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Real Moment Maps

Tohru UZAWA (宇沢達)

Department of Mathematics, Faculty of Science,
University of Tokyo (東大理)

The purpose of this note is to motivate the theory of real moment
maps through some basic examples and to show how the complex theory
generalizes. The theory itself is developed in [U1].

The theory of moment maps is developped in the framework of sym-
plectic manifolds [Kir]. Our generalization here exploits the connection
between geometric invariant theory and moment maps for non-singular
projective algebraic varieties as developped by [K-N] and [N].

In the first section, we state a problem in algebraic geometry which
gave rise to geometric invariant theory [Mu] and two basic examples.
In the second section, we state the definition of the real moment map
and state the convexity theorem and basic properties of the gradient
flow of the square norm of the moment map. In the third section, we
show that the second example in the first section generalizes to give a
stable-unstable manifold description of Matsuki duality ([Ml, M2]).

We have not touched on the relationship with the symplectic moment
map theory and Jordan algebras. We leave this to a future paper ([U2]).

Section 1. The basic problem for geometric invariant theory ([Mu]) is
the following general problem.

BASIC PROBLEM. Let $G$ be a $lin$ ear algebraic $gro$up deBned over a Reld
$k$ and let $V$ be a k-rational G-variety. Classify G-orbits in $V$ .

In this generality, the problem seems almost hopeless; the ingenuity
of the solution due to Mumford ([Mu]) is the association of a conjugacy
class of parabolics to G-orbits in $V$ .

Let us give two examples where the parabolics fall into one’s lap.
Example 1 Let $k$ be an algebraically closed field of characteristic not

equal to 2. Let $V$ be the space of plane conics. Then $V$ is isomorphic to
the projective space modelled on the space of 3-3 symmetric matrices.
Let $G=GL(3, k)$ . Then there are three G-orbits in $V$ ; the orbit consist-
ing of non-singular conics, the orbit consisting of distinct two lines, and
the orbit of double lines. The associated parabolics are simply $G$ for
non-singular conics, the maximal parabolic which stabilizes the point
of intersection for distinct two lines, and the parabolic stabilizing the
underlying line for double lines.
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Example 2 Let $k$ be as in Example 1. Let $G=SO(3, k)$ act on
the space $V$ of complete flags in $P^{2}$ . This is the set of incident pairs of
points and lines (i.e., pairs of a point and a line $(p, l)$ where the point
lies on the line). Giving $G$ is equivalent to fixing a conic $C$ in $P^{2}$ . The
G-orbits in $V$ are given by incidence relationships. An open orbit where
$p$ is not on $C$ and $\ell$ is not tangent to $C$ . An orbit where $p$ is on $C$ and $\ell$

is not tangent to $C$ . A dual orbit where $p$ is not on $C$ and $\ell$ is tangent
to $C$ . Finally a closed orbit where $p$ is on $C$ and $\ell$ is tangent to $C$ .

In this case, the associated parabolics (stabilizers of points on the
conic $C$) are clear. For the open orbit, the total group $G$ . For the other
orbits, the point $p$ or the intersection of $\ell$ with $C$ (whichever is unique).

It is interesting that the incidence relationships (the so-called Schubert
conditions [Sc]) give the orbit decomposition. We shall see a generaliza-
tion of this fact in Section 3.

Section 2. Let $G$ be a linear real reductive group. Let $V$ be a
real/complex vector space with a rational G-action.

DEFINITION([Mu]).
(1) A $n$on-zero vector $v\in V$ is called stable if and only if $Gv\subset V$ is

closed in the Euclidean topology.
(2) A $n$on-zero vector $v\in V$ is called semistable if and on$ly$ if $\overline{Gv}\neq 0$ .
(3) A non-zero vector $v\in V$ is called unstable if an $d$ on$ly$ if $\overline{Gv}\ni 0$ .

Fix a Cartan involution $\theta$ of $G$ . Let the maximal compact subgroup of
$G$ be $K$ . Denote by $g=e\oplus s$ be the Cartan decompostion of $g=Lie(G)$ .
Fix a K-invariant positive definite sesquilinear form $(, )$ on $V$ .

DEFINITION. Defne $\rho_{v}$ : $Garrow R$ by $\rho_{v}(g)=\frac{(\rho(g)v,\rho(g)v)}{(v,v)}$ By K-
invariance of $(, )$ , we see that $\rho_{v}$ : $K\backslash Garrow R$ . Let $d\rho_{v}$ : $sarrow R$ be the dif-
ferential $of\rho_{v}$ at $K\backslash K$ . Then the (dual-)moment map $m*:P(V)arrow s*$
is defin$ed$ by $m*(v)=d\rho_{v}$ . Let $m:P(V)arrow s$ denote the dual defned
by the Killing form.

This is basically the definition of [N]. By the K-invariance of $(, )$ ,
we see that the map $m$ : $P(V)arrow s$ is K-equivariant with K-action
on $s$ the adjoint action. Fix a maximal abelian subspace $a$ of $\mathfrak{s}$ . Let
$W=N_{G}(A)/Z_{G}(A)$ be the little Weyl group. Let $a^{+}$ be a positive Weyl
chamber.

DEFINITION. Define $m^{+}:$ $P(V)arrow\epsilon/K=a/W=a^{+}$ .

The following properties are basic.
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PROPERTIES.
(1) $v\in V$ is stable if and only $ifm(Gv)\ni O$ .
(2) Let $X\subset P(V)$ be a G-stable $su$ bvariety. Then $m^{+}(X)$ is a convex

ration$aI$ polytope in $a+$ . The Q-structure in $a+comes$ from th$e$

root lattice in $a$ .
(3) Let $O$ be a G-orbit. By the previous property, $m^{+}(\mathcal{O})$ is a $con$vex

subset of $a^{+}and$ hence there is a unique point $\alpha$ of $m^{+}(\mathcal{O})$ closest
to th$e$ origin. Then $m^{+-1}(\alpha)$ is a unique K-orbit.

The proof of the convexity is based on an idea of Heckman [H].
Let us recall the definition of the Fubini-Study metric.

DEFINITION. Let $L\subset V$ be a line giving a point $L\in P(V)$ . The choice
$ofv\in L,$ $v\neq 0$ identiRes $T_{L}(P(V))$ with the orthogonal complement $L^{\perp}$

of $L$ in V. Then for $w_{1},$ $w_{2}\in L^{\perp}\cong T_{L}(P(V))$ , we deRne

$<w_{1},$ $w_{2}>FS= \frac{(w_{1},w_{2})}{(v,v)}$ .

Let $f$ be the square-norm of $m$ with respect to the Killing form. De-
note by $\nabla f$ the gradient vector field of $f$ with respect to the Fubini-Study
metric. Then

PROPERTIES.
(1) $\nabla f|_{p}=X_{2m(p)}$ where $p$ is a point of $P(V)$ and $X_{2m(p)}$ is the

vectorfeld generated by $2m(p)$ .
(2) The trajectory of $p$ under the flow generated by $\nabla f$ lies on th $e$

orbit $Gp$ .
(3) The intersection of the critical set of $\nabla f$ and a G-orbit is a unique

K-orbit.

One can show that the stable sets of the flow $\nabla f$ are G-stable non-
singular manifolds.

Section 3. The second example in Section 1 suggests that G-orbits
for a special class of groups can be given by incidence relationships. One
has the following theorem. First let us define affine symmetric pairs and
associated pairs. One can find an application in [M-U-V].

THEOREM (CF. [M1]). Let $G$ be a linear real semi-simple group and
let $P$ be a minimal parabolic $su$ bgroup ofG. Let $\sigma$ be an involution of $G$

and let $\theta$ be a Cartan involution which commutes with $\sigma$ . Let $H^{+}=G^{\sigma}$

and let $H^{-}=G^{\sigma\theta}$ . Let $f^{\pm}$ be the $sq$uare-norm of the moment map with
respect to the $H^{\pm}$ -action. Then we have the followin$g$

(1) $f^{\pm}$ are non-degenerate in the sense of Bott $( \int Bott])$ .
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(2) The $H^{+}$ -orbits coincide with the $stable$ manifolds of $f^{+}$ . The
$H^{-}$ -orbits coincide with the unstable manifolds of $f^{+}$ .

(3) Let $\mathcal{O}$ be an $H^{+}$ -orbit an$d$ let $\mathcal{O}^{-}$ be the $H^{-}$ -orbit corresponding
to the same critical set.

Then the maxim$al$ compact subgroup $UofH^{+}acts$ transitively
on $\mathcal{O}\cap \mathcal{O}^{-}$ .

(4) $\overline{\mathcal{O}_{1}}\supset \mathcal{O}_{2}$ if and only $if\overline{\mathcal{O}_{2}^{-}}\supset \mathcal{O}_{1}^{-}if$ and only if $\mathcal{O}_{2}^{-}\cap \mathcal{O}_{1}\neq\emptyset$ .
This gives a refinement of the celebrated results of Matsuki ([Ml,

M2]).
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