A RELATION BETWEEN THE LOGARITHMIC DERIVATIVES OF RIEMANN AND SELBERG ZETA FUNCTIONS AND A PROOF OF THE RIEMANN HYPOTHESIS UNDER AN ASSUMPTION ON A DISCRETE SUBGROUP OF *SL*(2, R)

TAKESHI KAWAZOE

Department of Mathematics, Faculty of Science and Technology, Keio University

1. Introduction

Let $\zeta(s)$ be the Riemann's zeta function and $\eta(r)$ $(r = \sqrt{-1}(1/2 - s))$ the logarithmic derivative of ζ which is of the form:

$$\eta(r) = \sum_{p \in Prim} \sum_{n \ge 1} (\log p) e^{-n(\log p)s} = \sum_{i \ge 1} \sum_{n \ge 1} a_{in} e^{-\sqrt{-1}n(\log p_i)r},$$
(1)

1

where $Prim = \{p_i; i \ge 1\}$ is the set of prime numbers and $a_{in} = (\log p_i)e^{-n(\log p_i)/2}$. This series converges absolutely and uniformly in any half plane $\Im(r) < -1/2 - \varepsilon$ $(\varepsilon > 0)$ and has meromorphic continuation to the whole complex plane. Then the Riemann Hypothesis that the roots of $\zeta(s)$ all do lie on $\Re(s) = 1/2$ is equivalent to showing that the non imaginally poles of $\eta(r)$ all do lie on $\Im(r) = 0$.

Let G be a connected semisimple Lie group with finite center, K a maximal compact subgroup of G and Γ a discrete subgroup of G such that $\Gamma \setminus G$ is compact. Then for each character χ of a finite dimensional unitary representation of Γ , Gangolli[G1] investigates a zeta function $Z_{\Gamma}(s,\chi)$ of Selberg's type, Selberg[S] originally introduced into the case of $SL(2, \mathbf{R})$. The logarithmic derivative $\eta_G(r)$ of $Z_{\Gamma}(s,\chi)$ $(r = \sqrt{-1}(\rho_0 - s)$ and ρ_0 is a positive real number depending only on (G, K) is of the form:

$$\eta_G(r) = \kappa \sum_{\delta \in Prim_{\Gamma}} \sum_{n \ge 1} \sum_{\lambda \in L} u_{\delta} m_{\lambda} \chi(\delta^n) \xi_{\lambda}(h(\delta))^{-n} e^{-n u_{\delta} s},$$
(2)

This paper is a revised version of the one appeared in Research Report of Keio University,vol.3 (1991).

where $Prim_{\Gamma}$ is a complete set of representatives for the conjugacy classes of prime elements in Γ and u_{δ} ($\delta \in Prim_{\Gamma}$) the logarithm of the norm $N(\delta)$ of δ . For other notations refer to [G1]. This series converges absolutely and uniformly in any half plane $\Im(r) < -\rho_0 - \varepsilon$ ($\varepsilon > 0$) and has meromorphic continuation to the whole complex plane. Especially, the poles of $\eta_G(r)$ all do lie on $\Im(r) = 0$ or $\Re(r) = 0$, so the Riemann Hypothesis holds true for $Z_{\Gamma}(s, \chi)$. In what follows we shall rearrange the series as

$$\eta_G(r) = \sum_{i \ge 1} \sum_{n \ge 1} b_{in} e^{-\sqrt{-1}c_{in} u_{\delta_i} r}$$
(3)

for which the exponents satisfy $c_{in}u_{\delta_i} = c_{jm}u_{\delta_j}$ if and only if i = j and n = m.

We here note that (1) and (3) are quite similar in their forms. Therefore, if two distributions of Prim and $Prim_{\Gamma}$ are similar in the logarithm of their norms, it is hoped that η and η_G have the same properties, especially, the Riemann Hypothesis holds for η and then, for ζ also. In this paper we let $G = SL(2, \mathbb{R})$ and make an assumption of magnitude and distance of $N(\delta)$ for $\delta \in Prim_{\Gamma}$, which guarntees the similarity between the distributions (see (A) in §2 and (B) in §6). Then, under a week assumption (A) we shall obtain an integral expression of η in terms of η_G such as

$$\eta(\nu) = \int_{\mathbf{R} - \sqrt{-1}y} \eta_G(x) H(\nu, x) dx \tag{4}$$

 $(y = 1/2 + \varepsilon$ and see Proposition 3.3). Unfortunately, this formula is valid only for $\Im(\nu) \leq -L$ (*L* is a large positive number and see Proposition 5.1). Then, the Riemann Hypothesis is equivalent to showing that the right hand side of (4) has analytic continuation to $\Im(\nu) < 0$ except $\nu = -\sqrt{-1/2}$. Under a strong assumption (B) we shall obtain the continuation and prove the Riemann Hypothesis (see Theorem 6.1).

Since $\eta(r)$ and $\eta_G(r)$ have a different growth order as $r \to \infty$ (cf. [E], Chap.9 and [H], Chap.6), we see that the distribution of *Prim* and the one of norms of *Prim*_{\Gamma} does not coincide. On the other hand we know that the prime number theorem that gives an approximation of the number of primes less than a given magnitude holds in an exactly same form for both *Prim* and *Prim*_{\Gamma} (cf. [E], Chap.4 and [H], Chap.2). Therefore, according to these facts we can believe that two distributions of *Prim* and *Prim*_{\Gamma} are similar in their norms. Actually, our strong assumption (B) expresses a similarity in the following fashion: there exists an injective map

$$\omega: Prim \to Prim_{\Gamma} \tag{5}$$

for which $\log N(\omega(p)) \leq 1/4 \log p$ or $\log N(\omega(p)) \leq \log p$ and the distance $\delta(p)$ between $\log N(\omega(p))$ and the nearest element being of the form $\log N(\omega(q))$ $(q \in Prim)$ is bounded below by $\sigma(\log N(\omega(p)))^{-\theta}$ for positive constants σ and θ , roughly speaking, $\log N(\omega(p)) \leq \log p$ for almost all $p \in Prim$, but, if $\delta(p)$ is sufficiently small like in the case of twin prime elements, it must be $\log N(\omega(p)) \leq 1/4 \log p$. At present we have no idea to find a discrete subgroup Γ of $SL(2, \mathbf{R})$ satisfying this property, however, we have enough reason to believe that a similarity between Prim and $Prim_{\Gamma}$ deduces the Riemann Hypothesis.

2. Notations

Let $G = SL(2, \mathbb{R})$ and let χ be the trivial character of Γ . Then $\rho_0 = 1/2$ and the explicit form of η_G is given by

$$\eta_G(r) = \sum_{i \ge 1} \sum_{n \ge 1} \frac{u_i/2}{\sinh(nu_i/2)} e^{-\sqrt{-1}nu_i r},$$
(6)

where $u_i = u_{\delta_i}$, and in (3) $c_{in} = n$ and

$$b_{in}^{-1} = 2u_i^{-1}\sinh(nu_i/2) \le ce^{nu_i/2}.$$
(7)

For general references to the basic properties of η_G see [G1], [H] and [S]. We denote the increasing sequence of prime numbers as $p_1 = 2, p_2 = 3, p_3 = 5, \ldots$ and the one of the norms of elements in $Prim_{\Gamma}$ as $N(\delta_1), N(\delta_2), N(\delta_3), \ldots$ respectively. We define $u_i = \log N(\delta_i)$ and

$$\delta_{in} = \frac{1}{2} \inf_{\substack{(m,j) \in \mathbb{N}^2 \\ (m,j) \neq (n,i)}} |nu_i - mu_j| \tag{8}$$

for $i \ge 1$ and $n \ge 1$. Then, each δ_{in} is positive, because $\{u_i; i \ge 1\}$ does not have a finite point of accumulation (see [G2], p.415). Moreover, it is easy to see that there exists a positive constant C such that for each $\alpha \ge 0$ and $\beta \ge 1$

$$\varepsilon_{in} = \varepsilon_{in}(\alpha, \beta, C) = C e^{-\alpha n (\log p_i)} e^{-\beta n u_i} \le \delta_{in}$$
(9)

for all i and $n \ge 1$. We fix such a pair of α and β till the end of §4.

As said in §1, the Riemann Hypothesis holds for η_G . Actually, the poles of η_G are all simple and are as

$$\{\nu_j; j \in \mathbf{Z}\} \cup \{r_j; 1 \le j \le 2M\},\tag{10}$$

where $\nu_j \in \mathbf{R}$ and $r_j \in \sqrt{-1}\mathbf{R}$ (cf. [G1], Proposition 2.7 and [H], p.68). Then it is known that $\nu_{-j} = -\nu_j$ and the poles of η_G which concentrate along $[-\sqrt{-1}/2, \sqrt{-1}/2]$ can be denoted as

$$\{\nu_0, r_j, \bar{r}_j; 1 \le j \le M\},\tag{11}$$

where we let r_1, r_2, \ldots, r_M be the poles of η_G which concentrate along $[-\sqrt{-1/2}, 0)$ and $\bar{r}_j = -r_j = r_{j+M}$. We denote the residues of η_G at ν_j and r_j by n_j and m_j respectively. Then, $n_{-j} = n_j$ and $m_j = m_{j+M} = 1$ for $1 \le j \le M$ (cf. [H], Chap.2).

We fix sufficiently small (resp. large) positive numbers ε and δ (resp. E), and a positive number y such that $1/2 < y \leq 1/2 + \varepsilon$.

3. Transition from η_G to η

Let ϕ be a C^{∞} compactly supported function on **R** satisfying

(i)
$$supp(\phi) \subset (-1, 1),$$

(ii) $\phi(0) = 1,$
(iii) $\phi^{(k)}(0) = 0$ $(1 \le k \le 2M)$
(12)

and let

$$h_{in}(t) = \frac{a_{in}}{b_{in}} \phi(\frac{t - n(\log p_i)}{\varepsilon_{in}}) \quad (t \in \mathbf{R})$$
⁽¹³⁾

for $i \ge 1$ and $n \ge 1$. Then it is easy to see that h_{in} satisfies the following conditions.

(i)
$$supp(h_{in}) \subset (n(\log p_i) - \varepsilon_{in}, n(\log p_i) + \varepsilon_{in}),$$

(ii) $h_{in}(n(\log p_i)) = \frac{a_{in}}{b_{in}},$
(iii) $h_{in}^{(k)}(n(\log p_i)) = 0 \quad (1 \le k \le 2M).$
(14)

Without loss of generality we may assume that $\varepsilon_{11} \leq 1/2\log 2$ and thus, $supp(h_{in}) \subset [1/2\log 2, \infty)$ for all *i* and $n \geq 1$. Here we put $\hat{h}_{in}(x) = (2\pi)^{-1} \int_{\mathbf{R}} h_{in}(z) e^{-\sqrt{-1}xz} dz$ and

$$H(\nu, x) = \sum_{i,n \ge 1} e^{\sqrt{-1}(nu_i - n(\log p_i))x} \hat{h}_{in}(\nu - x)$$
(15a)

$$= \sum_{i,n\geq 1} e^{-\sqrt{-1}(n(\log p_i)\nu - nu_i x)} \frac{a_{in}}{b_{in}} \varepsilon_{in} \hat{\phi}(\varepsilon_{in}(\nu - x)).$$
(15b)

We now consider a condition for which the series (15) converges. For $\theta \ge 0$ and $1 \le p, q \le \infty$ such that 1/p + 1/q = 1 we suppose that ν and x satisfy

$$\begin{aligned} &(a_E) & -E \leq \Im(\nu), \Im(x) \leq E, \\ &(b_{\theta}^{p,q}) & \begin{cases} \Im(\nu) - 1/2 - (1-\theta)\alpha \leq -1/p - \delta \\ -\Im(x) + 1/2 - (1-\theta)\beta \leq -1/q - \delta, \end{cases} \end{aligned}$$

where δ is a fixed sufficiently small positive number (see §2). Then, substituting the definition of a_{in} and b_{in} (see (1) and (7)) for (15b), we see that $|\nu - x|^{\theta}|H(\nu, x)|$ is dominated by

$$c \sum_{i,n \ge 1} \log p_i e^{(\Im(\nu) - 1/2)n(\log p_i)} e^{(-\Im_A(x) + 1/2)nu_i} \varepsilon_{in}^{1-\theta} |(\varepsilon_{in}(\nu - x))^{\theta} \hat{\phi}(\varepsilon_{in}(\nu - x))|.$$
(16)

4

Since $\hat{\phi}$ is rapidly decreasing and is holomorphic of exponential type ≤ 1 (cf. [Su], p.146), for each $N \in \mathbb{N}$ there exists $C_N > 0$ for which

$$|\hat{\phi}(x)| \le C_N (1+|x|)^{-N} e^{|\Im(x)|} \quad (x \in \mathbf{C}).$$
(17)

Therefore, it follows from (9) and (a_E) that $|\nu - x|^{\theta} |H(\nu, x)|$ is dominated by

$$cC^{1-\theta}C_{[\theta]+1}e^{2EC}\sum_{i,n\geq 1}\log p_i e^{(\Im(\nu)-1/2-(1-\theta)\alpha)n(\log p_i)}e^{(-\Im(x)+1/2-(1-\theta)\beta)nu_i},$$
(18)

where $[\theta]$ is the greatest integer not exceeding θ . Then, this series converges absolutely and uniformly by $(b_{\theta}^{p,q})$ and the Hölder's inequality.

Lemma 3.1. If ν and x satisfy (a_E) and $(b_0^{p,q})$, then the series $H(\nu, x)$ converges absolutely and uniformly, and is holomorphic of ν and x. Moreover, if $(b_{\theta}^{p,q})(\theta \ge 0)$ is satisfied, there exists a positive constant C such that

$$|H(\nu, x)| \le C|\nu - x|^{-\theta}.$$

Throughout this paper we assume the following condition:

(A) There exists a positive constant A such that

$$u_i \leq A \log p_i \quad \text{for all } i \geq 1.$$

Then we can replace $(b^{p,q}_{\theta})$ with

$$(b^{p,q}_{\theta,\gamma}) \quad \begin{cases} \Im(\nu) - 1/2 - (1-\theta)\alpha + \gamma \le -1/p - \delta, \\ -\Im(x) + 1/2 - (1-\theta)\beta - \gamma/A \le -1/q - \delta, \end{cases}$$

where $\gamma \geq 0$. We fix such a γ .

We next let $-y \leq -y_0 \leq E$ and

$$(c^{p,q}_{\theta,\gamma,y_0}) \quad \left\{ \begin{array}{l} \Im(\nu) - 1/2 - (1-\theta)\alpha + \gamma \leq -1/p - \delta, \\ y_0 + 1/2 - (1-\theta)\beta - \gamma/A \leq -1/q - \delta. \end{array} \right.$$

Then, if ν satisfies (a_E) and $(c_{\theta+1,\gamma,y_0}^{p,q})(\theta \in \mathbf{N})$, it follows similarly as above that

$$\int_{\mathbf{R}-\sqrt{-1}y_0} |x|^{\theta} |H(\nu,x)| dx$$

$$\leq c \sum_{i,n\geq 1} \log p_i e^{(\Im(\nu)-1/2)n(\log p_i)} e^{(y_0+1/2)nu_i} \varepsilon_{in}^{-\theta} \left[\varepsilon_{in} \int_{\mathbf{R}-\sqrt{-1}y_0} |(\varepsilon_{in}x)^{\theta} \hat{\phi}(\varepsilon_{in}(\nu-x))| dx \right]$$

and by letting $x = (x - \nu) + \nu$,

$$\leq cC^{-\theta}C_{\theta+2}e^{2EC}P_{\theta}(|\nu|)\sum_{i,n\geq 1}\log p_{i}e^{(\Im(\nu)-1/2+\theta\alpha+\gamma)n(\log p_{i})}e^{(y_{0}+1/2+\theta\beta-\gamma/A)nu_{i}},$$
(19)

where P_{θ} is a polynomial of degree θ with coefficients depending only on θ . Then this series converges absolutely and uniformly by $(c_{\theta+1,\gamma,y_0}^{p,q})$ and the Hölder's inequality.

Lemma 3.2. Let ν be in a compact set S in the tube domain defined by (a_E) and $(c_{\theta+1,\gamma,y_0}^{p,q})$ ($\theta \in \mathbb{N}$ and $-y \leq -y_0 \leq E$). Let f be a function on $\mathbb{R} - \sqrt{-1}y_0$ such that $f(x) = O(|x|^{\theta})$. Then, there exists a positive constant C for which $\int_{\mathbb{R}-\sqrt{-1}y_0} |f(x)H(\nu,x)| dx \leq C$. Especially,

$$T_{y_0}f(\nu) = \int_{\mathbf{R}-\sqrt{-1}y_0} f(x)H(\nu,x)dx$$

is well-defined and is holomorphic of ν satisfying (a_E) and $(c_{\theta+1,\gamma,y_0}^{p,q})$.

Proposition 3.3. Let P be a polynomial of degree $k(0 \le k \le 2M)$ and ν satisfy (a_E) and $(c_{k+1,\gamma,y}^{p,q})$. Then,

(i)
$$P(\nu)\eta(\nu) = T_y(P\eta_G)(\nu)$$
$$= \int_{\mathbf{R}-\sqrt{-1}y} P(x)\eta_G(x)H(\nu,x)dx,$$
(ii)
$$0 = \int_{\mathbf{R}-\sqrt{-1}y} P(x)\eta_G(x)H(\nu,-x)dx.$$

Proof. Since $\eta_G(x) = O(1)$ for $x \in \mathbb{R} - \sqrt{-1}y$ (see [H], Proposition 6.7) and $(c_{k+1,\gamma,y}^{p,q})$ implies $(c_{k+1,\gamma,-y}^{p,q})$, the right hand sides of (i) and (ii) are well-defined and are holomorphic of ν satisfying (a_E) and $(c_{k+1,\gamma,y}^{p,q})$ (see Lemma 3.2). Therefore, we may suppose that $\Im(\nu) \leq -y$. Since $mu_j > 0$ for all $m, j \geq 1$, it follows that

$$\int_{\mathbf{R}-\sqrt{-1}y} e^{-\sqrt{-1}mu_j x} H(\nu, x) dx$$
$$= \int_{\mathbf{R}} e^{-\sqrt{-1}mu_j x} H(\nu, x) dx.$$

Then, substituting the definition of $H(\nu, x)$ (see (15a)), we see formally that

$$= \sum_{k,l \ge 1} \int_{\mathbf{R}} e^{-\sqrt{-1}mu_j x} e^{\sqrt{-1}(lu_k - l(\log p_k))x} \hat{h}_{kl}(\nu - x) dx$$

$$= \sum_{k,l \ge 1} e^{-\sqrt{-1}(mu_j - lu_k + l(\log p_k))\nu} \int_{\mathbf{R}} e^{\sqrt{-1}(mu_j - lu_k + l(\log p_k))x} \hat{h}_{kl}(x) dx$$

$$= \sum_{k,l \ge 1} e^{-\sqrt{-1}(mu_j - lu_k + l(\log p_k))\nu} h_{kl}(mu_j - lu_k + l(\log p_k)).$$

Since each support of h_{kl} is disjointed from the others, it is easy to see that the condition that $\Im(\nu) \leq -y$ guarantees the validity of the above calculation. Moreover, since the

support of h_{kl} is contained in $(l(\log p_k) - \varepsilon_{kl}, l(\log p_k) + \varepsilon_{kl})$ and $h_{kl}(l(\log p_k)) = a_{kl}b_{kl}^{-1}$ (see (14)(*i*) and (*ii*)), it follows from (9) and the definition of δ_{kl} (see (7)) that

$$= \epsilon_{kj}\epsilon_{lm}h_{kl}(l(\log p_k))e^{-\sqrt{-1}l(\log p_k)\mu}$$
$$= \epsilon_{kj}\epsilon_{lm}a_{kl}b_{kl}^{-1}e^{-\sqrt{-1}l(\log p_k)\nu},$$

where $\epsilon_{ij} = 1$ if i = j and 0 otherwise. Therefore, we can deduce that

$$T_{y}\eta_{G}(\nu) = \int_{\mathbf{R}-\sqrt{-1}y} \eta_{G}(x)H(\nu,x)dx$$

= $\sum_{j,m\geq 1} b_{jm} \int_{\mathbf{R}-\sqrt{-1}y} e^{-\sqrt{-1}mu_{j}x}H(\nu,x)dx$
= $\sum_{j,m\geq 1} a_{jm}e^{-\sqrt{-1}m(\log p_{j})\nu}$
= $\eta(\nu).$ (20)

Here we rewrite $P(\nu)$ as

$$P(\nu) = R_{\nu}(\nu - x) + P(x),$$

where R_{ν} is a polynomial of degree k with coefficients depending only on k and ν . Then the formula (i) follows from (20) provided that

$$\int_{\mathbf{R}-\sqrt{-1}y} (\nu - x)^l \eta_G(x) H(\nu, x) dx = 0 \quad (1 \le l \le k).$$
(21)

We now show (21). If we define $H^{(l)}(\nu, x)$ by replacing h_{in} in (15a) with $(\sqrt{-1})^{-l}h_{in}^{(l)}$, we easily see that the left hand side of (21) is equal to

$$\int_{\mathbf{R}-\sqrt{-1}y}\eta_G(x)H^{(l)}(\nu,x)dx.$$

Obviously, this integral is finite by the condition $(c_{k+1,\gamma,y}^{p,q})$. Then, applying the same argument that deduces (20), especially, by using (14)(iii) instead of (14)(ii), we can show that this integral is equal to 0. The formula (*ii*) follows by the quite same way. \Box

We now let ε and δ (resp. E) sufficiently small (resp. large). Then, we can deduce the following,

Corollary 3.4. The equations (i) and (ii) in Proposition 3.3 hold for ν satisfying

$$\begin{cases} \Im(\nu) - 1/2 + k\alpha + \gamma < -1/p \\ 1 + k\beta - \gamma/A < -1/q, \end{cases}$$

where $\gamma \ge 0$, $1 \le p, q \le \infty$ and 1/p + 1/q = 1.

4. A relation between η and the poles of η_G

We keep the notations and the assumption (A). We first recall that η_G satisfies the functional equation:

$$\eta_G(x) + \eta_G(-x) = cx \tanh \pi x \tag{22}$$

(see [H], Proposition 4.26). In this section we shall express η as the sum of an integral of $x \tanh \pi x$ and the residues of η_G .

Lemma 4.1. Let P be a polynomial of degree $k(0 \le k \le 2M)$ and let ν be in a compact set S satisfying $\Im(S) < 0$, (a_E) and $(c_{k+6,\gamma,0}^{p,q})$. Then the series $\sum_{j\in\mathbb{Z}} n_j P(\nu_j) H(\nu,\nu_j)$ converges absolutely and uniformly. Especially, $\sum_{j\in\mathbb{Z}} n_j P(\nu_j) H(\nu,\nu_j)$ is well-defined and is holomorphic of ν satisfying $\Im(S) < 0$, (a_E) and $(c_{k+6,\gamma,0}^{p,q})$.

Proof. Since $\nu_i \in \mathbf{R}$ and $\nu \in S$, Lemma 3.1 implies that for $x \in \mathbf{R}$

$$|H(\nu, x)| \le C|\nu - x|^{-(k+6)} \sim (1+|x|)^{-(k+6)}.$$

Then, noting the fact that

$$\sum_{\{j;
u_j^2 \leq x\}} n_j \sim x^2 \quad (x o \infty)$$

(see $\S2$ and [G1], Proposition 1.2), we see that

$$\sum_{j \in \mathbb{Z}} n_j |P(\nu_j)H(\nu,\nu_j)|$$

$$\sim \sum_{j \in \mathbb{Z}} n_j (1+|\nu_j|)^{-6}$$

$$\sim \sum_{k=0}^{\infty} \sum_{k \le |\nu_j| < k+1} n_j (1+|\nu_j|)^{-6}$$

$$\sim \sum_{k=0}^{\infty} (1+k)^{-2} < \infty. \quad \Box$$

We now suppose that ν satisfies $\Im(\nu) < 0$, (a_E) and $(c_{6,\gamma,y}^{p,q})$. We note that, if $|\Im(x)| \leq \varepsilon$, then $x \tanh \pi x = O(|x|)$ and $\eta_G(x) = O(|x|)$ (see [H], Proposition 6.7). Therefore, since $(c_{6,\gamma,y}^{p,q})$ implies $(c_{2,\gamma,\pm\varepsilon}^{p,q})$ and $(c_{6,\gamma,0}^{p,q})$, it follows from Lemma 3.2 and Lemma 4.1 that

$$\begin{split} &\int_{\mathbf{R}} cx \tanh \pi x H(\nu, x) dx \\ &= \int_{\mathbf{R}+\sqrt{-1}\varepsilon} cx \tanh \pi x H(\nu, -x) dx \\ &= \int_{\mathbf{R}+\sqrt{-1}\varepsilon} (\eta_G(x) + \eta_G(-x)) H(\nu, -x) dx \\ &= \int_{\mathbf{R}-\sqrt{-1}\varepsilon} \eta_G(x) H(\nu, x) dx + \int_{\mathbf{R}+\sqrt{-1}\varepsilon} \eta_G(x) H(\nu, -x) dx. \end{split}$$

The second term is equal to

$$\int_{\mathbf{R}-\sqrt{-1}y} \eta_G(x) H(\nu, -x) dx - \sum_{j \in \mathbf{Z}} n_j H(\nu, \nu_j) - \sum_{1 \le j \le M} H(\nu, -r_j)$$
$$= -\sum_{j \in \mathbf{Z}} n_j H(\nu, \nu_j) - \sum_{1 \le j \le M} H(\nu, -r_j)$$

by Proposition 3.3(ii). Therefore, it follows from Proposition 3.3(i) that

$$\begin{split} \eta(\nu) &= \int_{\mathbf{R}-\sqrt{-1}y} \eta_G(x) H(\nu, x) dx \\ &= \int_{\mathbf{R}-\sqrt{-1}\varepsilon} \eta_G(x) H(\nu, x) dx + \sum_{1 \le j \le M} H(\nu, r_j) \\ &= \int_{\mathbf{R}} cx \tanh \pi x H(\nu, x) dx + \sum_{j \in \mathbf{Z}} n_j H(\nu, \nu_j) + \sum_{1 \le j \le 2M} H(\nu, r_j). \end{split}$$

Then, letting ε and δ (resp. E) sufficiently small (resp. large), we can obtain the following,

Proposition 4.2. If ν satisfies

$$\begin{cases} \Im(\nu) < \min(0, 1/2 - 5\alpha - \gamma - 1/p) \\ 1 + 5\beta < \gamma/A - 1/q, \end{cases}$$

where $\gamma \ge 0, 1 \le p, q \le \infty$ and 1/p + 1/q = 1, then

$$\eta(\nu) = c \int_{\mathbf{R}} x \tanh \pi x H(\nu, x) dx + \sum_{j \in \mathbf{Z}} n_j H(\nu, \nu_j) + \sum_{1 \le j \le 2M} H(\nu, r_j).$$

We put

$$P_G(x) = (\nu^2 - r_1^2)(\nu^2 - r_2^2)\dots(\nu^2 - r_M^2).$$
(23)

Then, replacing η_G with $P_G\eta_G$, we can obtain the following proposition by the quite same way.

Proposition 4.3. If ν satisfies

$$\begin{cases} \Im(\nu) < \min(0, 1/2 - (5 + 2M)\alpha - \gamma - 1/p) \\ 1 + (5 + 2M)\beta < \gamma/A - 1/q, \end{cases}$$

where $\gamma \ge 0, 1 \le p, q \le \infty$ and 1/p + 1/q = 1, then

$$P_G(\nu)\eta(\nu) = \int_{\mathbf{R}-\sqrt{-1}\varepsilon} \eta_G(x) P_G(x) H(\nu, x) dx$$
$$= c \int_{\mathbf{R}} x \tanh \pi x P_G(x) H(\nu, x) dx + \sum_{j \in \mathbf{Z}} n_j P_G(\nu_j) H(\nu, \nu_j).$$

5. Some modifications

5.1. In the proof of Proposition 3.3 each term $b_{in}e^{-\sqrt{-1}nu_ir}$ of $\eta_G(r)$ $(u_i = \log N(\delta_i))$ transfers to $a_{in}e^{-\sqrt{-1}n(\log p_i)r}$ of $\eta(r)$ under the integral formula. Obviously, to verify such an integral formula δ_i 's need not be taken over all elements in $Prim_{\Gamma}$, and it is enough for each p_i to correspond to a unique element $\delta_{\omega(i)}$ in $Prim_{\Gamma}$. Actually, for an injective map

$$\upsilon: \mathbf{N} \rightarrow \mathbf{N}$$

we put

$$\delta_{in} = \frac{1}{2} \inf_{\substack{(m,j) \in \mathbb{N}^2 \\ (m,\omega(j)) \neq (n,\omega(i))}} |nu_{\omega(i)} - mu_{\omega(j)}|, \tag{24}$$

$$\varepsilon_{in}^{\omega} = \varepsilon_{in}^{\omega}(\alpha, \beta, C) = C e^{-\alpha n (\log p_i)} e^{-\beta n u_{\omega(i)}}, \qquad (25)$$

$$h_{in}^{\omega} = \frac{a_{in}}{b_{\omega(i)n}} \phi(\frac{t - n(\log p_i)}{\varepsilon_{in}^{\omega}}) \quad (t \in \mathbf{R}),$$
(26)

$$H_{\omega}(\nu, x) = \sum_{i,n \ge 1} e^{\sqrt{-1}(nu_{\omega(i)} - n(\log p_i))x} \hat{h}_{in}^{\omega}(\nu - x)$$
(27)

(cf. (8), (9), (13) and (15)). Then it is easy to see that all results in the preceding sections are also valid when we replace $\delta_{in}, \varepsilon_{in}, h_{in}$ and $H(\nu, x)$ by $\delta_{in}^{\omega}, \varepsilon_{in}^{\omega}, h_{in}^{\omega}$ and $H_{\omega}(\nu, x)$ respectively and (A) by

 $(\mathbf{A})_{\omega}$ There exists a positive constant A such that

$$u_{\omega(i)} \leq A \log p_i \quad \text{for all } i \geq 1.$$

5.2. We next modify the η functions. Let

$$\eta^{\circ}(r) = \sum_{i \ge 1} a_i e^{-\sqrt{-1}(\log p_i)r},$$
(28)

where $a_i = (\log p_i)e^{-(\log p_i)/2}$, and let

$$\eta_G^{\circ}(r) = \sum_{i \ge 1} b_i e^{-\sqrt{-1}u_i r},$$
(29)

where $b_i = u_i/2\sinh(u_i/2)$. Then, it is easy to see that $\eta(r) - \eta^{\circ}(r)$ and $\eta_G(r) - \eta^{\circ}_G(r)$ are holomorphic on $\Im(r) < 0$ (cf. [H], Proposition 3.5). Therefore, in order to prove the Riemann Hypothesis for η it is enough to prove it for η° . Since η° and η°_G inherit all singuralities from η and η_G respectively, the whole arguments in the previous sections except one using the functional equation (22) are also applicable to η° and η°_G . Especially, if we define δ^{ω}_i , $\varepsilon^{\omega}_i(\alpha,\beta,C)$, h^{ω}_i and $H^{\circ}_{\omega}(\nu,x)$ by eliminating the sufix n in (24)-(27) respectively, we see that all the results in §2 and §3 are also valid when we replace η, η_G and H by $\eta^{\circ}, \eta^{\circ}_G$ and H°_{ω} respectively and (A) by (A) $_{\omega}$.

$$\omega: D \rightarrow \mathbf{N}, D \subset \mathbf{N}$$

be an injective map, and for each $i \in D$ we define $\delta_i^{\omega}, \varepsilon_i^{\omega}(\alpha, \beta, C)$ and h_i^{ω} as above. Moreover, we put

$$\eta^{\circ}_{\omega}(r) = \sum_{i \in D} a_i e^{-\sqrt{-1}(\log p_i)r},\tag{30}$$

$$H^{\circ}_{\omega}(\nu, x) = \sum_{i \in D} e^{\sqrt{-1}(nu_{\omega(i)} - n(\log p_i))x} \hat{h}^{\omega}_{in}(\nu - x)$$
(31)

and we define the corresponding assumption $(A)_{\omega}$, we denote by the same letter, by replacing $i \geq 1$ with $i \in D$. Then repeating the same arguments in §3, especially, taking γ sufficiently large in Corollary 3.4 and Proposition 4.3, we can deduce that

Proposition 5.1. Let us suppose that $(A)_{\omega}$ holds. Then there exists a positive constant L such that if $\Im(\nu) \leq -L$,

(i)
$$\eta^{\circ}_{\omega}(\nu) = \int_{\mathbf{R}-\sqrt{-1}y} \eta^{\circ}_{G}(x) H^{\circ}_{\omega}(\nu, x) dx,$$

(ii) $P_{G}(\nu)\eta^{\circ}_{\omega}(\nu) = \int_{\mathbf{R}-\sqrt{-1}\varepsilon} P_{G}(x)\eta_{G}(x) H^{\circ}_{\omega}(\nu, x) dx.$

6. A proof of the Riemann Hypothesis under an assumption

We retain the notations in the previous sections. We here make an assumption on magnitude and distance of $u_i (i \in \mathbf{N})$, which is stronger than (A), and then give a proof of the Riemann Hypothesis. The assumption can be stated as follows.

(B) There exist an injective map $\omega : \mathbb{N} \to \mathbb{N}$ and positive constants σ and θ for which, except a finite number of *i*, one of the following conditions holds:

(B1)
$$u_{\omega(i)} \leq 1/4 \log p_i,$$

(B2) $u_{\omega(i)} \leq \log p_i \text{ and } \sigma u_{\omega(i)}^{-\theta} \leq \delta_i^{\omega}.$

We here put $D_{\ell} = \{i \in \mathbb{N}; (B\ell) \text{ holds}\}$ for $\ell = 1, 2$ and $D_3 = \mathbb{N} - D_1 \cup D_2$. In what follows for each $\omega_{\ell} = \omega|_{D_{\ell}}(\ell = 1, 2, 3)$ we shall prove that $P_G(\nu)\eta^{\circ}_{\omega_{\ell}}(\nu)$ $(\ell = 1, 2, 3)$ (see (30)) is holomorphic on $-2L \leq \Im(\nu) \leq -3\varepsilon$.

 $\eta_{\omega_1}^{\circ}$: Since (B1) implies (A) $_{\omega_1}$ (see 5.3), it follows from Proposition 5.1 that

$$\eta^{\circ}_{\omega_1}(\nu) = \int_{\mathbf{R}-\sqrt{-1}y} \eta^{\circ}_G(x) H^{\circ}_{\omega_1}(\nu, x) dx, \qquad (32)$$

if $\Im(\nu) \leq -L$. We now recall the definition of $\varepsilon_i^{\omega_1}$ (see 5.3 and (9)). Then, we can choose a sufficiently small positive number τ depending on ε such that

$$\sum_{i\in D_1} e^{-(1+3\varepsilon)u_{\omega_1(i)}} (\varepsilon_i^{\omega_1})^{-\tau} < \infty.$$
(33)

Then, by (B1) and the argument used in (16)-(18) we see that if $-2L \leq \Im(\nu) \leq -2\varepsilon$ and $\Im(x) = -y = -1/2 - \varepsilon$,

$$\begin{aligned} |H^{\circ}_{\omega_{1}}(\nu, x)| &\leq c \sum_{i \in D_{1}} \log p_{i} e^{(-2\varepsilon - 1/2) \log p_{i}} e^{(\varepsilon + 1)u_{\omega_{1}(i)}} (\varepsilon^{\omega_{1}}_{i})^{-\tau} |\nu - x|^{-(1+\tau)} \\ &\leq c |\nu - x|^{-(1+\tau)} \sum_{i \in D_{1}} e^{-(1+3\varepsilon)u_{\omega_{1}(i)}} (\varepsilon^{\omega_{1}}_{i})^{-\tau} \\ &\leq c |\nu - x|^{-(1+\tau)} \quad \text{by (33).} \end{aligned}$$

Since $\eta_G^{\circ}(x) = O(1)$ for $x \in \mathbb{R} - \sqrt{-1}y$ (see [H], Theorem 3.10), the above estimate and (32) give an analytic continuation of $\eta_{\omega_1}^{\circ}(\nu)$ on $-2L \leq \Im(\nu) \leq -2\varepsilon$.

 $\eta_{\omega_2}^{\circ}$: In the previous sections $\varepsilon_i^{\omega} = \varepsilon_i^{\omega}(\alpha, \beta, C)$ (see 5.3 and (9)) is defined for $\alpha \ge 0$ and $\beta \ge 1$. However, under the second condition of (B2) we may take $\varepsilon_i^{\omega_2} = \sigma u_{\omega_2(i)}^{-\theta}$ and easily see that all arguments in the previous sections are valid for $\varepsilon_i^{\omega_2}$, $h_i^{\omega_2}$ and $H_{\omega_2}^{\circ}$, especially, it follows that

$$P_G(\nu)\eta^{\circ}_{\omega_2}(\nu) = \int_{\mathbf{R}-\sqrt{-1}\varepsilon} P_G(x)\eta^{\circ}_G(x)H^{\circ}_{\omega_2}(\nu,x)dx, \qquad (34)$$

if $\Im(\nu) \leq -L$ (see Proposition 5.1). We here put $J_0 = \{i \in D_2; 1 \leq \varepsilon_i^{\omega_2}\}$ and $J_n = \{i \in D_2; 2^{-n} \leq \varepsilon_i^{\omega_2} < 2^{-(n-1)}\}$ (n = 1, 2, ...). Moreover, we denote by i_n the number in J_n for which $\omega_2(i_n)$ is the smallest in $\omega_2(j)(j \in J_n)$ and by $k_n(i)$ $(i \in J_n)$ the number of elements j in J_n satisfying $\omega_2(j) < \omega_2(i)$. Then for each $i \in J_n$ we see from the definition of $\delta_i^{\omega_2}$ (see 5.3 and (8)) and (B2) that $u_{\omega_2(i)} \geq u_{\omega_2(i_n)} + 2\sum_{j \in J_n, \omega_2(j) < \omega_2(i)} \delta_j^{\omega_2} \geq u_{\omega_2(i_n)} + 2k_n(i)2^{-n}$ for $n \geq 0$ and $u_{\omega_2(i_n)} \geq \sigma^{1/\theta}2^{(n-1)/\theta}$ for $n \geq 1$. Therefore, by (B2) and the argument used in (16)-(18) we see that if $-2L \leq \Im(\nu) \leq -3\varepsilon$ and $\Im(x) = -\varepsilon$,

$$\begin{aligned} |H_{\omega_{2}}^{\circ}(\nu, x)| &\leq c \sum_{i \in D_{2}} \log p_{i} e^{(-3\varepsilon - 1/2)\log p_{i}} e^{(\varepsilon + 1/2)u_{\omega_{2}(i)}} (\varepsilon_{i}^{\omega_{2}})^{1 - (2M+3)} |\nu - x|^{-(2M+3)} \\ &\leq c |\nu - x|^{-(2M+3)} \sum_{n=0}^{\infty} \sum_{i \in J_{n}} e^{-\varepsilon u_{\omega_{2}(i)}} (\varepsilon_{i}^{\omega_{2}})^{-2(M+1)} \\ &\leq c |\nu - x|^{-(2M+3)} (e^{-\varepsilon u_{\omega_{2}(i_{0})}} \sum_{i \in J_{0}} e^{-2\varepsilon k_{0}(i)} \\ &\quad + \sum_{n=1}^{\infty} e^{-\varepsilon \sigma^{1/\theta} 2^{(n-1)/\theta}} 2^{2n(M+1)} \sum_{i \in J_{n}} e^{-2\varepsilon k_{n}(i)2^{-n}}) \\ &\leq c |\nu - x|^{-(2M+3)} (\frac{1}{1 - e^{-2\varepsilon}} + \sum_{n=1}^{\infty} \frac{e^{-\varepsilon \sigma^{1/\theta} 2^{(n-1)/\theta}} 2^{2n(M+1)}}{1 - e^{-2\varepsilon 2^{-n}}}) \\ &\leq c |\nu - x|^{-(2M+3)}. \end{aligned}$$

Since $P_G(x)\eta_G^{\circ}(x) = O(|x|^{2M+1})$ for $x \in \mathbb{R} - \sqrt{-1}\varepsilon$ (see (23) and [H], Remark 6.8), the above estimate and (34) give an analytic continuation of $\eta_{\omega_2}^{\circ}(\nu)$ on $-2L \leq \Im(\nu) \leq -3\varepsilon$. $\eta_{\omega_3}^{\circ}$: Since D_3 is finite, $\eta_{\omega_3}^{\circ}$ is holomorphic on the whole complex plane. We now obtained that each $P_G(\nu)\eta_{\omega_\ell}^{\circ}(\nu)$ ($\ell = 1, 2, 3$) has an analytic continuation on $-2L \leq \Im(\nu) \leq -3\varepsilon$. Therefore, $P_G(\nu)\eta^{\circ}(\nu) = \sum_{\ell=1}^{3} P_G(\nu)\eta_{\omega_\ell}^{\circ}(\nu)$ and thus, $P_G(\nu)\eta(\nu)$ have the same property (see 5.2). Since ε can be taken sufficiently small and η satisfies the functional equation (see [E], p.13), it follows that $P_G(\nu)\eta(\nu)$ is holomorphic on $0 < |\Im(\nu)| \leq 2L$. Then, noting the zeros of $P_G(\nu)$ (see (23) and (11)) and the fact that that $\zeta(s)$ has no zeros on [0, 1], we can finally obtain the following theorem.

Theorem 6.1. If $SL(2, \mathbb{R})$ has a cocompact discrete subgroup Γ with $Prim_{\Gamma}$ satisfying the condition (B), then the Riemann Hypothesis holds.

Remark 6.2. We see that $D_2 \neq \emptyset$. Actually, if $D_1 \cup D_3 = \mathbb{N}$, it follows from the above argument that $\eta^{\circ}(\nu)$ is holomorphic on $\Im(\nu) < 0$. This contradicts to the fact that $\eta(\nu)$ has a pole at $\nu = -\sqrt{-1/2}$.

References

- [E] Edwards, H.M., Riemann's Zeta function, Academic Press, New York and London, 1974.
- [G1] Gangolli, R., Zeta functions of Selberg's type for compact space form of symmetric spaces of rank one, Illinois J. Math. 21 (1977), 1-44.
- [G2] _____, The length spectra of some compact manifolds of negative curvature, J. Differential Geometry 12 (1977), 403-424.
- [GW] Gangolli, R. and Warner, G., On Selberg's trace formula, J. Math. Soc. Japan 27(2) (1975), 328-343.
- [H] Hejhal, D.A., The Selberg Trace Formula for PSL(2, R), Lecture Note in Math., 548, Springer-Verlag, New York, 1976.
- [K] Katznelson, Y., An interoduction to Harmonic Analysis, Dover, New York, 1976.
- [S] Selberg, A., Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with application to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87.
- [Su] Sugiura, M., Unitary Representations and Harmonic Analysis, second edition, North-Holland, Kodansha, Amsterdam, Tokyo, 1990.
- [W] Wakayama, M., Zeta function of Selberg's type for compact quotient of $SU(n,1)(n \ge 2)$, Hiroshima Math. J. 14 (1984), 597-618.