problem (1.5-8). Moreover, $u$ is

smooth and solves (1.5) classically on a dense relatively open set $Q_{0}\subset\overline{M}\cross[0,$ $\infty[$

whose complement $Q’$ has locally finite $(m-2)$-dimensional Hausdorff measure on

each time slice $\overline{M}\cross\{t=const.\}$ . Moreover, $u$ satisfies the energy inequality

$\int^{T}\int|u_{t}|^{2}dMdt+E(u(T))0M\leq E(u_{0})$ ,

for all $T>0$ . Finally, as $tarrow\infty s$uitably, a sequence $u(\cdot, t)$ converges weakly in
$H^{1,2}(M;N)$ to a solution $u_{\infty}$ of (1.1-3) with $E(u_{\infty})\leq E(u_{0})$ and smooth away

from a closed set $Q”$ of finite $(m-2)$-dimensional Hausdorff measure.

Proof: All proofs except (1.3), (1.7) are identical with those of [12; Theorem 6.1],

resp. [2; Theorem 1.5] in the case of harmonic maps on domains without boundary.

See [3] for an estimate of $H^{m-2}(Q’\cap\{t=const.\})$ . To see (1.3), (1.7) in the case of a

half-plane we extend $u_{K}$ by reflection to solutions $\tilde{u}_{K}$ of equations (2.6), converging
weakly locally to a function $\tilde{u}$ . On $Q_{0}$ , as in [2; p. 94], we have $C^{1}$ -convergence
$u_{K}arrow u$ , and (1.7) holds on $Q_{0}$ . Moreover, there holds $K$ . dist $(u, N)-\lambda$ weakly

in $L_{loc}^{2}(Q_{0})$ , whence

(2.7) $\tilde{u}_{t}-\triangle\tilde{u}\in L_{loc}^{2}(Q_{0})$
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Now let $\varphi$ be an arbitrary testing function and let $\eta\in H^{1,\infty},$ $0\leq\eta\leq 1,$ $\eta=0$ in a

neighborhood of $Q’$ , as in [2; p. 95]. Multiplying (2.7) by $\varphi\eta$ , we obtain that

$\int_{0IR}^{\infty}\int_{m}(\tilde{u}_{t}-\Delta\tilde{u})\varphi\eta dxdt=\int_{0\mathbb{R}}^{\infty}\int_{m}\{\tilde{u}_{t}\varphi+\nabla\tilde{u}\nabla\varphi\}\eta dxdt+F$ ,

where

$|F| \leqq\int|\nabla u||\nabla\eta||\varphi|dxdt\leq C(\eta)\zeta\int_{upp(\nabla\eta)}|\nabla u|^{2}\varphi^{2}dxdt)^{1/2}$

As in [2] we may choose a sequence of map$s\eta$ as above with a uniform constant
$C(\eta)=C$ such that $\etaarrow 1$ almo$st$ everywhere and $(supp(\nabla\eta))arrow 0$ in measure.

By absolute continuity of the Lebesgue integral, thus $Farrow 0$ , and (1.7) also holds

in the distribution sense. The proof of (1.3) is similar.
口

Theorem 1.1 is an immediate consequence of Proposition 2.2. Remark 1.1 follows

by adapting the argument of [8] to our problem. Since this technique is by now

well-known we may omit the details.
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