An inverse problem for 1－dimensional heat equations

阪大•理 Tetsuya Hattori （服部哲也）

1 Introduction

In this note we study the uniqueness in an inverse problem for 1－dimensional heat equations．

For $p \in C^{1}[0,1]$ and $a \in L^{2}(0,1)$ ，both of which are real－valued，let $\left(E_{p, a}\right)$ be the heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\left(p(x)-\frac{\partial^{2}}{\partial x^{2}}\right) u=0 \quad(0<x<1,0<t<\infty) \tag{1.1}
\end{equation*}
$$

with the Dirichlet boundary condition

$$
\begin{equation*}
\left.u\right|_{x=0}=\left.u\right|_{x=1}=0 \quad(0<t<\infty) \tag{1.2}
\end{equation*}
$$

and the initial condition

$$
\begin{equation*}
\left.u\right|_{t=0}=a(x) \quad(0<x<1) \tag{1.3}
\end{equation*}
$$

Let $u=u(t, x)$ be a unique solution of $\left(E_{p, a}\right)$ ．Fix $x_{0} \in(0,1]$ and T_{1}, T_{2} such that $0 \leq T_{1}<T_{2}<\infty$ ．Our problem is to study to what extent the ＂observation＂$\left\{\left(u_{x}(t, 0), u_{x}\left(t, x_{0}\right)\right) ; T_{1} \leq t \leq T_{2}\right\}$ determines the potential p and the initial data a ．To formulate this problem，we define the map $\chi_{x_{0}}$ by

$$
\begin{equation*}
\chi_{x_{0}}:(p, a) \longmapsto\left\{\left(u_{x}(t, 0), u_{x}\left(t, x_{0}\right)\right) ; T_{1} \leq t \leq T_{2}\right\} \tag{1.4}
\end{equation*}
$$

and the set $M_{p, a, x_{0}}$ by

$$
\begin{equation*}
M_{p, a, x_{0}}=\left\{(q, b) \in C^{1}[0,1] \times L^{2}(0,1) ; \chi_{x_{0}}(q, b)=\chi_{x_{0}}(p, a)\right\} \tag{1.5}
\end{equation*}
$$

Then the observation determines uniquely (p, a) if and only if

$$
\begin{equation*}
M_{p, a, x_{0}}=\{(p, a)\} . \tag{1.6}
\end{equation*}
$$

Remark 1.1. We can replace the time interval $\left[T_{1}, T_{2}\right]$ by $(0, \infty)$ in (1.4) because of the analyticity of $u(t, x)$ with respect to $t \in(0, \infty)$.

Let A_{p} denote the self-adjoint realization in $L^{2}(0,1)$ of $p(x)-\partial^{2} / \partial x^{2}$ with the Dirichlet boundary condition. The eigenvalues and the eigenfunctions of A_{p} are denoted by $\left\{\lambda_{n}\right\}$ and $\left\{\varphi_{n}\right\}$, respectively, the latter being normalized as $\left\|\varphi_{n}\right\|_{L^{2}(0,1)}=1$.
Definition 1.1. For $a \in L^{2}(0,1)$, the number

$$
\begin{equation*}
N_{p, a}=\sharp\left\{n ;\left(a, \varphi_{n}\right)_{L^{2}(0,1)}=0\right\} \tag{1.7}
\end{equation*}
$$

is called the degenerate number of a with respect to A_{p}.

The problem of uniqueness (1.6) is closely related to the degenerate number. In fact, Murayama [1] obtained the following result.

Theorem 0.1. (Murayama) If $x_{0}=1$, the observation determines (p, a)
uniquely if and only if $N_{p, a}=0$.

One can also study the inverse problem for (1.1) with the Robin boundary condition:

$$
\frac{\partial u}{\partial x}-\left.h u\right|_{x=0}=\frac{\partial u}{\partial x}+\left.H u\right|_{x=1}=0
$$

In this case, we aim at determining p, h, H and a through the observation $\left\{u(t, 0), u\left(t, x_{0}\right) ; T_{1} \leq t \leq T_{2}\right\}$. Then Suzuki [4] obtained the following result. Theorem 0.2. (Suzuki) In the case of the Robin boundary condition, the observation determines p, h, H and a uniquely if and only if $x_{0}=1$ and the degenerate number is equal to 0 .

The above two theorems suggest that the uniqueness depends on not only $N_{p, a}$ but also the position of x_{0}. The aim of this paper is to show that, in the case of the Dirichlet boundary condition, generically, the uniqueness does not hold if $0<x_{0}<1$.

A reduction is necessary before going into the details. By the same argument as in Suzuki [4], one can show that, if $(q, b) \in M_{p, a, x_{0}}, b$ is uniquely determined by q. So, if we let

$$
\begin{equation*}
\tilde{M}_{p, a, x_{0}}=\left\{q \in C^{1}[0,1] ; \text { there exists some } b \in L^{2}(0,1)\right. \tag{1.8}
\end{equation*}
$$

$$
\text { such that } \left.(q, b) \in M_{p, a, x_{0}}\right\}
$$

(1.6) is equivalent to

$$
\begin{equation*}
\tilde{M}_{p, a, x_{0}}=\{p\} . \tag{1.9}
\end{equation*}
$$

2 Main results

Our results are summarized in the following two theorems.

Theorem 1. For each $x_{0} \in(0,1)$, there exists an open dense set $U_{x_{0}} \subseteq$ $C^{1}[0,1]$ such that $p \in U_{x_{0}}$ implies $\tilde{M}_{p, a, x_{0}} \neq\{p\}$ for any $a \in L^{2}(0,1)$. In particular, when $x_{0} \in\left(0, \frac{1}{2}\right)$, we can choose $U_{x_{0}}=C^{1}[0,1]$.

Remark 2.1. Let $H=\left\{\frac{2 k}{2 k+1} ; k \in \mathrm{~N}\right\}$. For $x_{0} \in(0,1) \backslash H, U_{x_{0}}$ contains all the constant functions. In other words, if $x_{0} \in(0,1) \backslash H$ and p is a constant function, then $\tilde{M}_{p, a, x_{0}} \neq\{p\}$ for any $a \in L^{2}(0,1)$.

Theorem 2. Let p be constant and $N_{p, a}=0$.
(i) In the case of $x_{0} \in\left(\frac{1}{2}, 1\right)$, let

$$
\begin{equation*}
R_{1}=\left\{q \in C^{1}[0,1] ; q^{\prime}\left(x_{0}\right)+q^{\prime}(1) \leq 0\right\} . \tag{2.1}
\end{equation*}
$$

Then $R_{1} \cap \tilde{M}_{p, a, x_{0}}=\{p\}$.
(ii) In the case of $x_{0}=\frac{1}{2}$, let

$$
\begin{equation*}
R_{2}=\left\{q \in C^{1}[0,1] ; q^{\prime}\left(x_{0}\right)+q^{\prime}(0) \geq 0\right\} . \tag{2.2}
\end{equation*}
$$

Then $R_{2} \cap \tilde{M}_{p, a, x_{0}}=\{p\}$.
(iii) In the case of $x_{0} \in\left(0, \frac{1}{2}\right)$, let

$$
\begin{equation*}
R_{3}=R_{2} \cap\{\text { the real analytic functions on }(0,1)\} . \tag{2.3}
\end{equation*}
$$

Then $R_{3} \cap \tilde{M}_{p, a, x_{0}}=\{p\}$.

By Theorem 1, the uniqueness does not hold generically if $0<x_{0}<1$. And, by the above theorems, it follows that there exists a potential which has the same observation in $C^{1}[0,1] \backslash R_{1}$ if p is constant, $N_{p, a}=0$, and $x_{0} \in\left(\frac{1}{2}, 1\right) \backslash H$. In the case of $x_{0}=\frac{1}{2}$ or $x_{0} \in\left(0, \frac{1}{2}\right)$, the above statement holds for R_{2} or R_{3} instead of R_{1}, respectively.

3 A hyperbolic equation

The following propositions, which arise from Suzuki's deformation formula ([3] or [4]), are the key points of the proof of Theorems 1 and 2.

Let $D=\left\{(x, y) \in \mathbf{R}^{2} ; 0<y<x<1\right\}$, and consider the following equations:
(E)

$$
\begin{array}{ll}
(3.1) & K_{x x}-K_{y y}+(p(y)-q(x)) K=0 \quad \text { on } D \\
(3.2) & K(x, x)=\frac{1}{2} \int_{0}^{x}(q(s)-p(s)) d s \quad(0 \leq x \leq 1) \\
(3.3) & K(x, 0)=0 \quad(0 \leq x \leq 1) \\
(3.4) & K(1, y)=0 \quad(0 \leq y \leq 1) \\
(3.5) & K_{x}\left(x_{0}, y\right)=0 \quad\left(0 \leq y \leq x_{0}\right) \\
(3.6) & K\left(x_{0}, x_{0}\right)=0
\end{array}
$$

Proposition 1. If there exist $q \in C^{1}[0,1]$ and $K \in C^{2}(\bar{D})$ such that K does not vanish identically on \bar{D} and satisfies the equation (E), then $\tilde{M}_{p, a, x_{0}} \neq\{p\}$ for any $a \in L^{2}(0,1)$.
Remark 3.1. For $q \in C^{1}[0,1]$ in Proposition $1, q \in \tilde{M}_{p, a, x_{0}}$ and $q \neq p$ holds.

Proposition 2. When $N_{p, a}=0, q \in \tilde{M}_{p, a, x_{0}}$ if and only if there exists $K \in C^{2}(\bar{D})$ satisfying (E).

We can show these propositions in the same way as in [4].

4 Proof of theorems

Sketch of proof of Theorem 2.

If $x_{0} \in\left(\frac{1}{2}, 1\right)$, we see that $q \in \tilde{M}_{p, a, x_{0}}$ implies $q^{\prime}\left(x_{0}\right)+q^{\prime}(1)=\int_{x_{0}}^{1}(q-p)^{2} d x$ by Proposition 2 and a straightforward calculation. Therefore, $q \in R_{1} \cap$ $\tilde{M}_{p, a, x_{0}}$ implies $q \equiv p$ on $\left[x_{0}, 1\right]$, i.e. $K(x, x)=0$ for $x \in\left[x_{0}, 1\right]$. By solving (E), we get $K \equiv 0$ on \bar{D}, so $K(x, x)=0$ for $x \in[0,1]$. From (3.2), $q \equiv p$ on $[0,1]$.

If $x_{0} \in\left(0, \frac{1}{2}\right]$, by Proposition 2 we see that $q \in \tilde{M}_{p, a, x_{0}}$ implies $q^{\prime}\left(x_{0}\right)+$ $q^{\prime}(0)=-\int_{0}^{x_{0}}(q-p)^{2} d x$. We then proceed in the same way as above.

Proof of Theorem 1.

(I) The case of $x_{0} \in\left[\frac{1}{2}, 1\right)$.

Let $G=\left\{g \in C^{1}\left[x_{0}, 1\right] ; g^{\prime}\left(x_{0}\right)=g(1)=0\right\}$.
$<$ Step $1>\quad$ For $p, q \in C^{1}[0,1]$ and $g \in G$, we construct $K \in C^{2}(\bar{D})$ satisfying (3.1), (3.3), (3.4), (3.5) and

$$
\begin{equation*}
K_{y}(x, 0)=g \quad\left(x_{0} \leq x \leq 1\right) \tag{4.1}
\end{equation*}
$$

This K is constructed as follows. We devide D into the pieces $D_{0}, D_{1}, \ldots, D_{2 m+2}, \bar{D}$ (Figure 1) and solve the equation successively. Here, $g^{\prime}\left(x_{0}\right)=g(1)=0$ serves
as a compatibility condition for the C^{2}-regularity of K. ([4])

Notation. $\quad K$ in Step 1 is denoted by $K_{g}(x, y ; q, p)$. In particular, when p is fixed, K is denoted by $K_{g}(x, y ; q)$.

Remark 4.1.

(1) K_{g} is a $C^{2}(\bar{D})$-valued analytic function of q, g and p.
(2) K is linear with respect to g.
(3) There exists a monotone increasing continuous function
$\tau:[0, \infty) \rightarrow(0, \infty)$ such that
$\left\|K_{g}(\cdot, \cdot ; p, q)\right\|_{C^{2}(\bar{D})} \leq \tau\left(\|p\|_{C^{1}[0,1]}+\|q\|_{C^{1}[0,1]}\right)\|g\|_{C^{1}\left[x_{0}, 1\right]}$
$\left\|K_{g}\left(\cdot, \cdot ; p_{1}, q_{1}\right)-K_{g}\left(\cdot, \cdot ; p_{2}, q_{2}\right)\right\|_{C^{2}(\bar{D})}$
$\leq \tau\left(\|p\|_{C^{1}[0,1]}+\|q\|_{C^{1}[0,1]}\right)\left(\left\|p_{1}-p_{2}\right\|_{C^{1}[0,1]}+\left\|q_{1}-q_{2}\right\|_{C^{1}[0,1]}\right)\|g\|_{C^{1}\left[x_{0}, 1\right]}$ for any $p, q \in C^{1}[0,1]$ and any $g \in G$. ([4])
$<$ Step $2>\quad$ For fixed p, we consider the map

$$
\begin{array}{rlc}
T_{g}: C^{1}[0,1] & \longrightarrow & C^{\mathrm{i}}[0,1] \\
q & \longmapsto 2 \frac{d}{d x} K_{g}(x, x ; q)+p .
\end{array}
$$

By Remark 4.1 (3), there exists $\delta>0$ such that, if $\|g\|<\delta, T_{g}$ is a contraction map on some ball $U_{B} \subset C^{1}[0,1]$. So, T_{g} has a unique fixed point on U_{B}, denoted by $q(g) . K_{g}(x, y ; q(g))$ satisfies (3.2).

Remark 4.2. $q(g)$ is analytic in g, so $K_{g}(x, y ; q(g))$ is also analytic in g.
< Step 3 >
Proposition 3. If there exists $\tilde{g} \in G$ such that $K_{\tilde{g}}\left(x_{0}, x_{0} ; p, p\right) \neq 0$, then $\tilde{M}_{p, a, x_{0}} \neq\{p\}$ for any $a \in L^{2}(0,1)$.

Proof of Proposition 3. Let \tilde{g} be as above. By Remark 4.1 (2), we can choose $\|\tilde{g}\|_{C^{1}\left[x_{0}, 1\right]}$ sufficiently small. We set

$$
f(t)=K_{t \tilde{g}}\left(x_{0}, x_{0} ; q(t \tilde{g})\right) \quad\left(=t K_{\tilde{g}}\left(x_{0}, x_{0} ; q(t \tilde{g})\right)\right) .
$$

We remark that $f(t)$ is an entire function and $q(0)=p$. From the assumption, we have $f(0)=0$ and $f^{\prime}(0)=K_{\tilde{g}}\left(x_{0}, x_{0} ; p, p\right) \neq 0$. So, there exist $t_{1}, t_{2} \in \mathbf{R}$, whose absolute values are very small, such that $f\left(t_{1}\right)>0$ and $f\left(t_{2}\right)<0$ by the inverse function theorem. $S(g)=K_{g}\left(x_{0}, x_{0} ; q(g)\right)$ is continuous with respect to g. So, there exists $g_{1} \in G$ such that $\left\|t_{1} \tilde{g}-g_{1}\right\|_{C^{1}\left[x_{0}, 1\right]}$ is very small and g_{1} is linearly independent of $t_{2} \tilde{g}$ and that $S\left(g_{1}\right)>0$. Since $S\left(g_{1}\right)>0$ and $S\left(t_{2} \tilde{g}\right)<0$, there exists $\hat{g} \in G$ such that $S(\hat{g})=0$, by the continuity of the function $S(\cdot)$. We remark that \hat{g} does not vanish identically because g_{1} is linearly independent of $t_{2} \tilde{g}$, and that $\|\hat{g}\|_{C^{1}\left[x_{0}, 1\right]}$ is very small. Hence,
satisfies (E), so $\tilde{M}_{p, a, x_{0}} \neq\{p\}$ for any $a \in L^{2}(0,1)$.
$<$ Step $4>$
Lemma 1. If $x_{0} \in\left[\frac{1}{2}, 1\right) \backslash H$ and p is a constant function, the assumption of Proposition 3 holds.

Lemma 2. If $x_{0} \in H$, there exists $p_{0} \in C^{1}[0,1]$ such that the assumption of Proposition 3 holds.

Admitting these lemmas for the moment, we continue the proof of Theorem 1.

If $x_{0} \in\left[\frac{1}{2}, 1\right) \backslash H$, there exists $\hat{g} \in G$ such that $K_{\hat{g}}\left(x_{0}, x_{0} ; 0,0\right) \neq 0$ by Lemma 1. Let

$$
U_{x_{0}}=\left\{p \in C^{1}[0,1] ; K_{\dot{g}}\left(x_{0}, x_{0} ; p, p\right) \neq 0\right\} .
$$

Then $U_{x_{0}}$ is an open set. $F(t)=K_{\hat{g}}\left(x_{0}, x_{0} ; t p_{0}, t p_{0}\right)$ is an entire function with respect to t for any $p_{0} \in C^{1}[0,1]$, so the zeros of F are discrete. Therefore $U_{x_{0}}$ is dense in $C^{1}[0,1]$. And $p \in U_{x_{0}}$ implies that $\tilde{M}_{p, a, x_{0}} \neq\{p\}$ for any $a \in L^{2}(0,1)$ by Proposition 3 and Lemma 1.

If $x_{0} \in H$, then we proceed in the same way as above. This completes the proof of Theorem 1 in the case of $x_{0} \in\left[\frac{1}{2}, 1\right)$.

We next explain the proof of Lemma 1 and 2. Lemma 1 follows from a direct calculation, so we consider only Lemma 2.

Proof of Lemma 2. Let $x_{0}=\frac{2 k}{2 k+1}$ and devide D as in Figure 2.

\langle Figure 2\rangle

We then have

$$
\begin{equation*}
K_{g}\left(x_{0}, x_{0} ; p, p\right)=2 \sum_{j=1}^{k}(-1)^{k+j-1} \iint_{D_{j}} R(p) K_{g}(p) d x d y \tag{4.2}
\end{equation*}
$$

where $R(p)(x, y)=p(x)-p(y), K_{g}(p)=K_{g}(x, y ; p, p)$. Let $g=x^{2}-2 x_{0} x+$ $2 x_{0}-1 \in G$, and assume that $K_{g}\left(x_{0}, x_{0} ; p, p\right)=0$ for any $p \in C^{1}[0,1]$. We differentiate (4.2) at $p=0$, then we have

$$
\begin{equation*}
\sum_{j=1}^{k}(-1)^{j} \iint_{D_{j}} R(p) K_{g}(0) d x d y=0 \tag{4.3}
\end{equation*}
$$

for any $p \in C^{1}[0,1]$. We now put $p(x)=x$ in the left-hand side of (4.3), then we have "the left-hand side of $(4.3) "=\frac{\left(x_{0}-1\right)^{5}\left(89+61 x_{0}\right)}{180} \neq 0$. This is a contradiction, so there exists p_{0} such that $K_{g}\left(x_{0}, x_{0} ; p_{0}, p_{0}\right) \neq 0$.
(II) The case of $x_{0} \in\left(0, \frac{1}{2}\right)$.

Let $f \in C^{1}[0,1], f(1)=0, f=0$ on $\left[0,2 x_{0}\right]$ and f does not vanish identically on $[0,1]$. For $p, q \in C^{1}[0,1]$ and f, there exists $K \in C^{2}(\bar{D})$ satisfying (3.1), (3.3), (3.4) and $K_{y}(x, 0)=f(0 \leq x \leq 1) . K$ is uniquely determined. We remark that K satisfies (3.5) and (3.6) by the assumptions on f. We now consider the map

$$
T_{f}: q \longmapsto 2 \frac{d}{d x} K(x, x)+p
$$

If $\|f\|_{C^{1}[0,1]}$ is sufficiently small, then T_{f} is a contraction map on some ball in $C^{1}[0,1]$. We can then argue as before.

5 Other observations and stability

We briefly explain what occurs when we take different observations. We first consider:

$$
\begin{equation*}
\left\{u_{x}(t, 0), u\left(t, x_{0}\right) ; T_{1} \leq t \leq T_{2}\right\} \quad\left(x_{0} \in(0,1]\right) \tag{1}
\end{equation*}
$$

For this observation, we define $M_{p, a, x_{0}}^{\prime}, \tilde{M}_{p, a, x_{0}}^{\prime}$ in the same way as $M_{p, a, x_{0}}$, $\tilde{M}_{p, a, x_{0}}$, respectively. In this case, we have
Theorem 3. For each $x_{0} \in(0,1]$,

$$
\left\{p \in C^{1}[0,1] ; \quad \tilde{M}_{p, a, x_{0}}^{\prime} \neq\{p\} \text { for any } a \in L^{2}(0,1)\right\}=C^{1}[0,1] .
$$

We next consider:

$$
\begin{equation*}
\left\{u_{x}(t, 0), u_{x}\left(t, x_{0}\right), u\left(t, x_{0}\right) ; \quad T_{1} \leq t \leq T_{2}\right\} \quad\left(x_{0} \in(0,1]\right) . \tag{2}
\end{equation*}
$$

We define $M_{p, a, x_{0}}^{*}, \tilde{M}_{p, a, x_{0}}$ in the same way as above. Then we have Theorem 4.
(i) If $x_{0}=1, \tilde{M}_{p, a, x_{0}}=\{p\}$ holds if and only if $N_{p, a}=0$.
(ii) If $x_{0} \in\left(\frac{1}{2}, 1\right)$ and $N_{p, a}<+\infty$, then $\tilde{M}^{*}{ }_{p, a, x_{0}}=\{p\}$.
(iii) If $x_{0}=\frac{1}{2}, \tilde{M}^{*}{ }_{p, a, x_{0}}=\{p\}$ holds if and only if $N_{p, a} \leq 1$.
(iv) If $x_{0} \in\left(0, \frac{1}{2}\right)$, for any $p \in C^{1}[0,1]$ and any $a \in L^{2}(0,1)$, we have $\tilde{M}^{*}{ }_{p, a, x_{0}} \neq\{p\}$.

For $q \in C^{1}[0,1]$, we consider a bounded operator

$$
\begin{array}{ccc}
\Lambda_{q}: \quad L^{2}(0,1) & \longrightarrow C^{0}(I) \times C^{0}(I) \\
a & \longmapsto\left(u_{x}(t, 0), u_{x}(t, 1)\right),
\end{array}
$$

where $u=u(t, x)$ is the solution of $\left(E_{q, a}\right)$ and $I=\left[T_{1}, T_{2}\right], T_{1}>0$. By Theorem 0.1 , it is easy to see that $\Lambda_{q_{0}}=\Lambda_{q_{1}}$ implies $q_{0}=q_{1}$. So, the map $q \mapsto$ Λ_{q} is injective. To study the continuity of the inverse map is an interesting problem. Using the result of [2], we obtain :

Theorem 5. Let $\left\{q_{j}\right\}_{j=1}^{\infty} \subset C^{1}[0,1]$ and $\sup _{j}\left\|q_{j}\right\|_{L^{2}(0,1)}<+\infty$, then $\Lambda_{q_{j}} \rightarrow \Lambda_{q_{0}}$ in $B\left(L^{2}(0,1), C^{0}(I) \times C^{0}(I)\right)$ if and only if $q_{j} \rightarrow q_{0}$ in $L^{2}(0,1)$ weakly.

References

[1] R. Murayama, The Gel'fand-Levitan theory and certain inverse problems for the parabolic equation, J. Fac. Sci. Univ. Tokyo Sec. IA 28 (1981), 317-330.
[2] J. Pöschel and E. Trubowitz, Inverse Spectral Theory, Academic Press
(1987).
[3] T. Suzuki, Gel'fand-Levitan theory, deformation formula and inverse problems, J. Fac. Sci. Univ. Tokyo Sec. IA 32 (1985), 223-271.
[4] T. Suzuki, Inverse problems for heat equations on compact intervals and on circles I, J. Math. Sci. Japan 38 (1986), 39-65.

Department of Mathematics
Faculty of Science
Osaka University
Toyonaka, Osaka 560
Japan.

