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Kostant’s formula for a certain class

of generalized Kac-Moody algebras II
By
Satoshi NAITO
Introduction.

A real nxn matrix A = (aij)i,jEI

., n} is called a GGCM if it satisfies

indexed by a set I = {1, 2,

(Cl1) either a,, = 2 or a,., < 0;
ii ii
. 73 = 9.
(Cc2) aij £ 0 if i#j, and aij € £ if asy 2;
(C3) 835 = 0 implies a5 = 0.

Let g(A) be a generalized Kac—-Moody algebra (GKM algebra), over
the complex number field {, associated to a symmetrizable GGCM A
}

And let g(A) = n_ @ h @ n* be

, with Cartan subalgebra b, simple roots [l = {«

( )

aij i,jel i‘iel’

. v o %
and simple coroots Il = {ai}iel'

+
the triangular decomposition with n~ = Zg .

g , where g_ is the
0EA™ o a

root space attached to a root o € At.

In the previous paper [4], we studied the bh-module structure
of the homology Hj(n—, L(x)) of n or the cohomology Hj(n+, L(x))
of n* with coefficients in the irreducible highest weight g(A)-
module L(x) with highest weight A € h* = Homc(b, ). (Remark that
the cohomology Hj(n+, L(x)) used in [4] is slightly different

from the usual Lie algebra cohomology.) Then, we proved
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"Kostant’s formula"” under the following condition (61) on the
GGCM A = (aij)i,JEI:
(1) either aj; =20ra;; =0 (i€I).

Namely, we proved

Theorem A ([4]1). Let A € P":= {1 € b*| <a, a¥> >0 (i € 1),
and <X, a;> € 7 if ag; = 2}. Denote by © the set of all sums

of distinct pairwise perpendicular elements from ﬂim:= {ot, € T}

i
a;; < 0}. And we put 6(A):= {x» € 6| (AIA) = 0}, where (1) is a

standard bilinear form on bh". Then, as bh-modules (j=0),

j + o - x $, ®
H'(n ', L(A)) = Hj(u ’ L(A)) = ZBEG(A) ZWGW C(w(A+p-B)-p),
{(w)=j-ht(8)

where T(n) (u € b*) is the irreducible (one dimensional) b-module
with weight u. Here, p is a fixed element of b* such that
<p, a¥> = (1/2)-aii (i € I), {(w) is the length of an element w

of the Weyl group W, and for 8 = 2,

" _
i€l kiai (ki € mzo) € 6, we

put ht(B):= ziEI k; .
In the present paper, using the idea of L. Liu [3] for
Kac-Moody algebras, we extend the above result so that the
nilpotent part ﬁ+ of the Borel subalgebra b:=bh @& n’ is allowed
to be the nilpotent part of a parabolic subalgebra containing b.
Let us explain in more detail. Let 1re (resp. Iim) be the
subset {i € I} a;; = 2 (resp. a,

ii
let J be a subset of Ire. We define a submatrix A

< 0)} of the index set I. And

of A by A

J J°
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(aij)i,jEJ’ which is a generalized Cartan matrix (GCM). Note

that there exists a certain subspace bJ of b, such that the

. v . o
triple (by, {dile} {oj} ¢y) is a minimal realization of the

ieJ’
GCM AJ. Then, we can identify the Kac-Moody algebra.g(AJ) with
the subalgebra 85 of g(A) generated by e fi (i € J), and bJ.
® g
O(EAJ o
Now, we define the following

Furthermore, 8; = bJ & > , where A, = A.Nn zieJ zai is the

J

root system of (gJ, hJ).

subalgebras of g(A):

- & ) ,

= 3° 8, Nyi= 2 8o Wiz 2, g,

€A oEA x€A (J)
J J
- @ - + +
u o= 2 g , m:=n_ @ bh@&mn_, p:=m @& u,
’ aea’ (J) ® J J
+ + + +
where A(J):= A N\ Ay, &3 =4 N Ay, A (J) = A n A(J). We call p

=m & u' the parabolic subalgebra of g(A) defined by J. Note

that since the triple (b; {ui}ieJ’ {a!} ) is a realization

i€eJ

(but not a minimal realization) of the GCM A, m = + b can be

83

regarded as a Kac-Moody algebra associated to A whose Cartan

J!
subalgebra is b.

Recall that the Weyl group W of g(A) is defined to be the

subgroup of GL(h*) generated by fundamental refleétions ri (i €

re)'

I Now, let W_. be the subgroup of W generated by ry (i e€J),

J v
which is the Weyl group of m. And we put W(J):= {w € W| w(A") n NS
c AY(I)Y (= {w € W] w_l(AS) c AY}). Then, we will obtain the
following theorem. (Here, as in [4], the cohomology HJ(u+, L(A))
is slightly different from the usual one, whereas the homology

H.(u , L(A)) is the usual Lie algebra homology. See §3 for the

J
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definition.)

+
Theorem. Let A € P . Assume that the GGCM A = (aij)i,jel is
symmetrizable and satisfies the condition (61). Then,
J +‘ x - x & @ - -
HY (u”, L(A)) = Hy(u™, L(A)) = Zpeciay Zeew(d) L, (W(A+p-8)-p),

t(w)=j-ht(8)

+._ * Vv 7
3= {xn € b | <, o> € Ly,

(i € J)}, Lm(u),is the irreducible highest weight w-module with

as m-modules (j20). Here, for u € P
highest weight u.

Note that when J = ¢, this theorem is nothing but Theorem A,
since in this case, ut = n’, uT =n", m=b, and W(J) = W.

This paper is organized as follows. In 8§81, we review some
basic reéults for GKM algebras, especially the Weyl-Kac-Borcherds
character formuia. In §2, we will introduce an algebra # of
formal w-characters, where we can carry out éertain formal
operations. In 83, we rewrite some fesults of‘L. Liu [{3] for Kac-
Moody algebras, which cah be proved for GKM algebras in justbthe
same way that they are proved fdr Kac-Moody algebras. Ih 84, we

prove our main theorem stated above, combining the results of

[3] and [4].
§1. The category ® and character formula.

In this section, we prepare fundamental results about GKM
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algebras for later use. For detailed accounts of this section,
see [1] and [2].
We put I:= {1,.2, -+, n}. Let g(A) be the GKM algebra

associated to a GGCM A = (a,

1j)i,j€I with the Cartan subalgebra b.

Definition 1.1 ([2]). € is the category of all bh-modules V

satisfying the following:

@
XEP(V) “X°

where ?(V) is the set of all weights of V.'And each weight spece

(1) V admits a weight space decomposition V = 2 A"

VA is finite dimensional (1 € ?(V));

(2) there exist a finite number of elements X, € b* (1<i<s)

i
P S . = - =
such that ?(V) © U7_, D(x,), where D(x;):= {x; Bl B € Q,
ziGI Lzoai} (1<i<s).

Note that the category @ is closed under the operations ofr
taking submodules, quotients, finite direct sums, and finite
tensor products.

Now, let é be the algebra over { consisting of all series of

the form 2 . cle(A), where c, € T and c, =0 for A outside a
XED

finite union of the sets of the form D(u) (u € b*). Here, the
eiements e(x) are called formal exponentials. They are linearly
independent and are in one-one correspondence with the elements
X € b*. And the multiplication of é is defined by e(x)-e(u):=

e(a+n) (X, w € b*). Then, for V = Ze V. in 0, we define the
reh” A

formal character of V by ch V := 2 *(dim€ Vl)e(l) € &. Then, we
LED

know the following character formula.
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Theorem 1.1 ([1] and [2]). Assume that A is a symmetrizable
GGCM. Let (*]1+) be a fixed standard bilinear form on h*. For A €

P+, we put

ht(B)e(_ﬁ) R mult (o)

=1 +(1 - e(-a)) .

Spi= e(A+p)-26€6(A)(—1) e

where mult(oa) := dimc 8 (ot € A+). Then,
e(p)R:-ch L(A) = 2w€w(det w)w(SA),
with w(e(u)):= e(w(n)) (u € b™).

Remark 1.1. The set {0} VU ﬂim is contained in 6 by
definition. And, especially when A is a GCM, 6 consists of only

one element 0 € h*.
§2. The category @J and the algebra 7.

In this section, we explain the notion of the category @J of
m-modules. And then, we introduce the algebra 7 of "formal
m-characters" of m-modules from the category @J. Note that when
J = ¢, these are nothing but the category ¢ and the algebra €.

From now on, we always assume that the GGCM A is symme-
trizable, and that J is a subset of I'€¢ = {i € 1| a;; = 2}. We

i
use notations in the Introduction.
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Definition 2.1 ([3]). @, is the categ0ry of all m-modules M

J
satisfying the following:
(1) Viewed as an h-module, M is an object of the category 0;
(2) Viewed as an wm-module, M is a direct sum of irreducible

+

highest weight w-modules Lm(A) with highest weight X € PJ =

* \% 7 .
{u € b | <n, o> € Iy, (i € I)}.
Clearly, the category @J is closed under the operations of
taking submodules, QUotients, and finite direct sums. Moreover,
a tensor product of two modules from @J is again in the category

+
0 because Lm(l)QQ Lm(u) € @J (n, n € PJ) by [2, Theorem 10.7.

3’
b)] (note that the modules Lm(t) (t € P}) remain irreducible as
gJ-modules). The main reason of our requirement that J is a -
subset of I'® comes from the fact that this theorem holds only
for Kac-Moody algebras.

The following propoéition plays a fundamental role in this

paper.

Proposition 2.1 ([3]). For A € P, L(A) and (Aju_)®€ L(A)

(j=0) are in the category 0 where Aju_ is the exterior algebra

J!
of degree j over u , and is an m-module by the adjoint action>

since [m, u”] c u  (j=0).

Now, we define a certain algebra Z over {. The elements of Z

are series of the form . clm(k), where c, € € and C, = 0 for
LEP
J
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A outside a finite union of the sets of the form D(u) (u € b*).
Here, the elements m(x) are called deMaL n-exponentials. They
are linearly independent and are in one-one correspondence.with
the elements X € P}.

For a module-M in the category @J, we define the formal

w—-character ch M of M by ch M:= > M : L (x)Im(x), where
) " rep? mn

J
M : Lm(A)] is the "multiplicity” of Lm(x) in M (see [2, Ch.9,
Lemma 9.6]). Note that [M : Lm(x)] (r € P}j is finite since M is
in the category @ as an b-module. Therefore, chmM is an element
éf the algebra # for M € @J. Theh, the multiplication of ¥ is
defined as follows: for 1, u € P},‘m(x)-m(u):=chm(Lm(A)®€ Lm(u));
Thus, % becomes a commutative associative algebra over C.

Following (3], we now define an algebra homomorphism ¥(m, h):

F—&, by ¥(m, b)(m(r)):= ch L (%) € & (1 € P}). Then, we have
Lemma 2.1. The mapping ¥(m, b): F—¢ isviﬁjective.

Proof (cf. [3]). Let > . clm(x) be a non-zero element of

,\EPJ

#. Then, there exist by € h* (1<i<s), such that {» € P}I c, = 0}

C \)?=1 D(ui). By replacing the set {“i}i by a suitable finite

=]
subset {ui}§=1 of b* if necessary, we can assume that uk - ué ¢ Q

+

= ziEI z“i (1<k={<t). Consider the subset {ht(u; - Ml A epP

J
' , : + .
(c, # 0) and x € D(u;) (1<i<t)} of Z,,, and take Aoy € Py whlqh
attains the minimum of this subset. Then, clearly Ao is not a

+

weight of Lm(A) (L € PJ

N {AO}). Hence, ‘P(m,‘b)(E)\EP+ clm(A)) = 0
J



60

€ &§. Thus we have shown the injectivity of ¥(m, b) o
§3. Some results of L. Liu.

In this section, we rewrite, in the case of GKM algebras,
~some of Liu’s results on m-modules Hj(u—, L(x)) and Hj(u+, L(x))
(j=0) for Kac-Moody algebras. His proofs for these results
require no modifications. For details, see [3].
The homology Hj(uf, L(x)) of u with coefficients in L(x)
(x € b*) is defined as the homology of the m-module complex
{(Ajuf)®£ L(x), dj}’ where the action of m and the bouhdary
operator dj arg defined in a usual way. Thé cohomology
Hj(u+, L(x)) of u® with Coefficients in L(x) is defined as the
cohomology of the m-module complex {HomE(Aju+, L(A)), dj}, where
the action of m and the coboundary operator dj afe usual ones.

Here, for b-diagonalizable modules V = ZQ . Vu and W with finite
: ue€h

dimensional weight spaces, we put Homé(V, W):= {f € HomE(V, w) |
f(V“) = 0 for all but finitely many weights u € b* of V}. Note
that this cohomology HJ (u*, L(x)) of u' is different from the
uéual one, since we have used HomE(AJu+, L(x)) instead of
Hom@(AJu+, L(x)) as the space'of j cochains (j=0) (see also [3]).

Then, we have the following, due to L. Liu.

Proposition 3.1 ([3]). For any A € P* and j € 120,

Hj(u+, L(A)) is isomorphic to Hj(u-, L(A)) as m-modules.
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So, from now on, we concentrate on m-modules Hj(u_, L(A))
(j=20). Since L(A) and (Aju_)®£ L(A) are in the category 0, by
Proposition 2.1, Hj(u_, L(A)) is also in @J, and so is a direct

sum of Lm(u) (b € P}) as m-modules. Furthermore, we have

Proposition 3.2 ([3]). Let (-1-) be a fixed standard
bilinear form on b*. Then, for any A € P and Jj € 120’ every m-
irreducible component of Hj(u_, L(A)) is of the form Lm(u)’

(u € P}) with (0 + plu + p) = (A + plA + p).
§4. Kostant’s formula for GKM algebras.

In this section, we prove "Kostant’s formula" for GKM

algebras, which is a generalization of that in my previous paper

[4]. Here, we assume that the symmetrizable GGCM A = (aij)i jeI
satisfies the following condition (61):

(61) either ag4 = 2 or ajq = 0 (i€ 1I).
And recall that J is a subset of I'°.

4.1. Necessity condition. Now, we review some results given
in [4, Lemma 4.2] and its proof. Let (-1-) be a standard bilinear

form -on h*. Then, we have

Lemma 4.1 ([4]). Let A €ept. If, fbr some j (j=0), u is a
weight of (AJn7)8: L(A) and satisfies (u + plu + p) =

(A + plA + p), then
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(1) there exist a 8, € G(A) and a w, € W, such that

0
t(wy) + ht(By) = j and u = wo(A +p - By) - P
(2) the multiplicity of u in (A u_)GQ L(A) is equal to one,

__Q J-
where A n = zjzo A .

Let us fix A € P+. From the above,»we can prove the following.

Lemma 4.2. Assume that u € b* is a weight of'(Aju—)em L(A) for

some j € Ezo,

(a) there exist a 8 € 6(A) and a w € W(J), such that

and satisfies (u + plu + p) = (A + plA + p). Then,

L(w) + ht(B) = j and u = w(A + p - B) - p;

(b) the multiplicity of u in (AJu-)Qm L(A) is equal to omne.

Proof. 1If u € b* is a weight of (Aju_)®£ L(A), then u is a
weight of (Ajn_)em L(A), since (Aju_)®$ L(K)»can be regarded as
a submodule of (AJnf)eﬁ L(A). Then, by Lemma 4.1, it follows that

there exist a BO € 6(A) and a w, € W, such that

0
t(wo) + ht(Bo) = j and p = wO(A + p —_80) - P, gnd that the
multiplicity of u in (A n—)®€ L(A) is equal to one. So, we have

only to show that w. € W(J) = {w € W| w(a") n A ¢ o' (J)}. Now,

0

. - +

recall that wo(p) -p = - zaem «, where ®_ = wO(A ) N A" (see
: w 0
0
[4, Proposition 1.2.b)}). Express 8, = Em_ o, , where m =
0 k=1 1k
ht(8,), o € Him (1<k<m), and i # i, (1<r#t<m). And take
0 1k r t ~

non-zero root vectors Ek € g_wo(ai ) (1<k<m), Ea € S _ (o € @WO),

k
and a non-zero weight vector v € L(A)W(A). Then, it is clear that
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0 # (E1A~--A Em)A(Aaemw Ea)® v € (A n )em L(A) is a weight

: » . 0 /
vector of weight u (cf. the proof of [4, Lemma 4.2]). Since the
multiplicity of u in (A ﬂ—)®$ L(A) is equal to one, and u is a
weight of (Aju_)®€ L{(A) by assumption, it follows that

. a . \ . j - +
(ElA A Em)A(Aaemw Ea)® v € (Au )@m L(A). Therefore, o € A (J)
0
(o € @w ). Hence, W, € W(J) by definition of W(J). Thus we have
o .

proved Lemma 4.2. 0
By Proposition 3.2 and Lemma 4.2, we have the following.

. . \ "17 + p—
Proposition 4.1. Let j € Z,o- I1f Lm(u) (n € PJ) is an m
_ irreducible component of Hj(u_, L{(A)), then

(a) w =w(A+p -8) - p, for some 8 € G(A) and some w €
W(J), such that {(w) + ht(8) = j;

(b) Lm(u)'occurs with multiplicity one as m-irreducible

components of Hj(u_, L(A)).

4.2. Sufficiency condition. Here, we use the setting in §2.
Let A € P+. Before carrying out formal operations on formal
m-characters in the algebra %, we note that w(A + p - 8) - p
differs if w € W or 8 € 6 differs (see the proof of [4,

Proposition 4.21).

Lemma 4.3. For w € W(J) and B € 6, w(A + p - B) - p € P}.
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Proof. We have to show that <w(A + p - 8) - p, a¥> € 220'
for 1 € J. Since w € W(J) and i € J C Ire' it follows that
w_l(ai) € AY since W(J) = {w € W| w_l(AS) c A"}. so, we have

A(tA) c b is the dual root system of

w—l(a;) e (a7)*, where A’

g(A) (see [2]). Moreover, w_l(az) € > 7o since J c 1F€. on
' jerte J

the other hand, we have

<w(A + p - 8) - p, a¥>‘= <h + p - B, w_l(a¥)> - <p, a;>

= <A, w_l(a¥)> - <B, w—l(a;)> + <p, w_l(a¥)> -1

Since A € PY and 8 is a sum of elements from ﬂlm, we deduce that
<w(A + p - B) - p, u¥> € ZZO from the above equality. Thus the

assertion has been proved. 8
Proposition 4.2. For A € .PY, there holds in the algebra 7%,

(-1)3ch (H, (u™, L(A))) -

2§20 3

ht(8) ZwEW(J)(det w)m(w(A+p-8)-p).

= ZBEG(A)(_]')

Proof. Both sides of the above equality are clearly in the

algebra 7 by Lemma 4.3. So, because ¥(m, b): F—¢ is injective,
we have only to show the following in the algebra & (cf. also

Proposition 4.1).
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(-1)9ch(H, (u”, L(A))) =

#) 350 ]

ht(8) S

) ZBEG(A)(_“ wew(J)(det w)-ch L (w(A+p-8)-p).

By the well-known Euler-Poincare principle, the left hand side of

(#) is equal to

S a0 (-1 e (7, LA))) = 3, -DIehcAduTrep Liny) -
- (EJZO(—I)j-ch Muyehnd) =1, (1 - e(-a)MIH®oh La) -
: €A (J)
e(p)-l (1 - e(-a))™1E() |
- €4 ‘ch L(A).
e(p) (1 - e(-a))™Hit()

aEAJ

By Theorem 1.1, this is equal to

ht(8)

-1 .
e(-p) "Ry 3 cy(det w) Zpee (1) e(w(A+p-8)),

where R.:= Il +(1 - e(_a))mult(a).

J
aGAJ

On the other hand, by Theorem 1.1 applied for an m (= gy + h)

-module Lm(w(A+p—B)—p). the right hand side of (#) is equal to

_l.

. .\ ht(8)

Wew(J)(det‘w) zuewJ(det u)e(u(w(A+p-8)))
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i y.o-l. _, ht(8) V ' _
= e(-pP) 'Ry EBEG(A)( 1)y ZWEW(J),HEW (det uw)e(uw(A+p-8)).

J

Now, we quote the fact that every w € W can be uniquely

J~w(J), where Wy € WJ and w(J) € W(J).

Note that this fact requires J to be a subset of I'€. (See [3]

expressed in the form w

for the proof.) Therefore, the above is equal to

-1 ht(8) '
e(—p)‘RJ .EBGG(A)(—l) Ewew(det W)e(W(A+p-B))

ht(B)e(W(A+p-B)).

- — . —1I . » —
= e(-p) Ry -2y cyldet W) Zpeqipy(-1)
Thus, we have proved the equality (#). This completes the proof

of Proposition 4.2. B
By Propositions 4.1 and 4.2, we have the following.

Proposition 4.3. Fix j € 220' And put u:= w(A + p - 8) - p,
where 8 € G(A) and w € W(J), such that {(w) + ht(8) = j; Then,

Lm(u) occurs as m-irreducible components of Hj(u', L(A)).

Summarizing Propositions 3.1, 4.1, and 4.3, we obtain the

following theorem.

Theorem 4.1 (Kostant's formula). Let A € P'. And let g(A)
be the GKM algebra associated to a symmetrizable GGCM A =

(aij)i jeI satisfying (61). We assume that the subset J of I is
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contained in Ire

i}

{i € 1| a;; = 2}. Then, as w-modules (j=0),

md (u*, L(A)) = Hy(u”, L(A)

~ T &
* 20e(A) Zwew(J) Ly, (W(A+p=-8)-p).

{(w)=j-ht(8)

Here, Lm(u) (u € PE) is the irreducible highest weight wm-module

with highest weight u.

Remark 4.1. In our arguments, the assumption that J is a

subset of Ire plays an essential role. So, we can not remove it.
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