A Note On Subcontinua of $\beta[0,\infty)-[0,\infty)$

Jian-Ping Zhu (朱建平)

Abstract. Let $M = \prod_{n \in \omega} I_n$ be the topological sum of countably many copies of the unit interval I. For any ultrafilter $u \in \omega^*$, we let $M^u = \bigcap \{cl_{\beta M}(\bigcup \{I_n : n \in A\}) : A \in u\}$. It is well-known that M^u is a decomposable continuum with a very nice internal structure (See Mioduszewski[7], Smith[10] and Zhu[11]). In this paper, we show

- (1) Every nondegenerate subcontinuum of $\beta[0,\infty)-[0,\infty)$ contains a copy of $M^{\mathbf{u}}$ for some $\mathbf{u}\in\omega^*$;
- (2) There is no non-trivial simple point in Laver's model for Borel conjecture.

The second answers a question posed by Baldwin and Smith[1] negatively.

1980 Math. Subj. Class(1985 Revision): 54D40, 54F20, 03E35.

Key Words: Stone-Cech remainder, Laver real, continuum.

§0. Introduction. In this paper, we study subcontinua of the Stone-Cech compactification of the reals. We refer to [7] and [11] for background on this topics. Let $M = {}_{n \neq \omega} I_n$ be the topological sum of countably many copies of the unit interval. For any ultrafilter $u \in \omega^*$, we let $M^u = \bigcap \{cl_{\beta M}(\bigcup \{I_n : n \in A\}) : A \in u\}$. It is not difficult to prove that M^u is a continuum (See, for example, [4]). If we let $i:M \to \omega$ be the map defined by i(r) = n for any $r \in I_n$ and $\beta i : \beta M \to \beta \omega$ be the extension of i, it is easy to see that $M^u = \beta i^{-1}(u)$. So every subcontinuum of $\beta M \to M$, therefore, every proper subcontinuum of $\beta [0,\infty) = [0,\infty)$, can be embedded into M^u for some $u \in \omega^*$. Moreover, we have

Theorem 1. Every nondegenerate subcontinua of $\beta[0,\infty)-[0,\infty)$ contains a copy of M^U for some $u\in\omega^*$.

For any map $f \in {}^{\omega}I$ and $u \in {}^{\omega}$, let $f^u = \{F \subset M : F \text{ is closed}$ and $\{n:f(n) \in F \cap I_n\} \in u\}$ and $P^u = \{f^u:f \in {}^{\omega}I\}$. It is well known that f^u is a cut point of M^u if $\{n \in \omega:f(n) \neq 0,1\} \in u$ ((1) in [7]). It is also well known that there are many indecomposable subcontinua with cardinalities 2^c in M^u for any $u \in {}^{\omega}(19)$ in [7]). Therefore, by our Theorem 1, we have

Corollary. (a) Every subcontinuum of $\beta[0,\infty)-[0,\infty)$ contains an indecomposable subcontinuum;

(b) $\beta[0,\infty)$ does not contain non-degenerate hereditarily indecomposable subcontinuum.

(a) is due to D. P. Bellamy [2]. (b) was proved by M. Smith in [9] (van Douwen also announced it in [3]). The following problem was first posed by van Douwen (See the remarks at the end of [10]).

Question 1. (van Douwen) Is there any cut point of M^{U} which is not in P^{U} ?

Definition 1. A point $x \in \beta M$ is said to be (non-trivial) simple if for any $F \in x$ there is $U \in x$ such that $U \subset F$ and $U \cap I_n = \phi$ or $U \cap I_n$ is a (non-degenerate) interval.

Fact 1. (a)(Corollary in §1 of [11]) If x is a cut point of M^{U} and $x \notin P^{U}$, then x is a far point of βM :

(b) (Theorem 1.1 in [11]) $x \in M^{U}$ is a non-trivial simple if and only if x is a cut point of M^{U} and remote point of βM .

The author [11] proved under CH that there is $u \in \omega^*$ such that there is a cut point of M^U which is not simple. Badlwin and Smith [1] proved that $MA_{\mbox{countable}}$ implies that there is a non-trivial simple point. They asked

Question 2.(Baldwin and Smith [1]) Is there any non-trivial simple point in ZFC?

Theorem 2. There is no non-trivial simple point in Laver's model

for Borel conjecture.

Question 1 remains open !

§1. Proof of Theorem 1. Let $X=[0,\infty)$ and $K\subset\beta X-X$ be a non-degenerate subcontinuum. The following lemma was proved by M. Smith in [9] for locally compact, locally connected metric spaces. We give a direct proof here.

Lemma 1.1. Let $\{U_0,U_1,\ldots,U_m\}$ be a finite open cover of K in BX such that $U_i\cap K\neq \emptyset$ for any $i\leq m$. Then there is a closed interval $H\subset X$ such that $H\cap U_i\neq \emptyset$ for $i\leq m$ and $H\subset \cup \{U_i:i\leq m\}$.

Proof. Let $V=\cup\{U_0,U_1,\ldots,U_m\}$ and $V'=V\cap X$. Then there are disjoint open intervals $\{J_n:n\in\omega\}$ so that $V'=\cup\{J_n:n\in\omega\}$. Let $A_0=\{n\in\omega:J_n\cap U_0\neq\emptyset\}$, $V_0=\cup\{J_n:n\in A_0\}$ and $W_0=\cup\{J_n:n\in A_0\}$. We have $K\subset W\subset (\operatorname{cl}_{\beta X}V_0)\cup (\operatorname{cl}_{\beta X}W_0)$ and $(\operatorname{cl}_{\beta X}V_0)\cap (\operatorname{cl}_{\beta X}W_0)\subset (\operatorname{cl}_{\beta X}\bar{V}_0)\cap (\operatorname{cl}_{\beta X}\bar{W}_0)=\operatorname{cl}_{\beta X}(\bar{V}_0\cap \bar{W}_0)$, where \bar{V}_0 and \bar{W}_0 are the closures of V_0 and W_0 in X respectively. Since V is an open neighbourhood of K, we have $K\cap (\operatorname{cl}_{\beta X}(\bar{V}_0\cap \bar{W}_0))=\emptyset$. Therefore, $K\subset \operatorname{cl}_{\beta X}V_0$ since K is connected and $K\cap (\operatorname{cl}_{\beta X}V_0)\supset K\cap U_0\neq\emptyset$.

If we let $A_i = \{n \in \omega : J_n \cap U_j \neq \emptyset \text{ for } j \leq i\}$ and $V_i = \bigcup \{J_n : n \in A_i\}$ for $i \leq m$, we can easily show by induction that $K \subset cl_{\beta X} V_i$ for $i \leq m$. So $A_m \neq \emptyset$. This completes the proof of Lemma 1.1.

We take U_0 and U_1 be disjoint open sets of βX so that $(\operatorname{cl}_{\beta X} U_0) \cap (\operatorname{cl}_{\beta X} U_1) = \emptyset$ and $U_i \cap K \neq \emptyset (i=0,1)$. Let $\mathcal Z$ be the

collection of closed intervals so that an interval [a,b] belongs to \mathcal{Z} if and only if the following conditions hold:

- (1) $[a,b] \cap (U_0 \cup U_1) = \emptyset$ and $a \neq b$;
- (2) $\{a,b\}\subset Br(U_0\cap X)\cup Br(U_1\cap X)$ and $a\in Br(U_0\cap X)$ if and only if $b\in Br(U_1\cap X)$,

where Br denotes the boundary operation in X. Since $\operatorname{cl}_{\beta X} U_0$ and $\operatorname{cl}_{\beta X} U_1$ are disjoint, $\mathcal Z$ is discrete. We enumerate $\mathcal Z$ as $\{J_n:n\in\omega\}$. We need only to show that there is $u\in\omega^*$ such that $\bigcap \{\operatorname{cl}_{\beta X}(\cup\{J_n:n\in A\}):A\in u\}\subset K$. Let $\mathcal U$ be an open neighbourhood base of K in βX . For $U\in \mathcal U$, we let

 $A_{U} = \{ n \in \omega : J_{n} \subset U \}$.

By Lemma 1.1, we have $A_U^{\neq \emptyset}$ for Uell. Since $A_U^{\subset}A_V$ for UeV and U, Vel, $\{A_U^{:}:U\in\mathcal{U}\}$ has finite intersection property. Let

 $\mathbf{M}_{\mathfrak{A}} = \bigcap \left\{ \mathbf{cl}_{\beta X} (\cup \{\mathbf{J}_{n} : \mathbf{n} \in \mathbf{A}_{U}\}) : \mathbf{U} \in \mathcal{U} \right\}.$

Then $M_{\mathfrak{A}}\subset K$. For, if $x\in M_{\mathfrak{A}}\setminus K$, there is $U\in \mathfrak{A}$ such that $x\in \operatorname{cl}_{\beta X}U$. But $x\in M_{\mathfrak{A}}\subset \operatorname{cl}_{\beta X}U$. Note that $\operatorname{cl}_{\beta X}(\cup \{J_i:i\leq n\})\cap K=\phi$ for $n\in \omega$. So if u is an ultrafilter on ω and $\{A_U:U\in \mathfrak{A}\}\subset u$, then $u\in \omega^*$ and

 $\bigcap \{cl_{\beta X}(\cup \{J_n: n \in A\}): A \in u\} \subset K.$

This completes the proof of our Theorem 1.

§2. Proof of Theorem 2. Recall that there is a natural partial order $<_u$ on M^u for $u \in \omega^*$ defined as follows: $x <_u y$ if and only if there are $F \in x$ and $H \in y$ such that $\{n \in \omega : F \cap I_n < H \cap I_n\} \in u$, where $F \cap I_n < H \cap I_n$ means that r < s for any $r \in F \cap I_n$ and $s \in H \cap I_n$. It is easily seen that $(P^u, <_u)$ is isomorphic to the ultrapower $(\omega^u I/u, <_u)$. We consider the relation \sim on M^u defined by $x \sim y$ if and only if x = y or $x \not< y$ and $y \not< x$. It is very easy to

verify that \sim is an equivalence relation. A \sim equivalence class i.e., a maximal pairwise incomparable subset of $(M^u,<_u)$, is called a layer (this definition of layers is equivalent to Mioduszewski's original one in [7], see Lemma 1.2 in [11]). It can be proved easily from Mioduszewski's [7] that if x is a cut point of M^u , $\{x\}$ is a layer (Lemma1.3 in [11]). For any $Ac^\omega I$ and ue^* , we let $A^u=\{f^u\in P^u:f\in A\}$. We say a pair $\mathscr C=(A,B)$ of subsets of $^\omega I$ determines a layer L in M^u for some ue^* if the following two conditions hold:

- (1) $A^{u} <_{u} B^{u}$, i.e., $f^{u} <_{u} g^{u}$ for any $f \in A$ and $g \in B$;
- (2) for any $x \in M^u$, $x \in L$ if and only if $f^u <_u x <_u g^u$ for any $f \in A$ and $g \in B$.

If $L=\{x\}$ is a one point layer, we also say that x is determined by $\mathscr C$. Note that every layer is determined by a pair of subsets of ${}^\omega I$ (See [11], where we say layers are determined by gaps in $({}^\omega I \setminus u, <_u)$).

Let $\mathcal{I}=\bigcap_{n\in\omega}\mathcal{I}_n$ be a collection of closed rational subintervals of the unit interval I such that \mathcal{I}_n is finite, pairwise disjoint and for any interval JCI, if the length of J is larger than 1/n, then $|\{H\in\mathcal{I}_n:H\subset J\}|>n$. The following lemma is essentially Proposition 3.1 in [11].

Lemma 2.1. Let $\mathscr{C}=(A,B)$ be a pair of of subsets of ${}^{\omega}I$ and $A^{U}<_{U}B^{U}$ for some $u\in\omega^{*}$. \mathscr{C} determines a one point layer in M^{U} if and only if for any $h\in{}^{\omega}\omega$, there are $f\in A$ and $g\in B$ such that

{ $n \in \omega$: there is at most one $J \in \mathcal{P}_{h(n)}$ $J \subset [f(n),g(n)]$ } $\in u$.

By Lemma 2.1, we easily get

Lemma 2.2. Let $\mathfrak{M}\subset \mathfrak{N}$ be models of ZFC such that there is $r\in {}^\omega\omega\cap \mathfrak{N}$ dominating every $h\in {}^\omega\omega\cap \mathfrak{N}$ i.e, h(n)< r(n) for all but finitely many $n\in \omega$. Then no one point layer in \mathfrak{N} is determined by a pair of subsets of ${}^\omega I$ in \mathfrak{M} .

Let \mathbb{P}_{ω_2} be the ω_2 iteration of Laver forcing with countable support and \mathbb{G}_{ω_2} \mathbb{P}_{ω_2} -generic over V. We assume that the continuum hypothesis holds in V. It is well-known that Laver real dominates every real in the ground model. Therefore, by Lemma 5.10 in [8] and Lemma 11 in [5], we have

Corollary 2.1. There is no cut point in $M^{\rm u}$ determined by a pair of subsets of ${}^{\omega}I$ with cardinalities ${}^{\omega}{}_1$ in ${}^{\rm v}[{}^{\mathbb G}{}_{\omega}{}_2]$ for any ${}^{\rm u}\in\omega^*$.

The following lemma can be proved by modifying Miller's argument for Mathias forcing in §6 [6].

Lemma 2.3. Suppose that $p \|_{\mathbb{P}_{\omega_2}} \text{"f:}\omega \to I". \text{ There are an extension}$ $q \text{ of } p \text{ and a sequence } \{c_n : n \in \omega\} \text{ of codes for closed nowhere }$ $\text{dense set in } V \text{ such that } q \|_{\mathbb{P}_{\omega_2}} \text{"f(n) belongs to the set coded }$ $by \ c_n \text{ for } n \in \omega".$

Since every non-trivial simple point is a remote point of βM , we can easily see

Corollary 2.2. Let $x \in M^U$ be a non-trivial simple point and $\mathscr E = (A,B)$ a pair subsets of ${}^\omega I$ determining x. Then in $V(\mathbb G_{\omega_2})$, for any $u' \in \omega^*$ and $u \subset u'$, there is no $f \in {}^\omega I$ such that $[A]_u, <[f] < [B]_u$, in $({}^\omega I/u', <_u)$.

Now we are in a position to complete the proof of Theorem 2. Suppose that there is a non-trivial point $x \in M^U$ in $V[\mathbb{G}_{\omega_2}]$. Then there is a pair $\mathscr{C}=(A,B)$ of subsets of ${}^{\omega}I$ determining x. By Lemma 5.10 in [8], there is $\alpha<\omega_2$ such that in $V[\mathbb{G}_{\alpha}]$, x' is a non-trivial point of M^U and $\mathscr{C}'=(A',B')$ determines x', where $x'=x\cap V[\mathbb{G}_{\alpha}]$, $u'=u\cap V[\mathbb{G}_{\alpha}]$, $A'=A\cap V[\mathbb{G}_{a}]$ and $B'=B\cap V[\mathbb{G}_{\alpha}]$. By Lemma 11 in [5] and Corollary 2.2, \mathscr{C}' determines x in $V[\mathbb{G}_{\omega_2}]$. This is impossible by Lemma 2.2.

References

- [1] S. Baldwin and M. Smith, On a possible property of far point of $\beta[0,\infty)$, Topology Proceedings 11(1986), 239-245.
- [2] D. P. Bellamy, A non-metric indecomposable continuum, Duke Math. J. 38(1971), 15-20.
- [3] E. K. van Douwen, Subcontinua and nonhomogeneity of $\beta \mathbb{R}^+ \mathbb{R}^+$, Notices Amer. Math. Soc. 24(1977), A-559.
- [4] ——, The number of subcontinua of the remainder of the plane, Pacific J. Math. 97(1981), no.2, 349-355.
- [5] R. Laver, On the consistency of Borel's conjecture, Acta. Math., 137(1976), 151-169.
- [6] A. W. Miller, Some properties of measure and category, Trans. Amer. Math. Soc. 266(1981), 93-114.
- [7] J. Mioduszewski, On composants of BR-R, Proc. Conf. Topology and Measure I (Zinnowitz, 1974), ed. J. Flachsmeyer, Z. Fralik, and F. Terpe, Ernst-Meritz-Arndt-Universitat zu Grifwald (1978), 257-283.
- [8] S. Shelah, Proper forcing, Lecture Notes in Math. 940, Springer-Verlag, Berlin, 1982.
- [9] M. Smith, $\beta([0,\infty))$ does not contain non-degenerate hereditarily indecomposable continua, Proc. Amer. Math. Soc., 101(1987), 377-384.
- [10] , The subcontinua of $\beta[0,\infty)$ -[0,\infty], Topology Proceedings, 11(1986), 385-413.
- [11] J. P. Zhu, On indecomposable subcontinua of $\beta[0,\infty)$ - $[0,\infty)$,

Proceeding of General Topology and Geometric Topology Symposium (Tsukuba,1990), to appear.

Institute of Mathematics University of Tsukuba Tsukuba, 305 Japan