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1. Introduction

Let $\zeta(s)$ be the Riemann’s zeta function and $\eta(r)(r=\sqrt{-1}(1/2-s))$ the logarithmic
derivative of $\zeta$ which is of the form:

$\eta(r)=\sum_{p\in Prim}\sum_{n\geq 1}(\log p)e^{-n(\log p)s}$

$= \sum_{i\geq 1}\sum_{n\geq 1}a_{in}e^{-\sqrt{-1}n(\log p_{i})r}$
, (1)

where $Prim=\{p_{i};i\geq 1\}$ is the set of prime numbers and $a_{in}=(\log p_{i})e^{-n(\log p;)/2}$ .
This series converges absolutely and uniformly in any half plane $\Im(r)<-1/2-\epsilon$

$(\epsilon>0)$ and has meromorphic continuation to the whole complex plane. Then the
Riemann Hypothesis that the roots of $\zeta(s)$ all do lie on $\Re(s)=1/2$ is equivalent to
showing that the non imaginaly poles of $\eta(r)$ all do lie on $\Im(r)=0$ .

Let $G$ be a connected semisimple Lie group with finite center, $K$ a maximal compact
subgroup of $G$ and $\Gamma$ a discrete subgroup of $G$ such $that.\Gamma\backslash C_{7}$ is compact. Then for each
character $\chi$ of a finite dimensional unitary representation of $\Gamma$ , Gangolli[Gl] investigates
a zeta function $Z_{\Gamma}(s, \chi)$ of Selberg’s type, Selberg[S] originally introduced into the case
of $SL(2, R)$ . The logarithmic derivative $\eta_{G}(r)$ of $Z_{\Gamma}(s, \chi)(r=\sqrt{-1}(\rho_{0}-s)$ and $\rho_{0}$ is
a positive real number depending only on $(G, K))$ is of the form:

$\eta_{G}(r)=\kappa\sum_{\delta\in Prim_{\Gamma}}\sum_{n\geq 1}\sum_{\lambda\in L}u_{\delta}m_{\lambda}\chi(\delta^{n})\xi_{\lambda}(h(\delta))^{-n}e^{-nu_{\delta^{S}}}$
, (2)

This paper is a revised version of the one appeared in Research Report of $I\langle eio$ University,vo1.3
(1991).
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where $Prim_{\Gamma}$ is a complete set of representatives for the conjugacy classes of prime
elements in $\Gamma$ and $u_{\delta}(\delta\in Prim_{\Gamma})$ the logarithm of the norm $N(\delta)$ of 5. For other
notations refer to [G1]. This series converges absolutely and uniformly in any half
plane $\Im(r)<-\rho_{0}-\epsilon(\epsilon>0)$ and has meromorphic continuation to the whole complex
plane. Especially, the poles of $\eta_{G}(r)$ all do lie on $\Im(r)=0$ or $\Re(r)=0$ , so the Riemann
Hypothesis holds true for $Z_{\Gamma}(s, \chi)$ . In what follows we shall rearrange the series as

$\eta c(r)=\sum_{i\geq 1}\sum_{n\geq 1}b_{in}e^{-\sqrt{-1}cur}:n\delta_{j}$
(3)

for which the exponents satisfy $c_{in}u_{\delta:}=c_{jm}u_{\delta_{j}}$ if and only if $i=j$ and $n=m$ .
We here note that (1) and (3) are quite similar in their forms. Therefore, if two

distributions of Prim and $Prim_{\Gamma}$ are similar in the logarithm of their norms, it is
hoped that $\eta$ and $\eta_{G}$ have the same properties, especially, the Riemann Hypothesis
holds for $\eta$ and then, for $\zeta al$so. In this paper we let $G=SL(2, R)$ and make an
assumption of magnitude and distance of $N(\delta)$ for $\delta\in Prim_{\Gamma}$ , which guarntees the
similarity between the distributions (see (A) in \S 2 and (B) in \S 6). Then, under a week
assumption (A) we shall obatin an integral expression of $\eta$ in terms of $\eta_{G}$ such as

$\eta(\nu)=\int_{R-\sqrt{-1}y}\eta_{G}(x)H(\nu,x)dx$ (4)

($y=1/2+\epsilon$ and see Proposition 3.3). Unfortunately, this formula is valid only for
$\Im(\nu)\leq-L$ ( $L$ is a large positive number and see Proposition 5.1). Then, the Riemann
Hypothesis is equivalent to showing that the right hand side of (4) has analytic con-
tinuation to $\Im(\nu)<0$ except $\nu=-\sqrt{-1}/2$ . Under a strong assumption (B) we shall
obtain the continuation and prove the Riemann Hypothesis (see Theorem 6.1).

Since $\eta(r)$ and $\eta_{G}(r)$ have a different growth order as $rarrow\infty$ (cf. [E], Chap.9 and
[H], Chap.6), we see that the distribution of Prim and the one of norms of $Prim_{\Gamma}$ does
not coincide. On the other hand we know that the prime number theorem that gives an
approximation of the number of primes less than a given magnitude holds in an exactly
same form for both Prim and $Prim_{\Gamma}$ (cf. $[E],Chap.4$ and [H], Chap.2). Therefore,
according to these facts we can believe that two distributions of Prim and $Prim_{\Gamma}$ are
similar in their norms. Actually, our strong assumption (B) expresses a similarity in
the following $f_{c\urcorner}s$hion: there exists an injective map

$\omega$ : Prim $arrow$ $Prim_{\Gamma}$ (5)

for which $\log N(\omega(p))\leq 1/4\log p$ or $\log N(\omega(p))\leq\log p$ and the distance $\delta(p)$ be-
tween $\log N(\omega(p))$ and the nearest element being of the form $\log N(\omega(q))(q\in Prim)$ is
bounded below by $\sigma(\log N(\omega(p)))^{-\theta}$ for positive constants $\sigma$ and $\theta$ , roughly speaking,
$\log N(\omega(p))\leq\log p$ for almost all $p\in Prim$ , but, if $\delta(p)$ is sufficiently small like in the
case of twin prime elements, it must be $\log N(\omega(p))\leq 1/4\log p$ . At present we have
no idea to find a discrete subgroup $\Gamma$ of $SL(2,R)$ satisfying this property, however, we
have enough reason to believe that a similarity between Prim and $Prim_{\Gamma}$ deduces the
Riemann Hypothesis.
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2. Notations

Let $G=SL(2, R)$ and let $\chi$ be the trivial character of F. Then $\rho_{0}=1/2$ and the
explicit form of $\eta_{G}$ is given by

$\eta c(r)=\sum_{i\geq 1}\sum_{n\geq 1}\frac{u_{i}/2}{\sinh(nu_{i}/2)}e^{-\sqrt{-1}nu:r}$, (6)

where $u_{i}=u_{\delta_{i}}$ , and in (3) $c_{in}=n$ and

$b_{in}^{-1}=2u^{-1}\sinh(nu_{*}\cdot/2)\leq ce^{nu_{i}/2}$ . (7)

For general references to the basic properties of $\eta c$ see [G1], [H] and [S]. We denote
the increasing sequence of prime numbers as $p_{1}=2,p_{2}=3,ps=5,$ $\ldots$ and the one
of the norms of elements in $Prim_{\Gamma}$ as $N(S_{1}),$ $N(\delta_{2}),$ $N(\delta_{3}),$

$\ldots$ respectively. We define
$u_{i}=\log N(S_{i})$ and

$\delta_{in}=\frac{1}{2}(m,j)\neq(n\inf_{(m,j)\epsilon N^{2_{j)}}}.|nu_{i}-mu_{j}|$ (8)

for $i\geq 1$ and $n\geq 1$ . Then, each $\delta_{in}$ is positive, because $\{u_{i}; i\geq 1\}$ does not have a
finite point of accumulation (see [G2], p.415). Moreover, it is easy to see that there
exists a positive constant $C$ such that for each $\alpha\geq 0$ and $\beta\geq 1$

$\epsilon_{in}=\epsilon_{in}(\alpha, \beta, C)=c_{e^{-\alpha n(\log p_{i})}e^{-\beta nu}}:\leq\delta_{in}$ (9)

for all $i$ and $n\geq 1$ . We fix such a pair of a and $\beta$ till the end of \S 4.
As said in \S 1, the Riemann Hypothesis holds for $\eta_{G}$ . Actually, the poles of $\eta_{G}$ are

all simple and are as

$\{\nu_{j}; j\in Z\}\cup\{r_{j}; 1\leq j\leq 2M\}$ , (10)

where $\nu_{j}\in R$ and $r_{j}\in\sqrt{-1}R$ (cf. [G1], Proposition 2.7 and [H], p.68). Then it is
known that $\nu_{-j}=-\nu_{j}$ and thc poles of $\eta c$ which concentrate along $[-\sqrt{-1}/2, \sqrt{-1}/2]$

can be denoted as

$\{\nu_{0}, r_{j},\overline{r}_{j}; 1\leq j\leq M\}$ , (11)

where we let $r_{1},$ $r_{2},$ $\ldots,$ $r_{M}$ be the poles of $\eta c$ which concentrate along $[-\sqrt{-1}/2,0$) and
$\overline{r}_{j}=-r_{j}=r_{j+M}$ . We denote the residues of $\eta c$ at $\nu_{j}$ and $r_{j}$ by $n_{j}$ and $m_{j}$ respectively.
Then, $n_{-j}=n_{j}$ and $m_{j}=m_{j+M}=1$ for $1\leq j\leq M$ (cf. [H], Chap.2).

We fix sufficiently small (resp. large) positive numbers $\epsilon$ and $\delta$ (resp. $E$), and a
positive number $y$ such that $1/2<y\leq 1/2+\epsilon$ .
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3. Transition from $\eta_{G}$ to $\eta$

Let $\phi$ be a $c\infty$ compactly supported function on $R$ satisfying

(i) supp$(\phi)\subset(-1,1)$ ,
(ii) $\phi(0)=1$ , (12)

(iii) $\phi^{(k)}(0)=0$ $(1 \leq k\leq 2M)$

and let

$h_{in}(t)= \frac{a_{in\vee}}{b_{in}}\phi(\frac{t-n(1ogp_{i})}{\epsilon_{in}})$ $(t\in R)$ (13)

for $i\geq 1$ and $n\geq 1$ . Then it is easy to see that $h_{in}$ satisfies the following conditions.

(i) supp$(h_{in})\subset(n(\log p_{i})-\epsilon_{in}, n(\log p_{i})+\epsilon_{in})$ ,

(ii) $h_{in}(n( \log p_{i}))=\frac{a_{in}}{b_{in}}$ (14)

(iii) $h_{in}^{(k)}(n(\log p_{i}))=0$ $(1 \leq k\leq 2M)$ .

Without loss of generality we may assume that $\epsilon_{11}\leq 1/2\log 2$ and thus, supp$(h_{in})\subset$

$[1/2\log 2, \infty)$ for all $i$ and $n\geq 1$ . Here we put $\hat{h}_{in}(x)=(2\pi)^{-1}\int_{R}h_{in}(z)e^{-\sqrt{-1}xz}dz$

and

$H( \nu, x)=\sum_{i,n\geq 1}e^{\sqrt{-1}(nu:-n(\log p;))x}\hat{h}_{in}(\nu-x)$
(15a)

$= \sum_{i,n\geq 1}e^{-\sqrt{-1}(n(\log p:)\nu-nu;x)}\frac{a_{in}}{b_{in}}\epsilon_{in}\hat{\phi}(\epsilon_{in}(\nu-x))$
. (15b)

We now consider a condition for which the series (15) converges. For $\theta\geq 0$ and $1\leq$

$p,$ $q\leq\infty$ such that $1/p+1/q=1$ we suppose that $\nu$ and $x$ satisfy

$(a_{E})$ $-E\leq\Im(\nu),$ $\Im(x)\leq E$ ,

$(b_{\theta}^{p,q})$ $\{\begin{array}{l}\triangleright s(\nu)-l/2-(1-\theta)\alpha\leq-l/p-\delta-\infty s(x)+1/2-(1-\theta)\beta\leq-l/q-\delta\end{array}$

where $\delta$ is a fixed sufficiently small positive number (see \S 2). Then, substituting the
definition of $a_{in}$ and $b_{in}$ (see (1) and (7)) for (15b), we see that $|\nu-x|^{\theta}|H(\nu, x)|$ is
dominated by

$C \sum_{i,n\geq 1}).(16)$
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Since $\hat{\phi}$ is rapidly decreasing and is holomorphic of exponential type $\leq 1$ (cf. [Su],
p.146), for each $N\in N$ there exists $C_{N}>0$ for which

$|\hat{\phi}(x)|\leq C_{N}(1+|x|)^{-N}e^{|\Im(x)|}$ $(x\in C)$ . (17)

Therefore, it follows from (9) and $(a_{E})$ that $|\nu-x|^{\theta}|H(\nu, x)|$ is dominated by

$cC^{1-\theta}C_{[\theta]+1}e^{2EC} \sum_{i,n\geq 1}\log p_{i}e^{(\Im(\nu)-1/2-(1-\theta)\alpha)n(\log p:)}e^{(-\Im(x)+1/2-(1-\theta)\beta)nu_{i}}$
,

(18)

where $[\theta]$ is the greatest integer not exceeding $\theta$ . Then, this series converges absolutely
and uniformly by $(b_{\theta}^{p,q})$ and the H\"older’s inequality.

Lemma 3.1. If $\nu$ and $x$ satisfy $(a_{E})$ an $d(b_{0}^{p,q})$ , then the series $H(\nu, x)$ converges
absolutely and uniformly, and is holomorphic of $\nu$ an$dx$ . Moreover, if $(b_{\theta}^{p,q})(\theta\geq 0)$ is
satisfi$ed$, there exists a positive constant $C$ such that

$|H(\nu, x)|\leq C|\nu-x|^{-\theta}$ .

Throughout this paper we assume the following condition:

(A) There exists a positive constant $A$ such that

$u_{i}\leq A\log p_{i}$ for all $i\geq 1$ .

Then we can replace $(b_{\theta}^{p,q})$ with

$(b_{\theta,\gamma}^{p,q})$ $\{\begin{array}{l}\propto s(\nu)-1/2-(1-\theta)\alpha+\gamma\leq-1/p-\delta-\infty s(x)+1/2-(1-\theta)\beta-\gamma/A\leq-1/q-\delta\end{array}$

where $\gamma\geq 0$ . We fix such a $\gamma$ .
We next let $-y\leq-y_{0}\leq E$ and

$(c_{\theta,\gamma,y0}^{p,q})$ $\{\begin{array}{l}\propto s(\nu)-l/2-(1-\theta)\alpha+\gamma\leq-l/p-\delta y_{0}+l/2-(1-\theta)\beta-\gamma/A\leq-1/q-\delta\end{array}$

Then, if $\nu$ satisfies $(a_{E})$ and $(c_{\theta}^{pq_{1,\gamma,y_{0}}}\dotplus)(\theta\in N)$ , it follows similarly as above that

$\int_{R-\sqrt{-1}y_{O}}|x|^{\theta}|H(\nu, x)|dx$

$\leq c\sum_{i,n\geq 1}\log p_{i}e^{(\Im(\nu)-1/2)n(\log p;)}e^{(y_{0}+1/2)nu}{}^{t}\epsilon_{in}^{-\theta}[\epsilon_{in}\int_{R-\sqrt{-1}yo}|(\epsilon_{in}x)^{\theta}\hat{\phi}(\epsilon_{in}(\nu-x))|dx]$

and by letting $x=(x-\nu)+\nu$ ,

$\leq cC^{-\theta}C_{\theta+2}e^{2EC}P_{\theta}(|\nu|)\sum_{i,n\geq 1}\log p;e^{(\Im(\nu)-1/2+\theta\alpha+\gamma)n(\log p:)}e^{(yo+1/2+\theta\beta-\gamma/A)nu:},(19)$

where $P_{\theta}$ is a polynomial of degree $\theta$ with coefficients depending only on $\theta$ . Then this
series converges absolutely and uniformly by $(c_{\theta+1,\gamma,y_{0}}^{p,q})$ and the H\"older’s inequality.
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Lemma 3.2. Let $\nu$ be in a compact set $S$ in the tube domain defined by $(a_{E})$ and
$(c_{\theta+^{q}1,\gamma,y0}^{p})$ ($\theta\in N$ and $-y\leq-y_{0}\leq E$). Let $f$ be a function on $R-\sqrt{-1}y_{0}$ such
that $f(x)=O(|x|^{\theta})$ . Then, there exists a positi$ve$ constant $C$ for which $\int_{R-\sqrt{-1}y0}$

$|f(x)H(\nu, x)|dx\leq C$ . Especially,

$T_{y0}f( \nu)=\int_{R-\sqrt{-1}yo}f(x)H(\nu, x)dx$

is rvell-deffied and is holomorphic of $\nu$ satisfying $(a_{E})$ and $(c_{\theta+^{q_{1}},\gamma,y0}^{p,})$ .

Proposition 3.3. Let $P$ be a polynomial of degree $k(0\leq k\leq 2M)$ and $\nu$ satisfy $(a_{E})$

and $(c_{\dot{\kappa}}^{pq_{1,\gamma,y}}\dotplus)$ . Then,

(i) $P(\nu)\eta(\nu)=T_{y}(P\eta_{G})(\nu)$

$= \int_{R-\sqrt{-1}\prime}/P(x)\eta_{G}(x)H(\nu,x)dx$ ,

(ii) $0= \int_{R-\sqrt{-1}y}P(x)\eta_{G}(x)H(\nu, -x)dx$ .

Proof. Since $\eta_{G}(x)=O(1)$ for $x\in R-\sqrt{-1}y$ (see [H], Proposition 6.7) and $(c_{k+^{q}1,\gamma,y}^{p})$

implies $(c_{k+^{q}1,\gamma,-y}^{p})$ , the right hand sides of (i) and (ii) are well-defined and are holomor-
phic of $\nu$ satisfying $(a_{E})$ and $(c_{k}^{pq}\dotplus 1,\gamma,y)$ (see Lemma 3.2). Therefore, we may suppose
that $\Im(\nu)\leq-y$ . Since $mu_{j}>0$ for all $m,j\geq 1$ , it follows that

$\int_{R-\sqrt{-1}y}e^{-\sqrt{-1}mu_{j}x}H(\nu, x)dx$

$= \int_{R}e^{-\sqrt{-1}mu_{j}x}H(\nu, x)dx$ .

Then, substituting the definition of $H(\nu, x)$ (see $(15a)$ ), we see formally that

$= \sum_{k,l\geq 1}\int_{R}e^{-\sqrt{-1}mu_{j}x}e^{\sqrt{-1}(lu_{k}-l(\log p_{k}))x}\hat{h}_{kl}(\nu-x)dx$

$= \sum_{k,l\geq 1}e^{-\sqrt{-1}(mu;-lu_{k}+1(\log p_{k}))\nu}\int_{R}e^{\sqrt{-1}(mu;-lu_{k}+l(\log p_{k}))x}\hat{h}_{kl}(x)dx$

$= \sum_{k,l\geq 1}e^{-\sqrt{-1}(mu_{j}-lu\iota\cdot+l(\log p_{k}))\nu}h_{kl}(mu_{j}-lu_{k}+l(\log p_{k}))$
.

Since each support of $h_{kl}$ is disjointed from the others, it is easy to see that the condition
that $\Im(\nu)\leq-y$ guarantees the validity of the above calculation. Moreover, since the
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support of $h_{kl}$ is contained in $(l(\log p_{k})-\epsilon_{kl}, l(\log p_{k})+\epsilon_{kl})$ and $h_{kl}(l(\log p_{k}))=a_{k}\iota b_{kl}^{-1}$

(see (14)(i) and $(ii)$ ), it follows from (9) and the definition of $\delta_{kl}$ (see (7)) that

$=\epsilon_{kj}\epsilon_{lm}h_{kl}(l(\log p_{k}))e^{-\sqrt{-1}l(\log p_{k})\nu}$

$=\epsilon_{kj}\epsilon_{lm}a_{kl}b_{kl}^{-1}e^{-\sqrt{-1}l(\log p_{k})\nu}$ ,

where $\epsilon_{ij}=1$ if $i=j$ and $0$ otherwise. Therefore, we can deduce that

$T_{y} \eta_{G}(\nu)=\int_{R-\sqrt{-1}y}\eta_{G}(x)H(\nu,x)dx$

$= \sum_{j_{)}m\geq 1}b_{jm}\int_{R-\sqrt{-1}y}e^{-\sqrt{-1}mu_{j}x}H(\nu, x)dx$

$= \sum_{j,m\geq 1}a_{jm}e^{-\sqrt{-1}m(\log p_{j})\nu}$
(20)

$=\eta(\nu)$ .

Here we rewrite $P(\nu)$ as
$P(\nu)=R_{\nu}(\nu-x)+P(x)$ ,

where $R_{\nu}$ is a polynomial of degree $k$ with coefficients depending only on $k$ and $\nu$ . Then
the formula (i) follows from (20) provided that

$\int_{R-\sqrt{-1}y}(\nu-x)^{l}\eta c(x)H(\nu,.x)dx=0$ $(1 \leq l\leq k)$ . (21)

We now show (21). If we define $H^{(l)}(\nu, x)$ by replacing $h_{in}$ in (15a) with $(\sqrt{-1})^{-1}h_{in}^{(l)}$ ,
we easily see that the left hand side of (21) is equal to

$\int_{R-\sqrt{-1}y}\eta_{G}(x)H^{(l)}(\nu, x)dx$ .

Obviously, this integral is finite by the condition $(c_{k}^{pq_{1,\gamma,y}}\dotplus)$ . Then, applying the same
argument that deduccs (20), cspccially, by using (14)$(iii)$ instead of (14) $(ii)$ , we can show
that this integral is equal to $0$ . The formula (ii) follows by the quite same way. $\square$

We now let $\epsilon$ and $\delta$ (resp. $E$ ) sufficiently small (resp. large). Then, we can deduce
the following,

Corollary 3.4. The equations (i) and (ii) in Proposition 3.3 ]$1old$ for $\nu$ satisfying

$\{\begin{array}{l}\Im(\nu)-l/2+k\alpha+\gamma<-1/p1+k\beta-\gamma/A<-1/q\end{array}$

where $\gamma\geq 0,1\leq p,$ $q\leq\infty$ and $1/p+1/q=1$ .
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4. A relation between $\eta$ and the poles of $\eta c$

We keep the notations and the assumption (A). We first recall that $\eta_{G}$ satisfies the
functional equation:

$\eta_{G}(x)+\eta_{G}(-x)=cx\tanh\pi x$ (22)

(see [H], Proposition 4.26). In this section we shall express $\eta$ as the sum of an integral
of $x\tanh\pi x$ and the residues of $\eta_{G}$ .
Lemma 4.1. Let $P$ be a polynomial of degree $k(0\leq k\leq 2M)$ and let $\nu$ be in a compact
set $S$ satisfying $\Im(S)<0,$ $(a_{E})$ and $(c_{k}^{pq_{6,\gamma,0}}\dotplus)$ . Then the series $\sum_{j\in Z}n_{j}P(\nu_{j})H(\nu, \nu_{j})$

converges absolutely and uniformly. Especially, $\sum_{j\in Z}n_{j}P(\nu_{j})H(\nu, \nu_{j})$ is well-defned
and is holomorphic of $\nu$ satisfying $\Im(S)’<0,$ $(a_{E})$ and $(c_{k+^{q}6,\gamma,0}^{p})$ .

Proof. Since $\nu_{j}\in R$ and $\nu\in S$ , Lemma 3.1 implies that for $x\in R$

$|H(\nu, x)|\leq C|\nu-x|^{-(k+6)}\sim(1+|x|)^{-(k+6)}$ .

Then, noting the fact that

$\sum_{ti;\nu_{j^{2}}\leq x\}}n_{j}$

$x^{2}$ $(xarrow\infty)$

(see \S 2 and [G1], Propositionl.2), we see that

$\sum_{j\in Z}n_{j}|P(\nu_{j})H(\nu, \nu_{j})|$

$\sim\sum_{j\in Z}n_{j}(1+|\nu_{j}|)^{-6}$

$\sim\sum_{k=0k\leq|}^{\infty}\sum_{\nu_{j}|<k+1}n_{j}(1+|\nu_{j}|)^{-6}$

$\sim\sum_{k\cdot=0}^{\infty}(1+k)^{-2}<\infty$ . $\square$

We now suppose that $\nu$ satisfies $\Im(\nu)<0,$ $(a_{E})$ and $(c_{6,\gamma,y}^{p,q})$ . We note that, if
$|\Im(x)\{\leq\epsilon$ , then $x\tanh\pi x=O(|x|)$ and $\eta_{G}(x)=O(|x|)$ (see [H], Proposition 6.7).
Therefore, since $(c_{6,\gamma,y}^{p,q})$ implies $(c_{2,\gamma,\pm e}^{p,q})$ and $(c_{6,\gamma,0}^{p,q})$ , it follows from Lemma 3.2 and
Lemma 4.1 that

$\int_{R}cx\tanh\pi xH(\nu, x)dx$

$= \int_{R+\sqrt{-1}\epsilon}cx\tanh\pi xH(\nu, -x)dx$

$= \int_{R+\sqrt{-1}\epsilon}(\eta_{G}(x)+\eta_{G}(-x))H(\nu, -x)dx$

$= \int_{R-\sqrt{-1}e}\eta c(x)H(\nu,x)dx+\int_{R+\sqrt{-1}\epsilon}\eta c(x)H(\nu, -x)dx$ .
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The second term is equal to

$\int_{R-\sqrt{-1}y}\eta_{G}(x)H(\nu, -x)dx-\sum_{j\in Z}n_{j}H(\nu, \nu_{j})-\sum_{1\leq j\leq M}H(\nu, -r_{j})$

$=- \sum_{j\in Z}n_{j}H(\nu, \nu_{j})-\sum_{1\leq j\leq M}H(\nu, -r_{j})$

by Proposition 3.3(ii). Therefore, it follows from Proposition 3.3 (i) that

$\eta(\nu)=\int_{R-\sqrt{-1}y}\eta c(x)H(\nu,x)dx$

$= \int_{R-\sqrt{-1}\epsilon}\eta_{G}(x)H(\nu, x)dx+\sum_{1\leq j\leq M}H(\nu, r_{j})$

$= \int_{R}cx\tanh\pi xH(\nu, x)dx+\sum_{j\in Z}n_{j}H(\nu, \nu_{j})+\sum_{1\leq j\leq 2M}H(\nu, r_{j})$ .

Then, letting $\epsilon$ and $\delta$ (resp. $E$ ) sufficiently small (resp. large), we can obtain the
following,

Proposition 4.2. If $\nu$ satisfies

$\{\begin{array}{l}\propto s(\nu)<\min(0,1/2-5\alpha-\gamma-l/p)l+5\beta<\gamma/A-l/q\end{array}$

where $\gamma\geq 0,1\leq p,$ $q\leq\infty$ and $1/p+1/q=1$ , then

$\eta(\nu)=c\int_{R}x\tanh\pi xH(\nu, x)dx+\sum_{j\in Z}n_{j}H(\nu, \nu_{j})+\sum_{1\leq j\leq 2M}H(\nu, r_{j})$.

We put

$P_{G}(x)=(\nu^{2}-r_{1}^{2})(\nu^{2}-\gamma_{2}^{2})\ldots(\nu^{2}-r_{M}^{2})$ . (23)

Then, replacing $\eta c$ with $P_{G}\eta_{G}$ , we can obtain the following proposition by the quite
same way.

Proposition 4.3. If $\nu$ satisfies

$\{\begin{array}{l}\Im(\nu)<\min(0,1/2-(5+2M)\alpha-\gamma-1/p)l+(5+2M)\beta<\gamma/A-l/q\end{array}$

where $\gamma\geq 0,1\leq p,$ $q\leq\infty$ and $1/p+1/q=1$ , then

$P_{G}( \nu)\eta(\nu)=\int_{R-\sqrt{-1}\epsilon}\eta c(x)P_{G}(x)H(\nu,x)dx$

$=c \int_{R}x\tanh\pi xP_{G}(x)H(\nu,x)dx+\sum_{j\in Z}n_{j}P_{G}(\nu_{j})H(\nu, \nu_{j})$ .
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5. Some modffications

5.1. In the proof of Proposition 3.3 each term $b_{in}e^{-\sqrt{-1}nu:r}$ of $\eta_{G}(r)(u_{i}=\log N(S_{i}))$

transfers to $a_{n}:e^{-\sqrt{-1}n(\log p)r}j$ of $\eta(r)$ under the integral formula. Obviously, to verify
su$ch$ an integral formula $\delta;s$ need not be taken over all elements in $Prim_{\Gamma}$ , and it is
enough for each $Pi$ to correspond to a unique element $S_{\omega(i)}$ in $Prim_{\Gamma}$ . Actually, for an
injective map

$\omega:N$ $arrow$ $N$

we put

$\delta_{in}=\frac{1}{2}$

$\inf_{(m,j)N^{2},(m..\langle j))\neq^{\in_{(\mathfrak{n}.\omega(:))}}}|nu_{\omega(i)}-mu_{\omega(j)}|$

, (24)

$\epsilon_{in}^{\omega}=\epsilon_{in}^{\omega}(\alpha,\beta, C)=Ce^{-\alpha n(\log p:)}e^{-\beta nu_{\omega(i)}}$ , (25)

$h_{in}= \frac{a_{in}}{b_{\llcorner’(i)n}}\phi(\frac{t-n(\log p_{i})}{\epsilon_{in}^{\omega}})$ $(t\in R)$ , (26)

$H_{\omega}( \nu, x)=\sum_{i,n\geq 1}e^{\sqrt{-1}(nu_{w(j)}-n(\log p:))x}\hat{h}_{in}^{\nu}(\nu-x)$
(27)

(cf. (8), (9), (13) and (15)). Then it is easy to see that all results in the preceding
sections are also valid when we replace $\delta_{in},$

$\epsilon_{in},$ $h_{in}$ and $H(\nu, x)$ by $\delta_{in}^{\omega},$ $\epsilon_{in}^{\omega},$ $h_{in}^{\omega}$ and
$H_{\omega}(\nu, x)$ respectively and (A) by

(A) There exists a positive constant $A$ such that

$u_{\omega(i)}\leq A\log p_{i}$ for all $i\geq 1$ .

5.2. We next modify the $\eta$ functions. Let

$\eta^{o}(r)=\sum_{i\geq 1}a_{i}e^{-\sqrt{-1}(\log p:)r}$
, (28)

where $a_{i}=(\log p_{i})e^{-(\log p)/2}j$ and let

$\eta_{\mathring{G}}(r)=\sum_{i\geq 1}b_{i}e^{-\sqrt{-1}u_{i^{f}}}$
, (29)

where $b_{i}=u_{i}/2\sinh(u;/2)$ . Then, it is easy to see that $\eta(r)-\eta^{o}(r)$ and $\eta c(r)-$

$\eta_{G}^{o}(r)$ are holomorphic on $\Im(r)<0$ (cf. [H], Proposition 3.5). Therefore, in order to
prove the Riemann Hypothesis for $\eta$ it is enough to prove it for $\eta^{O}$ . Since $\eta^{o}$ and $\eta_{\mathring{G}}$

inherit all singuralities from $\eta$ and $\eta_{G}$ respectively, the whole arguments in the previous
sections except one using the functional equation (22) are also applicable to $\eta^{O}$ and $\eta_{G}^{o}$ .
Especially, if we define $\delta_{i}^{\omega},$ $\epsilon_{i}^{\omega}(\alpha, \beta, C),$ $h_{i}^{\omega}$ and $H^{O}.(\nu, x)$ by el\’iminating the sufix $n$ in
(24)-(27) respectively, we see that all the results in \S 2 and \S 3 are also valid when we
replace $\eta,$ $\eta_{G}$ and $H$ by $\eta^{o},$ $\eta_{\mathring{G}}$ and $H^{O}$. respectively and (A) by $(A)_{\omega}$ .
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5.3. We now let
$\omega:D$ $arrow$ $N$ , $D\subset N$

be an injective map, and for each $i\in D$ we define $\delta_{i}^{\omega},\epsilon_{i}(\alpha,\beta, C)$ and $h_{1}^{\omega}$ as above.
Moreover, we put

$\eta^{o}.(r)=\sum_{i\in D}a_{i}e^{-\sqrt{-1}(\log p:)r}$
, (30)

$H^{o}.( \nu, x)=\sum_{i\in D}e^{\sqrt{-1}(nu_{\omega(i)}-n(\log p:))x}\hat{h}_{1\mathfrak{n}}(\nu-x)$ (31)

and we define the corresponding assumption $(A)_{u}$ , we denote by the same letter, by
replacing $i\geq 1$ with $i\in D$ . Then repeating the same arguments in \S 3, especially, taking
$\gamma$ sufficiently large in Corollary 3.4 and Proposition 4.3, we can deduce that

Proposition 5.1. Let us suppose that $(A)_{\omega}$ holds. Then there exists a $po$sitive con-
stant $L$ such that if $\Im(\nu)\leq-L$ ,

(i) $\eta_{\omega}^{O}(\nu)=\int_{R-\sqrt{-1}y}\eta_{G}^{o}(x)H^{o}.(\nu, x)dx$,

(ii) $P_{G}( \nu)\eta^{O}.(\nu)=\int_{R-\sqrt{-1}\epsilon}P_{G}(x)\eta_{G}(x)H_{\omega}^{O}(\nu, x)dx$ .

6. A proof of the Riemann Hypothesis under an assumption

We retain the notations in the previous sections. We here make an assumption on
magnitude and distance of $u_{i}(i\in N)$ , which is stronger than (A), and then give a proof
of the Riemann Hypothesis. The assumption can be stated as follows.

(B) There exist an injective map $\omega$ : $Narrow N$ and positive constants $\sigma$ and $\theta$ for
which, except a finite number of $i$ , one of the following conditions holds:

$(B1)$ $u_{\omega(i)}\leq 1/4\log p_{i}$ ,

$(B2)$ $u_{\omega(i)}\leq\log p$ ; and $\sigma u_{\omega(i)}^{-\theta}\leq\delta_{i}\cdot$ .

We here put $D_{\ell}=$ { $i\in N$ ; (Be) holds} for $p=1,2$ and $D_{3}=N-D_{1}\cup D_{2}$ . In what
follows for each $\omega\ell=\omega|_{Dp}(P=1,2,3)$ we shall prove that $P_{G}(\nu)\eta_{\omega_{l}}^{o}(\nu)(\ell=1,2,3)$ (see
(30)) is holomorphic $on-2L\leq\Im(\nu)\leq-3\epsilon$ .

$\eta_{1}^{o}$ : Since $(B1)$ implies $(A)_{\omega_{1}}$ (see 5.3), it follows from Proposition 5.1 that

$\eta_{\omega_{1}}^{o}(\nu)=\int_{R-\sqrt{-1}y}\eta_{\mathring{G}}(x)H_{\omega_{1}}^{o}(\nu, x)dx$ , (32)

if $\Im(\nu)\leq-L$ . We now recall the definition of $e_{i}^{\omega_{1}}$ (see 5.3 and (9)). Then, we can
choose a sufficiently $smaU$ positive number $\tau$ depending on $\epsilon$ such that

$\sum_{i\in D_{1}}e^{-\langle 1+3\epsilon)u_{w_{1}(j)}}(\epsilon_{l}^{\omega_{1}})^{-r}<\infty$
. (33)
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Then, by $(B1)$ and the argument used in (16)-(18) we see that $if-2L\leq\Im(\nu)\leq-2\epsilon$

and $\Im(x)=-y=-1/2-\epsilon$ ,
$r$

$|H_{\omega_{1}}^{o}( \nu, x)|\leq c\sum_{i\in D_{1}}\log p_{i}e^{(-2e-1/2)\log p:}e^{(\epsilon+1)u_{\omega_{1}(i)}}(\epsilon_{i^{1}})^{-r}|\nu-x|^{-(1+\tau)}$

.

$\leq c|\nu-x|^{-(1+\tau)}\sum_{i\in D_{1}}e^{-(1+3\epsilon)u_{\omega_{1}(1\rangle}}(\epsilon_{i}^{\omega_{1}})^{-\tau}$

$\leq c|\nu-x|^{-(1+\tau)}$ by (33).

Since $\eta_{G}^{\circ}(x)=O(1)$ for $x\in R-\sqrt{-1}y$ (see [H], Theorem 3.10), the above estimate and
(32) give an analytic continuation of $\eta_{\omega_{1}}^{O}(\nu)on-2L\leq\Im(\nu)\leq-2\epsilon$ .

$\eta_{\omega_{2}}^{o}$ : In the previous sections $\epsilon_{\dot{*}}^{\omega}=\epsilon_{1}^{\omega}(\alpha,\beta, C)$ (see 5.3 and (9)) is defined for $\alpha\geq 0$

and $\beta\geq 1$ . However, under the second condition of $(B2)$ we may take $\epsilon_{*}^{\omega_{2}}=\sigma u_{\omega_{2}(i)}^{-\theta}$

and easily see that all arguments in the previous sections are valid for $\epsilon_{2}^{\omega_{2}},$ $h_{1}$
.2 and $H_{2}^{o}$ ,

especially, it follows that

$P_{G}( \nu)\eta_{\omega_{2}}^{o}(\nu)=\int_{R-\sqrt{-1}\epsilon}P_{G}(x)\eta_{\mathring{G}}(x)H_{\omega_{2}}^{o}(\nu, x)dx$, (34)

if $\Im(\nu)\leq-L$ (see Proposition 5.1). We here put $J_{0}=\{i\in D_{2} ; 1 \leq\epsilon_{i}^{\omega_{2}}\}$ and $J_{n}=\{i\in$

$D_{2}$ ; $2^{-n}\leq\epsilon_{1}^{2}<2^{-(n-1)}$ } $(n=1,2, \ldots)$ . Moreover, we denote by $i_{n}$ the number in $J_{n}$

for which $\omega_{2}(i_{n})$ is the smallest in $\omega_{2}(j)(j\in J_{n})$ and by $k_{n}(i)(i\in J_{n})$ the number of
elements $j$ in $J_{n}$ satisfying $\omega_{2}(j)<\omega_{2}(i)$ . Then for each $i\in J_{n}$ we see from the definition
of $\delta_{1}^{\omega_{2}}$ (see 5.3 and (8)) and $(B2)$ that $u_{\omega_{2}(i)} \geq u_{\omega_{2}(i_{\mathfrak{n}})}+2\sum_{j\in J_{n},\omega_{2}(j)<\omega_{2}(i)}\delta_{j}^{\omega_{2}}\geq$

$u_{\omega_{2}(i_{\mathfrak{n}})}+2k_{n}(i)2^{-n}$ for $n\geq 0$ and $u_{\omega_{2}(i_{n})}\geq\sigma^{1/\theta}2^{(n-1)/\theta}$ for $n\geq 1$ . Therefore, by $(B2)$

and the argument used in (16)$-(18)$ we see that $if-2L\leq\Im(\nu)\leq-3\epsilon$ and $\Im(x)=-\epsilon$ ,

$|H_{\omega_{2}}^{o}( \nu, x)|\leq C\sum_{i\in D_{2}}z^{(:)}$

$\leq c|\nu-x|^{-(2M+3)}\sum_{n=0}^{\infty}\sum_{:\in J_{n}}e^{-\epsilon u_{\nu_{2}(j)}}(\epsilon_{i^{2}})^{-2(M+1)}$

$\leq c|\nu-x|^{-(2M+3)}(e^{-\epsilon u_{\omega_{2}(:_{0})}}\sum_{i\in J_{0}}e^{-2ek_{0}(i)}$

$+ \sum_{n=1}^{\infty}e^{-\epsilon\sigma^{1/\theta}2^{(\mathfrak{n}-1)/\theta}}2^{2n(M+1)}\sum_{i\in J_{n}}e^{-2ek_{n}(i)2^{-n}})$

$\leq c|\nu-x|^{-(2M+3)}(\frac{1}{1-e^{-2\epsilon}}+\sum_{n=1}^{\infty}\frac{e^{-\epsilon\sigma^{1/\theta}2^{\langle n-1)/a_{2}}\cdot n(M+1)}}{1-e^{-2e2}\underline{-}\prime})$

$\leq c|\nu-x|^{-(2M+3)}$ .

Since $P_{G}(x)\eta_{G}^{o}(x)=O(|x|^{2M+1})$ for $x\in R-\sqrt{-1}\epsilon$ (see (23) and [H], Remark 6.8), the
above estimate and (34) give an analytic continuation of $\eta_{\omega_{2}}^{\circ}(\nu)on-2L\leq\Im(\nu)\leq-3\epsilon$ .

$\eta_{\omega_{3}}^{o}$ : Since $D_{3}$ is finite, $\eta_{\theta}^{\circ}$ is holomorphic on the whole complex plane.
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We now obtained that each $P_{G}(\nu)\eta_{\iota’ p}^{o}(\nu)(\ell=1,2,3)$ has an analytic continuation on
$-2L\leq\Im(\nu)\leq-3\epsilon$ . Therefore, $P_{G}( \nu)\eta^{\circ}(\nu)=\sum_{\ell=1}^{3}P_{G}(\nu)\eta_{\omega_{l}}^{o}(\nu)$ and thus, $P_{G}(\nu)\eta(\nu)$

have the same property (see 5.2). Since $\epsilon$ can be taken sufficiently small and $\eta$ satisfies
the functional equation (see [E], p.13), it follows that $P_{G}(\nu)\eta(\nu)$ is holomorphic on
$0<|\Im(\nu)|\leq 2L$ . Then, noting the zeros of $P_{G}(\nu)$ (see (23) and (11)) and the fact that
that $\zeta(s)$ has no zeros on $[0,1]$ , we can finally obtain the following theorem.
Theorem 6.1. If $SL(2, R)$ has a cocompact discrete subgroup $\Gamma$ with $Prim_{\Gamma}$ satisfying
the condition (B), then the Rlemann Hypothesis holds.

Remark 6.2. We see that $D_{2}\neq\emptyset$ . Actually, if $D_{1}\cup D_{8}=N$ , it follows from the above
argument that $\eta^{O}(\nu)$ is holomorphic on $\Im(\nu)<0$ . This contradicts to the fact that $\eta(\nu)$

has a pole at $\nu=-\sqrt{-1}/2$ .
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