On the classification of smooth complete toric varieties with Picard number 3

Victor V．Batyrev

Let Σ be a complete regular d－dimensional fan and let $G(\Sigma)=\left\{e_{1}, \cdots, e_{n}\right\}$ be the set of all generators of $\Sigma^{(1)}$ ．

Definition 1．A nonempty subset $\mathcal{P}=\left\{e_{i_{1}}, \ldots, e_{i_{k}}\right\} \subset G(\Sigma)$ is called a primitive collection if for each generator $e_{i} \in \mathcal{P}$ the elements of $\mathcal{P} \backslash\left\{e_{i}\right\}$ generate a $(k-1)$－dimensional cone in Σ ，while \mathcal{P} does not generate any k－dimensional cone in Σ ．

Definition 2．Let $\mathcal{P}=\left\{e_{i_{1}}, \ldots, e_{i_{k}}\right\}$ be a primitive collection in $G(\Sigma)$ ． Denote by $Z(\mathcal{P})$ the affine subspace in $\mathbf{A}_{k}^{n}=\operatorname{Spec} k\left[x_{1}, \ldots, x_{n}\right]$ defined by equations

$$
x_{i_{1}}=\cdots=x_{i_{k}}=0 .
$$

One can consider the toric variety V_{Σ} over a field k associated with a fan Σ as quotion of the open subset

$$
U(\Sigma)=\mathbf{A}_{k}^{n} \backslash \bigcup_{\mathcal{P}} Z(\mathcal{P})
$$

in the affine space by a $(n-d)$－dimensional $T_{\text {Pic }}$ torus whose group of charac－ ters is dual to the group of all integral relations between ellements of $G(\Sigma)$ ． （The dimension $n-d$ equals to Picard number ρ of the corresponding toric variety V_{Σ} ．）

Conjecture For any d－dimensional smooth complete toric variety with Picard number ρ defined by a complete regular fan Σ ，there exists a constant $N(\rho)$ depending only on ρ such that the number of primitive collections in $G(\Sigma)$ is always not more than $N(\rho)$ ．

It is easy to see that $N(1)=1, N(2)=2[3]$ ．It turns out that for $\rho>2$ there are some restrictions on the combinatorial type of regular complete
fans (cf. [2]). For $\rho=3$ there exists a complete classifications of all possible fans Σ.

Theorem. If Σ is a d-dimensional complete regular fan with $d+3$ generators, then the number of the primitive collections in $G(\Sigma)$ can be equal only to 3 or 5 (in particular $N(3)=5$). Moreover, the action of 3-dimensional torus $T_{\text {Pic }}$ on $U(\Sigma)$ can be described by some explicit integral relations between elements of $G(\Sigma)$.

For 2-dimensional toric variety with $\rho+2$ generators the number of primitive collections equals $(\rho-1)(\rho+2) / 2$. In connection with the conjecture, it is interesting to ask the following:

Question. Does there exist for $\rho>1$ a complete regular d-dimensional fan Σ with $\rho+d$ generators such that the set $G(\Sigma)$ contains more than

$$
(\rho-1)(\rho+2) / 2
$$

primitive collections?

References

[1] V.V. Batyrev, On the classification of smooth projective toric varieties, Tôhoku Math. J, 43 (1991), to appear.
[2] J. Gretenkort, P. Kleinschmidt and B. Sturmfels, On the existence of certain smooth toric varieties, Discrete Comput. Geom. 5 (1990), 255262.
[3] P. Kleinschmidt, A classification of toric varieties with few generators, Aequationes Math. 35 (1988), 254-266.

