On the classification of smooth complete toric varieties with Picard number 3

VICTOR V. BATYREV

Let Σ be a complete regular *d*-dimensional fan and let $G(\Sigma) = \{e_1, \dots, e_n\}$ be the set of all generators of $\Sigma^{(1)}$.

Definition 1. A nonempty subset $\mathcal{P} = \{e_{i_1}, \ldots, e_{i_k}\} \subset G(\Sigma)$ is called a *primitive collection* if for each generator $e_i \in \mathcal{P}$ the elements of $\mathcal{P} \setminus \{e_i\}$ generate a (k-1)-dimensional cone in Σ , while \mathcal{P} does not generate any *k*-dimensional cone in Σ .

Definition 2. Let $\mathcal{P} = \{e_{i_1}, \ldots, e_{i_k}\}$ be a primitive collection in $G(\Sigma)$. Denote by $Z(\mathcal{P})$ the affine subspace in $\mathbf{A}_k^n = \text{Spec } k[x_1, \ldots, x_n]$ defined by equations

$$x_{i_1}=\cdots=x_{i_k}=0.$$

One can consider the toric variety V_{Σ} over a field k associated with a fan Σ as quotion of the open subset

$$U(\Sigma) = \mathbf{A}_k^n \setminus \bigcup_{\mathcal{P}} Z(\mathcal{P})$$

in the affine space by a (n-d)-dimensional T_{Pic} torus whose group of characters is dual to the group of all integral relations between ellements of $G(\Sigma)$. (The dimension n-d equals to Picard number ρ of the corresponding toric variety V_{Σ} .)

Conjecture For any d-dimensional smooth complete toric variety with Picard number ρ defined by a complete regular fan Σ , there exists a constant $N(\rho)$ depending only on ρ such that the number of primitive collections in $G(\Sigma)$ is always not more than $N(\rho)$.

It is easy to see that N(1) = 1, N(2) = 2 [3]. It turns out that for $\rho > 2$ there are some restrictions on the combinatorial type of regular complete

fans (cf. [2]). For $\rho = 3$ there exists a complete classifications of all possible fans Σ .

Theorem. If Σ is a d-dimensional complete regular fan with d+3 generators, then the number of the primitive collections in $G(\Sigma)$ can be equal only to 3 or 5 (in particular N(3) = 5). Moreover, the action of 3-dimensional torus T_{Pic} on $U(\Sigma)$ can be described by some explicit integral relations between elements of $G(\Sigma)$.

For 2-dimensional toric variety with $\rho + 2$ generators the number of primitive collections equals $(\rho - 1)(\rho + 2)/2$. In connection with the conjecture, it is interesting to ask the following:

Question. Does there exist for $\rho > 1$ a complete regular d-dimensional fan Σ with $\rho + d$ generators such that the set $G(\Sigma)$ contains more than

$$(\rho - 1)(\rho + 2)/2$$

primitive collections?

References

- [1] V.V. Batyrev, On the classification of smooth projective toric varieties, Tôhoku Math. J, 43 (1991), to appear.
- [2] J. Gretenkort, P. Kleinschmidt and B. Sturmfels, On the existence of certain smooth toric varieties, Discrete Comput. Geom. 5 (1990), 255-262.
- [3] P. Kleinschmidt, A classification of toric varieties with few generators, Aequationes Math.35 (1988), 254-266.