
207

NONLINEAR DYNAMICS OF TWO-DIMENSIONAL FLOWS:
BIFURCATION, CHAOS AND TURBULENCE

T. KAMBE AND Y. KAMANAKA

Department of Physics, University of Tokyo
Hongo, Bunkyo-ku, Tokyo 113, Japan

Two dimentional motions of a viscous incompressible fluid are in-
vestigated on the aspects of nonlinear $dyn$amics. Equation for the vor-
ticity gradient suggests that its dynamics $\ln$ an inviscid fluid is different
at points of different signs ofa quantity defined in terms of the second
derivatives of the streamfunction (related to the gaussian curvature).
This property divides the flow domain into two regions: hyperbolic
and elliptic regions for the time evolution. Turbulent cascade of the
vorticity gradient spectrum is studied in a hyperbolic straining field,
based on an exact analytical model.

A series of numerical simulations of the Navier-Stokes equation has
been performed in order to investigate bifurcations from steady state to
chaos in the two-dimensional flows with periodic boundary conditions
under a certain forcing to the vorticity field. By examinung the fre-
quency spectra of the enstrophy, we have found the following sequence
of transitions of the state as the viscosity decreases: $steadyarrow simply$
$periodicarrow doublyperiodicarrow triplyperiodicarrow doubly$ periodic (with
phase $locking$) $arrow non$-periodic (temporally chaotic) motion.

1. Introduction

Two-dimensional motions of aviscous incompressible flnid present various in-
teresting aspects of nodinear dynamics. This note consists of two parts. The
first part of the analyses is based on the fact that the equalion for the divorticity
(defined 2 by rotation of the vorticity vector) is similar to the vorticity equation
in the three-dimensional motion (The divorticity equation is equivalent to the
equation for the vorticity gradient, as is evident from thc definition given be-
low.) We consider the dynamics of the divorticity and the cascade property of the
divorticity layers in an irrotational field. In the direct numerical simulation of two-
dimensional $turbulence^{4,\epsilon,\epsilon}$ , it is shown that isolated coherent vortices coexist with
actively cascading turbulence, and that the rates of cascade, $i.e$. spectrum $e\dot{v}0-$

lution through scale transfer, is controlled (suppressed) by the coherent vortices.
In considering the cascade, it is convenient to introduce the gaussian curvature $K$
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of a hypothetical surface of the streamfunction $z=\psi(x,y)$ in the space $(x,y,z)$
because local dynamics are different at points of different signs of the curvature in
the inviscid motions.1,4,6 The flow domain is divided into two regions depending
on the sign of $K$ : hyperbolic (negative $K$) and elliptic (positive $K$) regions for
the time evolution. To illustrat$e$ this property, three simple examples are given.
Any irrotational motion is shown to have negative $K$ , therefore it is hyperbolic.
An analysis of the cascade of the divorticity in a superimposed irrotational $(i.e$ .
hyperbolic) straining field is presented in the section 2.2.

Owintg to the advanced computers, two-dimensional fluid motions are becom-
ing an object of detailed analyses. In the second part (\S 3), we consider bifurcation
of the motions of a viscous incompressible fluid in a bounded domain (in a torus
$T^{2})$ . The fluid motions are simulated numerically by the pseudo-spectral method
in a square with periodic boundary conditions under a certain forcing. $Response\backslash$

of the fluid system to the forcing at various values of the kinematic viscosity $\nu$

has been investigated. Hopf bifurcations from steady state to singly periodic and
further to quasi-periodic states are observed as the viscosity is decreased. It is
remarkable that quadruplly periodic state has not been observed in the present
numerical simulations (in the range of the viscosity examined), instead tempo-
rally chaotic motions have been found. This analysis may be compared with the
calculation of the flows in a cubic space.7

2. Dynamics of divorticity layer and cascade

2.1 Straining of divorticity layers and gaussian curvature of the streamfunction
In two-dimensional flows of an incompressible viscous fluid, the vorticity

$\omega(x)y)t)$ is governed by the equation,

$\omega_{t}+u\omega_{x}+v\omega_{\nu}=\nu\nabla^{2}\omega$ , (1)

in the $(x,y)$ cartesian coordinates, where $(u,v)$ are the velocity components and
$\nu$ the kinematic viscosity. By using the streamfunction $\psi(x, y, t)$ , the velocity and
vorticity are expressed as

$u=\psi_{y}$ , $v=-\psi_{r}$ , $\omega=-\nabla^{2}\psi$ , (2)

$u\omega_{g}+v\omega_{y}=\partial(\omega)\psi)/\partial(x,y)$ . (3)
In order to obtain an equation analogous to the vorticity equation in the $3D$

motion, it is convenient to use three-dimensional representation of the velocity
$v=(u,v, 0)$ and introduce the divorticity defined by

$\eta=\nabla x\omega=(\omega_{y}, -\omega_{x)}0)=-\nabla^{2}v$ , (4)
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where $\omega=(0,0, \omega)=\nabla xv$ . The following vector identity is readily shown:

$\eta xv=(v\cdot\nabla)\omega$

Thus the equation (1) is converted to the $3D$ form:

$\omega_{t}+\eta xv=\nu\nabla^{2}\omega$ . (5)

Taking the curl of this equation, one readily obtains

$\eta_{\iota}+(v\cdot\nabla)\eta=(\eta\cdot\nabla)v+\nu\nabla^{2}\eta$ (6)

since $\nabla\cdot v=0$ and $\nabla\cdot\eta=0$ , where the first term on the right hand side represents
stretching of the fluid element in the direction of the vector $\eta$ .

It is $interes^{\prime_{\vee}}!ng$ to compare the equations (5) and (6) with the corresponding
ones in $3D$ motions, that is, the Navier-Stokes equation and the vorticity equation:

$v_{\iota}+ \omega xv=\nu\nabla^{2}v-\nabla(\frac{p}{\rho_{0}}+\frac{v^{2}}{2})$ , $\nabla\cdot v=0$ , (7)

and
$\omega_{t}+(v\cdot\nabla)\omega=(\omega\cdot\nabla)v+\nu\nabla^{2}\omega$ . (8)

In the two-dimensional fluid motion, the process of the vortex stretching is
absent in the equation (1) or (5). However, if we consider the divorticity equation
(6), there exists, in deed, stretching of the $\eta$-lines, corresponding to the stretching
of vortex-lines in $3D$ motion described by (8) $.3$

In an inviscid fluid $(\nu=0)$ , the dynamics of the divorticity $\eta$ is simply given
by

$\frac{D}{Dt}\eta=A\eta$ , $\eta=(\begin{array}{l}\omega_{\nu}-\omega_{l}\end{array})$ (9)

where $D/Dt=\partial/\partial t+v\cdot\nabla$ is the material derivative and the matrix $A$ is

$A=(\begin{array}{ll}\partial_{l}u \partial_{y}u\partial_{r}v \partial_{\nu}v\end{array})=(\begin{array}{ll}\psi_{xy} \psi_{yy}-\psi_{gg} -\psi_{W\nu}\end{array})$ (10)

which represents straining action of the fluid motion.1 The equation of a passive
fluid line-element $5s$ has the same form:

$\frac{D}{Dt}\delta\epsilon=ASs$ , $\delta\epsilon=(\begin{array}{l}Sx5y\end{array})$ (11)

since the motion of a fluid particle $(x(t), y(t))$ is given by $\dot{x}=\psi_{y},\dot{y}=-\psi_{\dot{g}}\epsilon$

Difference between (9) and (11) lies in that the vector $\eta$ is related to the velocity
field $v$ by $\eta=-\nabla^{2}v$ , whereas $\delta s$ is passively carried with the fluid motion.
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The eigenvalue $\lambda$ of the matrix $A$ satisfies

$\lambda^{2}=(\psi^{2}ae\nu-\psi_{rr}\psi_{\nu\nu})\equiv B$ , (12)

therefore $\lambda=\sqrt{B}$ or $-\sqrt{B}$ . Denoting the corresponding eigenvector as $\eta_{\lambda}$ , we
have

$\frac{D}{Dt}\eta x=\lambda\eta_{\lambda}$ (13)

If $B>0$ , the two eigenvalues are real with opposite signs. In this case the
dynamical evolution of $\eta$ , following the particle motion, is hyperbolic. That is,
the local (and instantaneous) effect of the straining, with respect to the particle
motion, is exponentially growing or decreasing, depending on the eigen-directions.
If $B<0$ , the eigenvalues are pure imaginary, hence the motion will be elliptic.
That is, the $\eta$ evolution is locally rotational with respect to the particle motion.
In $3D$ turbulence, the vortex stretching is considered to be responsible for the
turbulent cascade. In $2D$ flows, the cascade will be associatcd to the stretching of
the divorticity as considered above. This implies that cascade process occurs in
the hyperbolic regions.

Concerning the expression ofB in(12)in terms of the streamfunction $\psi(x,y)$ ,
it is suggestive to observe that the gaussian curvature $K$ of the hypothetical surface
$z=\psi(x,y)$ in the $(x,y,z)$ space is

$K=- \frac{B}{(1+\psi^{2}.+\psi_{y}^{2})^{2}}=-\frac{\psi_{xy}^{2}-\psi_{rr}\psi_{\nu\nu}}{(1+\psi_{l}^{2}+\psi_{\nu}^{2})^{2}}$ (14)

Thus in the domain of negative curvature $K$ (therefore, positive $B$), the eigenvalues
are real and the motion is hyperbolic, while in the domain of positive $K$ , the
eigenvalues are pure imaginary and the motion is elliptic.1 In the hyperbolic
region of negative curvature, the divorticity is stretched as $t$ he line element in the
direction $\eta$ is stretched. Now we consider three typical examples.

$(a)$ The following streamfunction

$\psi(x,y)=\sin x\sin y$ (15)

represents periodic vortex cells. This is an exact solution of the equation (1) for
$\nu=0$ . This is because we have $\partial_{l}\omega=0$ and $\partial(\omega)\psi)/\partial(x,y)=0$ since $\omega=-\partial^{2}\psi=$

$2\psi$ . It is readily shown that

$B=\psi_{\approx\nu}^{2}-\psi_{xx}\psi_{\nu\nu}=\cos(x-y)\cos(x+y)$ .
Thus the flow field is divided into perodic cells of the hyperbolic (H) and elliptic
(E) regions (Figure 1). The cascade by the straining motion is expected in the
H-regions.
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$(b)$ In the irrotational flows, the gaussian curvature $K$ is always non-positive since

$\omega=-(\psi_{ra}+\psi_{yy})=0$ ,

and therefore we have
$B=\psi_{xy}^{2}+\psi_{\approx x}^{2}$ .

Thus the dynamical motion of $\eta$ is hyperbolic, except the points at $B=0$ .
$(c)$ A Rankin vortex is defined by

$\omega(r)=2(r<1)$ , $O(r>1)$

where $r=(x^{2}+y^{2})^{1/2}$ is the radial coordinates. The corresponding streamfunction
is

$\psi(r)=-\frac{1}{2}r^{2}(r<1)$ , $- \log r-\frac{1}{2}$ ,

which gives the value $B$ as

$B=-1(r<1)$ , $r^{-4}(r>1)$ .
The azimuthal velocity $v_{\theta}(=-\psi_{r})$ (only nonzero component) is proportional

to $r$ in the inner core and decays like $r^{-1}$ in the outer irrotational skirt (Figure 2).
It is remarkable that the B-value takes a positive maximum just at the outside of
the core, therefore a substantial hyperbolic-straining occurs at.the periphery and
outside of the core.

2.2 An exact solution representing cascade

An exact analysis can be made for a special but fairly general form of the
streamfunction. Suppose that the streamfunction $\Psi$ takes the form,

$\Psi=axy+\psi(y,t)$ (16)

where the initial form $\psi(y, 0)$ is an arbitrary function of $y$ , and $a$ is assumed to be
a positive constant. The first term $axy$ represents an irrotational flow, its velocity
field being $v$ . $=(ax, -ay)$ , while the second term represents vorticity layers since
the vorticity and divorticity are given by

$\omega(y)t)=-\psi_{\nu\nu}$ , $\eta=\omega_{\nu}=-\psi_{\nu\nu\nu}$

where $\omega=(0,0,\omega)$ and $\eta=(\eta, 0,0, )$ . Therefore the dynamics of hyperbolic strain-
ing of the divorticity layers can be considered by this model. The governing equa-
tions are

$\omega_{t}-ay\omega_{y}=\nu\omega_{\nu\nu}$ (17)
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Figure 1. Hyperbolic (H) and elliptic (E) regions of
the periodic vortex cells.

$r$

Figure 2. The values $B$ and $v_{\theta}$ of the Rankin vortex.
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for the vorticity (from (1)) and

$\eta_{t}-ay\eta_{\nu}=a\eta+\nu\eta_{\nu\nu}$ (18)

for the divorticity.
The equation (18) represents the motion of the divorticity layers $\eta(y,t)$ under

the combined action of viscous diffusion $(\nu\eta_{yy})$ , stretching $(a\eta)$ and convective
straining $(-ay\eta_{y})$ . This type of equation is considered by Kambe’ to study the .
motion of a shear layer in a three dimensional straining field ( $ax$ , by, $cz$ ) with the
total velocity field given by $(ax+V(y,t)$ , by, $cz$ ), where $a,$

$b$ and $c$ may be time-
dependent and satisfy the solenoidal condition of the velocity, $a+b+c=0$ .

Introducing new variables defined by

$\xi=A(t)y$ , $\tau(t)=\int_{0}^{t}A^{2}(t’)dt’$ , $F(\xi,\tau)=\eta(y,t)/A(t)$ , (19)

where
$A(t)=e^{nt}$ ,

one can transform the equations (17) and (18) into the diffusion equations,

$\omega_{\tau}=\nu\omega_{\zeta\xi}$ , $F_{r}=\nu F_{(\xi}$ (20)

respectively.
Fora general initial condition of the form $\omega(y,O)=\omega_{0}(y),$ $thevorticity\omega(y,t)$

is written as

$\omega(y, t)=\frac{1}{(4\pi\nu\tau(t))^{1/2}}\int_{-\infty}^{\infty}\omega_{0}(y’)\exp[-\frac{(Ay-y’)^{2}}{4\nu\tau}]dy’$ . (21)

Similarly, replacing $\omega_{0}$ by the initial divorticity $\eta_{0}(y)=\eta(y, 0)$ in (21), the right
hand side gives the solution for the normalized divorticity $F(\zeta, \tau)=\eta(y,t)/A(t)$ .

The Fourier spectrum of the divorticity is given by

$\hat{\eta}(k,t)=\exp[-\nu k^{2}\frac{\tau(t)}{A^{2}(t)}]\hat{\eta}_{0}(\frac{k}{A(t)})$ , (22)

where $\hat{\eta}_{0}(k)$ is the initial Fourier spectrum. This states that the straining field
$v$ . $=(ax, -ay)$ produces transfer of the initial spectrum $\hat{\eta}_{0}(k_{0})$ to a higher wave
number $k=k_{0}A(t)$ with the amplitude diminished by the viscous effect represented
by the exponential factor $\exp[-\nu k^{2}\tau(t)/A^{2}(t)]$ . It is interesting to find that, as $t$

becomes sufficiently large, $\tau(t)/A^{2}(t)$ tends to the constant $1/2a$ . Thus we have

$\hat{\eta}arrow\exp(-\nu k^{2}/2a)\hat{\eta}_{0}(k/A(t))$ , as $t-\infty$ . (23)

This implies a viscous cut-off wave number $k_{d}$ may be given by

$k_{d}=(2a/\nu)^{1/2}$ (24)
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Another combinaton of the independent variables $(t,\zeta)$ reduces the equation
(18) to $\eta_{t}=a\eta$ for the inviscid case $\nu=0$ . This gives the exponentially growing
solution $\eta=e^{at}\eta_{0}(\xi)$ .

For the divorticity $\eta(y)t)$ governed by the equation (18), one may define the
correlation function,

$P((,t)=<\eta(y,t)\eta(y+\zeta,t)>$

and its Fourier representation,

$P((,t)= \int_{-\infty}^{\infty}\hat{P}(k,t)e^{ik\zeta}d\zeta$ ,

where $<$ $>means$ an ensemble average.
In this ensemble, the y-origin at which the divorticity layers converge is as-

sumed to be uniformly distributed along the $y$ axis, allowing $P$ to be indepen-
dent of $y$. The Fourier transform $\hat{P}(k,t)$ gives the spectrum of the palinstrophy
$<\eta^{2}(y,t)>$ .

For the convenience of later consideration, we define the mean kinetic energy
$E$ , enstrophy $Q$ and palinstrophy $P$ by

$E(t)= \frac{1}{2}<|v|^{2}>=\frac{1}{2}<(u^{2}+v^{2})>=\int\hat{E}(k,t)dk$ ,

$Q(t)= \frac{1}{2}<\omega^{2}>=\int\hat{Q}(k,t)dk$ , (25)

$P(t)= \frac{1}{2}<|\eta|^{2}>=\frac{1}{2}<(\omega_{\nu}^{2}+\omega_{x}^{2})>=\int\hat{P}(k,t)dk$ ,

where $\hat{E}(k, t)$ is the energy spectrum, $\hat{Q}(k, t)=k^{2}\hat{E}(k,t)$ the enstrophy spectrum
and $\hat{P}(k, t)=k^{4}\hat{E}(k,t)$ the palistrophy spectrum.

The equation of $P(\zeta,t)$ can be derived from (18) as

$P_{l}-a\zeta P_{\zeta}=2aP+2\nu P_{\zeta\zeta}$ , (26)

leading to the equation for the Fourier transform ,

$\hat{P}_{\ell}+a\frac{\partial}{\partial k}(k\hat{P})=2a\hat{P}-2\nu k^{2}\hat{P}$ (27)

Suppose that the ensemble average is stationary, so that $\hat{P}_{l}=0$ . Then we have

$a \frac{d}{dk}(k\hat{P})=2a\hat{P}-2\nu k^{2}\hat{P}$ , (28)

which is readily solved, yielding

$\hat{P}(k)=Ck\exp(-\frac{\nu k^{2}}{a})$ .
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In an inertial range in which the inequality $k^{2}\ll k_{d}^{2}$ holds, we obtain $\hat{P}(k)\sim Ck$ .
This leads to the enstrophy spectrum $\hat{Q}(k)\sim k^{-1}$ and the energy spectrum $E(k)\sim$
$k^{-3}$ of the enstrophy cascade studied by Batchelor”, Kraichnan9 and Leith”.

In the numerical simulations of two dimensional decaying turbulence,4 $\epsilon$ it is
known that there remain coherent vortices in the final period of decay. The analysis
of the energy spectrum due to Benzi et al.6 shows that the spectrum of the part
restricted to the coherent vortices is described by the power law $E(k)\sim k^{-4.3},$ $\uparrow^{0}$

whereas the spectrum in the remaining part where the hyperbolic straining of the
divorticity is expected to occur is described by the law $E(k)\sim k^{-3}$ . The latter
spectrum coincides with that of enstrophy cascade discussed above.

This suggests the view that dynamical development of the two-dimensional
flow is different in the regions of elliptic and hyperbolic straining.

3. Numerical analysis of bifurcations of viscous
incompressible flows

A series of numerical simulations of the Navier-Stokes equation has been per-
formed to investigate bifurcations from steady state to chaotic motion in two-
dimensional viscous incompressible flows with a periodic boundary condition as
the viscosity $\nu$ is lowered from a sufficiently large value to attain a steady state.12
For all the values of $\nu$ , the computation started from a common initial (motionless)
state, and final states obtained by the computation for different $\nu$ are investigated.

3.1 Method of numerical analysis

Two-dimensional motion of a viscous fluid is described by the vorticity equation
(1), which is rewritten in the form:

$\frac{\partial}{\partial t}\omega=\frac{\partial^{2}}{\partial x\partial y}S-(\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}})T+\nu(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}})\omega$ , (29)

where $S(x,t)=u^{2}-v^{2}$ and $T(x, t)=uv$ , with $x=(x, y)$ , are introduced for
convenience of the numerical computation.

This equation is solved numerically for prescribed initial values. The velocity
field is assumed to be periodic with a period of $2\pi$ in both $x$ and y-directions. We
expand $v(x,t),$ $\omega(x, t),$ $S(x,t)$ and $T(x,t)$ in the Fourier series, $e.g$ . as

$v(x,t)= \sum_{k}\hat{v}(k, t)\exp[ik\cdot x]$
, $\omega(x,t)=\sum_{k}\hat{\omega}(k,t)\exp[ik\cdot x]$

, $\cdot$ .. (30)

$0_{\uparrow}$ During the Symposium, Dr. Marie Farge commented that the spectrum restricted to the
coherent vortices depends on the initial condition and therefore the energy spectrum of two-
dimensional turbulence is not considered to be universal.
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together with the condition of reality $\hat{v}^{*}(k,t)=\hat{v}(-k,t)$ , where $k=(k,, k_{\nu})$ is the
wave number vector whose components are integers and the symbol * denotes the
complex conjugate. The summations with respect to $k$ are taken over all integer
components $between-N/2$ and $N12$ ( $N$ being a given even integer).

Fourier transform of the equation (29) is

$\frac{d}{dt}\hat{\omega}(k,t)=-k_{g}k_{\nu}\hat{S}(k,t)+(k_{\approx}^{2}-k_{\nu}^{2})\hat{T}(k,t)-\nu k^{2}\hat{\omega}(k,t)$ , (31)

$(k^{2}=k_{g}^{2}+k_{\nu}^{2})$ , which is supplemented with the Fourier transforms of the vorticity
$\omega=v$. $-u_{\nu}$ and the solenoidal condition $u_{g}+v_{\nu}=0$ . The latter two relations in
combination lead to

$v( k,t)=i(k_{y}, -k_{\epsilon})\frac{1}{k^{2}}\hat{\omega}(k,t)$ .
These equations are solved under prescribed initial conditions.

Numerical scheme and initial conditions

In carrying out the numerical computation, the Fourier expansions (30) are
restricted to the summation $over-N/2\leq k.,$ $k_{\nu}\leq N/2$ . Once we know $aU$ the
Fourier components $\hat{\omega}(k,T)$ at a time $t$ , the time derivative $d\hat{\omega}/dt$ is obtained by
calculating the three terms on the right hand side of (31). The first and second
terms are estimated by the pseudo-spectral method 13,14 whereas the third term is
trivial. The aliasing errors in the calculation of the nonlinear terms are eliminated
by truncating the Fourier modes at the wave number $K=N/3$ .

Initial values of $\hat{\omega}$ at $t=0$ are specified as

$\hat{\omega}(1,0)$ $=(0.148270369158839464+0.645628691483143568i)/4$
$\hat{\omega}(1,1)$ $=(0935990691629399776-0.576029181218477607i)/4$
$\hat{\omega}(0,1)$ $=$ $(-0.784594893146804333+0.923589110235304952i)/4$
$\hat{\omega}(1, -1)=$ $(-0.327462077122592509+0.230159521544059587i)/4$

which were randomly generat$ed$ by the computer. The condition of realty imme-
diately specifies the values of $\hat{\omega}(-1,0),\hat{\omega}(-1, -1),\hat{\omega}(0, -1)$ and $\hat{\omega}(-1,1)$ . The
other components are set as $\hat{\omega}=0$ . The initial contour of $t$ he vorticity $\omega(x, 0)$ is
shown in figure 3.

In the present study we have taken the condition that the eight lowest modes
$\hat{\omega}(k,t)$ for $k=(\pm 1,0),$ $(0,\pm 1),$ $(\pm 1,\pm 1)$ are fixed throughout the time. This
means that the external forcing is imposed only at the lowest modes and the
enstrophy injected at those modes cascades to higher wavenumber modes, and
that the inverse energy cascade (to lower modes) will be inhi bited in this situstion.

The time marching of (31) was carried out by the fourth-order Runge-Kutta
scheme. The parameters $\nu,$ $N$ and $\Delta t$ used in the computation are shown-in
Table 1.
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Table 1. The parameters used in the computation

3.2 Temporal behaviors of the enstrophy
Numerical computation has been performed for various values of viscosity:

$\nu=0.0027\sim 0.0006$ . As a result of time evolution, the fluid system approaches
a stat$e$ of different behaviors depending on the v-value: steady state (S), simply
periodic state (SP), doubly-periodic (quasi-periodic) state $(QP_{2})$ , triply-periodic
state (QP3), $QP_{2}$ with phase-locking $(QP_{2}))$ or non-periodic state (NP).

Steady state is attained as a final state at the viscosity $\nu$ ranging from 0.0027 to
0.0023. As the viscosity decreases further, the system evolves to a time-dependent
state. Examing the temporal behavior of the enstrophy $Q(t)$ , defined by using the
Fourier components,

$Q(t)= \frac{1}{2}$ $\sum$ $|\hat{\omega}(k,t)|^{2}$ , (32)
$|k_{*}|,|k.|\leq K$

we have found the following sequence of transitions to non-periodic (chaotic) state
as the viscosity decreases: $S\Rightarrow SP\Rightarrow QP_{2}\Rightarrow QP_{3}\Rightarrow QP_{2}\Rightarrow NP$ . The types
of motion which were realized finally by the numerical computation (with a fixed
viscosity) are summarized in Table 2.

In Figure 4 $a$, the temporal behavior of the enstrophy at the viscosity $\nu=0.0020$

is shown. It oscillates regularly in time and the amplitude of the oscillation is kept
constant. To examine the state more closely, we have made Fourier transformation
of the time series of the enstrophy Q. The Fourier coefficient is given by

$Q( \sigma)=\sum_{m=1}^{M}Q(T+m\Delta t)\exp(i\sigma m\Delta t)$ .

The total time span taken in the transform $M\Delta t$ is about 1550 and the spectral
interval $\Delta\sigma=2\pi/M\Delta t$ is 4.793 $x10^{-3}$ . The initial time $T+\Delta tfon$ the transform
is chosen at the times after the initial transient motion ceased.

In Figure $5a$, the frequency power spectrum $|\hat{Q}(\sigma)|^{2}$ for $\nu=0.0020$ is plotted.
Three peaks are observed in the figure. By detailed examination of the inverse
of the spectrum (so-caUed parabola fitting), it is confirmed that they have one
fundamental frequency $\sigma_{1}$ and the other two are its second and third harmonics.
The second frequency coincides with $2\sigma_{1}$ within an error of order $10^{-5}$ , while the
third is different from $3\sigma_{1}$ by 8 $x10^{-4}$ . This is, however, much smaller than
the frequency interval $\Delta\sigma=47.9x10^{-4}$ . From these evidences, this motion is
considered to be simply periodic.
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Table 2. Types of motion obtained for the viscosity $\nu$

The behavior of the enstrophy at $\nu=0.00156$ is shown in Figure 4 $b$ . Its fre-
quency power spectrum has several distinct peaks (Figure 5 $b$). We have checked
that all of these frequencies are expressed by sums and differences of two funda-
mental frequencies $\sigma_{1}$ and $\sigma_{2}$ . Thus it is found that this motion is doubly periodic
(quasi-periodic when the two frequencies are incommensurable).

Figures $4c$ and $5c$ show the $te$mporal behavior and its power spectrum of the
enstrophy at $\nu=0.0014$ respectively. The spectrum has a lot of $pe$aks. Especially
noted that a new peak is observed at about $\sigma=0.075$ . This is the third frequency
$\sigma_{3}$ which cannot be expressed by a sum or difference of simple multiples of $\sigma_{1}$ and
$\sigma_{2}$ . We have checked that all the frequencies of the peaks can be expressed as
linear combinations of the three fundamental frequencies $\sigma_{1},$ $\sigma_{2}$ and $\sigma_{3}$ . Therefore
the motion is a triply periodic state.

In Figure $4d$ the temporal behavior of the enstrophy at $\nu=0.0013$ is plotted
and in Figure $5d$ its power spectrum is shown. In this case, three frequencies
$\sigma_{1},$ $\sigma_{2}$ and $\sigma_{3}$ are not incommensurable, but it is found that the relation $2\sigma_{2}=$

$\sigma_{1}+\sigma_{3}$ holds. This relation continues to exi$st$ for the values of viscosity $\nu=$

0.00125, 0.0012, 0.0011.
At $\nu=0.0010$ , at first a triply periodic motion seems to be realized from

$t=500$ to 3200, but finally it turns into an irregular behavior (Figures $4e$ and $5e$).
At $\nu=0.0006$ , the behavior appears non-p $e$riodic (Figure $4f$). The spectrum

has too many peaks (Figure $5f$). Counting the number of the peak spectral com-
ponents in the frequency domain $0\leq\sigma\leq 2$ it is found that it amounts to nearly
a half of the total number of the spectral components. Existence of such many
peak$s$ supports the assertion that the spectrum in this case may be continuous and
therefore the motion is non-periodic. The vorticity contour at the final instant of
the computation is shown in Figure 6 for this type of non-periodic motion with
the lowest value of the viscosityv $=0.0006examinedinth(\backslash presentstudy$.
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The behavior of the energy or the palinstrophy are similar to that of the en-
strophy.

4. Summary and discussion

We have considered two-dimensional incompressible motions of a viscous fluid
from two different approaches. The analysis in the first part is based on the
property that, when the viscosity effect is weak, the flow field is divided into two
regions, hyperbolic and elliptic regions, and the dynamics are different in each
region. An exact analytical model is presented and it is applied to the analysis of
turbulent cascade of the divorticity in a superimposed hyperbolic straining field.

In the second part a series of numerical simulations is presented, in which the
flow field is represented by Fourier modes and the motion is driven by the imposed
condition ( $i.e$ . forcing) that eight lowest Fourier modes are kept constant at all
times. The fluid system starts from motionless initial state. When the viscosity
is larger than (or equal to) 0.0023, the fow field attains a steady state. When
$\nu$ is decreased, the total enstrophy (or energy) begins to oscillate at a single
frequency and does not tend to a final st $e$ady state. This may be interpreted as
Hopf bifurcation of the fluid system having a large number of degrees of freedom.
For even smaller values of the viscosity, the system bifurcates to a motion of double
or triple periodicities in time (as a result of sequence of $Hopf\cdot bifurcations$), to a
state of phase-locking, and further to a non-periodic or chaotic state.

We have obtained the state of three-frequency quasi-periodicity, however a
quadruply periodic motion has not been observed. A triply periodic motion is
considered to be structually unstable to a $C^{2}$ perturbation, while a $C^{\infty}$ pertur-
bation destabilzes a motion of n-frequency quasi-periodicity for $n\geq 4^{15,16}$ Since
the $pre$sent analysis is a numerical study, one cannot stat $e$ a definite answer. So
that, the observed triply periodic motion may evolve to a chaotic state in the long
run as was the case for $\nu=0.0010$ , or it may be such a weak chaotic state with
dominant three frequencies that we cannot distinguish it from a triply periodic
motion. However we cannot exclude the possibility also that a triply periodic
motion does exist as Grebogi et al.i7 pointed out. Anyway it is remarkable that
the Ruelle-Takens scenario has been observed in the present numerical simulation
of viscous incompressible flows on the torus $T^{2}$ and also in the three-dimensional
simulation on $T^{s}$ by Kida et al. 7
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Figure 3. Initial contours of the vorticity field $\omega(x,$0). Positive or negative
extremum is denoted by the symbol H or L, respectively.
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Figure 4. Temporal behaviors of the enstrophy $Q(t)$ for the viscosity $\nu$ :
$(a)$ 0.0020, $(b)$ 0.00156, (c) 0.0014, $(d)$ 0.0013,
$(e)$ 0.0010 and $(f)$ 0.0006.
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Figure 5. Frequency power spectrum $\ln|\hat{Q}(\sigma)|^{2}$ for the cases
corresponding to Figure 4.
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$x$

Figure 6. The vorticity contoures at the final instant of computation
for the lowest value of the viscosity $\nu=0.0006$ . The symbols
$H$ and $L$ are as in Figure 3.
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