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STABILIZATION OF HOMOLOGY GROUPS OF
SPACES OF MUTUALLY DISJOINT DIVISORS

ANDRZEJ KOZLOWSKI

Toyama International University

This talk will be closeiy related to the one given at this conference by Kohhei
Yamaguchi [GKY2] concerning our joint work with Martin Guest [GKYI]. In par-
ticular, I shall give a detailed proof of a result that is one of the key steps in that
work. However, my point of view will be somewhat different from that of Yamaguchi’s
talk, which was concerned mainly with its homotopic aspects. By contrast, I am going
to concern myself only with matters involving homology, and in particular with one
method of proving a certain type of homological result, originally developed by Arnold
[A]. Let us start by describing Arnold’s original idea.

Let $C_{d}$ denote the space of complex monic polynomials of degree $d(i$ . $e$ . polynomials
of the form $a_{0}+a_{1}z+a_{2}z^{2}+\cdots+z^{d}$), which have no repeated roots. Let $i_{d}$ denote an
inclusion $i_{d}$ : $C_{d}arrow C_{d+1}$ , which we shall describe presently. Arnold proved

Theorem 1. The map $i_{d}^{*}$ is an isomorphism on homology $groupsH_{i}(C_{d})arrow H_{i}(C_{d+1})$

up to dimension $[d/2]$ and is surjective in dimension $[d/2]$ (where $[x]$ denotes the integer
part of $x$).

Note first that the space $C_{d}$ of monic polynomials without repeated roots is simply the
configuration space of $d$ distinct points of $\mathbb{R}^{2}=\mathbb{C}$. Thus its homology is the homology
of the braid group $B(d)$ . One way to define the stabilization (or inclusion) map is to
take as $C_{d}$ the space of configurations of points in an open half-plane, (which is, of
course, homeomorphic to the original configuration space) and adjoin a fixed point in
the other half-plane.

I shall first give a proof of the above theorem of Arnold, in a simplified version due
to Graeme Segal [$S$ , Appendix].

Proof. The proof depends on making use of Poincar\’e Duality. Note that the space $C_{d}$

is a $2d$-dimensional open orientable manifold. By Poincar\’e Duality

$H_{i}(C_{d})\cong H_{c}^{2d-i}(C_{d})$ ,

where $H_{c}^{j}(X)$ denotes cohomology of $X$ with compact supports (which can be thought
of as the usual cohomology of the one point compactification $x_{+}$ ). The inclusion $i_{d}$ :
$C_{d}arrow C_{d+1}$ extends to an open embedding

$\hat{i}_{d}$ : $\mathbb{R}^{2}\cross C_{d}arrow C_{d+1}$ ,
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and the statement of Arnold’s Theorem is equivalent to the assertion

$(*)_{d}$ $\hat{i}_{d}$ is a compact cohomology equivalence above dimension $2(d+1)-[d/2]$

(Here by a compact cohomology equivalence above dimension $n$ we mean a map which
is an equivalence on $H_{c}^{i}$ when $i>n$ and a surjection when $i=n$).

Clearly $(*)_{1}$ holds.
Assume inductively that $(*)_{d}$ holds for $d<n$ . We’introduce the following filtration

on the space of $aU$ monic polynomials of degree $n$ (which is, of course, just $\mathbb{C}^{n}$ ): we
can identify a (complex) monic polynomial $f$ of degree $n$ with the divisor $\xi$ of degree $n$

composed of its roots, $i$ . $e$ . $\xi=\sum_{i=1}^{n}\alpha_{i}$ , where $\alpha_{i}$ are the roots of $f$ .
Here by a divisor of degree $d$ on a manifold $M$ we simply mean an element of the

symmetric product $Sp^{d}(M)$ . Any such divisor can be written in the form $\xi=2\eta+\zeta$ ,
where the points in $\zeta$ all have multiplicity 1.

Let $P_{n,k}$ consist of the divisors $\xi=2\eta+\zeta$ with $\deg(\eta)\geq k$ .
We then have

$P_{n}=P_{n,0}\supset P_{n,1}\supset P_{n,2}\supset\ldots$ ,

Note that $P_{n,k}-P_{\iota,k+1}=C_{n-2k}\cross Sp^{k}(\mathbb{C})=C_{n-2k}\cross \mathbb{C}^{k}$. (By the Fundamental
Theorem of Algebra $Sp^{k}$ (C)–the k-fold symmetric product of C–is homeomorphic to
$\mathbb{C}^{k})$.

Next, consider the exact sequence of cohomology with compact supports

$...arrow H_{c}^{i}(P_{n,k}\backslash P_{n,k+1})arrow H_{c}^{i}(P_{n,k})arrow$ $H_{c}^{;}(P_{n,k+1})$ $arrow H_{c}^{1+1}(P_{n,k}\backslash P_{n,k+1})arrow\ldots$

Il
$H_{c}^{i}(C_{n-2k}\cross \mathbb{C}^{k})$

II
$H_{c}^{i-2k}(C_{n-2k})$

By downwards induction on $k$ we now show that

$(*)_{n,k}$ $\mathbb{R}^{2}\cross P_{n,k}arrow P_{n+1,k}$ is a compact cohomology equivalence

above dimension $2(n+1)-k-[n/2](=2k+2(n-2k+1)-[(n-2k)/2])$ , provided
$k>0$ .

This obviously holds for large $k$ , and the inductive step follows $hom$ the 5-1emma
and the commutative diagram

.. . $arrow H_{c}^{i}(\mathbb{R}^{2}\cross C_{n-k}\cross Sp^{k}(\mathbb{C}))arrow H_{c}^{i}(\mathbb{R}^{2}\cross P_{n,k})arrow H_{c}^{i}(\mathbb{R}^{2}\cross P_{n,k+1})arrow\ldots$

$\downarrow$ $\downarrow$ $\downarrow$

.. . $arrow H_{c}^{i}(C_{n+1-k}\cross Sp^{k}(\mathbb{C}))$ $arrow H_{c}^{i}(P_{n+1,k})$ $arrow H_{c}^{i}(P_{n+1,k+1})$ $arrow\ldots$
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However, since $P_{n,0}=\mathbb{C}^{n},$ $(*)_{n,0}$ also holds, and the result follows from the commu-
tative diagram

.. . $arrow H_{c}^{i}(\mathbb{R}^{2}\cross C_{n})arrow H_{c}^{:}(\mathbb{R}^{2}\cross P_{n,0})arrow H_{c}^{:}(\mathbb{R}^{2}\cross P_{n,1})arrow\ldots$

$\downarrow$ $\downarrow$ $\downarrow$

$...arrow H_{c}^{i}(C_{n+1})$ $arrow H_{c}^{:}(P_{n+1,0})$ $arrow H_{c}^{i}(P_{n+1,1})$ $arrow\ldots$

$\square$

Actually, Arnold’s argument is more complicated and gives a lot more than just the
stabilization result. As mentioned above, this version is due to Segal, who generalized
both the result and its method of proof. Firstly, he extended the result to the space
of configurations of distinct points on any connected open manifold $M$ (to define a
stabilization map for arbitrary connected open manifolds one uses the notion of ends.
Up to homotopy there is one such map for each end.) And secondly, he used this
method to obtain homology stabilization results in his study of spaces $Ho1_{d}(M;\mathbb{C}P^{n})$

of holomorphic maps of degree $d$ , where $M$ is a Riemann surface of genus $g$ . Let’s next
see how Segal applied this method to the spaoe $Q_{d}$ of pairs of disjoint divisors $(\xi, \eta)$ in
$\mathbb{C}$ , which can be identified with the spaoe of rational (or, what amounts to the same
thing, holomorphic) maps $Ho1_{d}(S^{2};S^{2})$ (We shall consider the case of a Riemann surface
of non-zero genus a little later). In this case one obtains the following:

Proposition 2. The stabilization map $Q_{d}arrow Q_{d+1}$ given by adjoining distinct $r\omega ts$

$u_{farkom}$ th$e$ imaginary axis” to the divisors, is a homology $eq$ uivalence up to dimension
$d$ .

Proof. Segal’s proof of this result Is almost identical to the one given above. We define
a filtration on the space $Sp^{d}(\mathbb{C})\cross Sp^{d}(\mathbb{C})$ , by

$P_{d,k}=$ { $pairs$ of divisors $(\xi,\eta)$ : $\deg(\xi\cap\eta)\geq k$ }.

Then
$P_{d,k}\backslash P_{d,k+1}=Sp^{k}(\mathbb{C})\cross Q_{d-k}$ .

The inclusion $Q_{d}arrow Q_{d+1}$ again extends to an open embedding $\mathbb{C}^{2}\cross Q_{d}arrow Q_{d+1}$ ,
and the same holds for the inclusions $P_{d,k}arrow P_{d,k+1}$ .

We now proceed by induction. First, we assume that

$(**)_{d}$ if $m<d$ then $\mathbb{C}^{2}\cross Q_{m}arrow Q_{m+1}$ Is a compact cohomology
equivalenoe above dimension $j=4(m+1)-m=3m+4$

The statement $(**)_{1}$ is certainly true. Rom $(**)_{d}$ we deduce

$(\uparrow)_{d}$ lf $k>0$ then $\mathbb{C}^{2}\cross P_{d,k}arrow P_{d+1,k}$ ls a compact cohomology
equivalence above dimension $3d-k+4$
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As before, this is proved by downwards induction on $k$ . It is true for $k=d$ for then
$P_{d,d}=C^{d}$ , and $P_{d+1,d}$ has dimension $4(d+1)-2d=2d+4$. One passes Rom $k+1$ to
$k$ by applying the 5-1emma to the diagram

$...arrow H_{c}^{i}(\mathbb{C}^{2}\cross Q_{d-k}\cross Sp^{k}(\mathbb{C}))arrow H_{c}^{i}(\mathbb{C}^{2}\cross P_{d,k})arrow H_{c}^{:}(\mathbb{C}^{2}\cross P_{d,k+1})arrow\ldots$

$\downarrow$ $\downarrow$ $\downarrow$

$...arrow H_{c}^{i}(Q_{d+1-k}\cross Sp^{k}(\mathbb{C}))$ $arrow H_{c}^{:}(P_{d+1,k})’arrow H_{c}^{:}(P_{d+1,k+1})$ $arrow\ldots$

Note that for $i\geq 3d-k+4$ the homomorphism $H_{c}^{i}(\mathbb{C}^{2}\cross Q_{d-k}\cross Sp^{k}(\mathbb{C}))arrow H_{c}^{i}(Q_{d+1-k}\cross$

$Sp^{k}(\mathbb{C}))$ coincides with $H_{c}^{i-2k}(\mathbb{C}^{2}\cross Q_{d-k})arrow H_{c}^{:-2k}(Q_{d+1-k})$ and satisfies condition
$(**)_{d}$ , as $i\geq 3d-k+4\Rightarrow i-2k\geq 3d-3k+4=4((d-k)+1)-(d-k)$ .

Finally, by considering the cohomology sequenoe of the pair $(P_{d,0}, P_{d,1})$ , and using
the 5-1emma in the sane way as above, we obtain our result. (We make use of the fact
that $P_{n,0}=Sp^{n}(\mathbb{C})\cross Sp^{n}(\mathbb{C})=\mathbb{C}^{2n}.)$ $\square$

The above argument applies essentially without change to the case of holomorphic
maps of degree $d$ fiiom $S^{2}$ to $\mathbb{C}P^{n}$ , with $n>1$ . This space can be identified with the
spaoe of $(n+1)$-tuples of divisors $(\xi_{0},\xi_{1\circ}..,\xi_{n})$ , with empty intersection. Intuitive
considerations suggest that $\ddagger n$ this case the stabilization dimension should increase with
the number of polynomiais. Indeed, in the filtration $P_{n,0}\supset P_{n,1}\supset\ldots\supset P_{nn,)}=Sp^{n}(\mathbb{C})$

where $P_{n,k}=$ $\{(\xi_{0}, \ldots , \xi_{n}):\deg(\xi_{0}\cap\cdots\cap\xi_{n})\geq k\}$ , each layer has complex codimension
$n$ in the preceding one and we get the following

Proposition 3. The stabilization map $Q_{d}arrow Q_{d+1}$ given by adjoining distinct roots
to the divisors, is a homology equivalenoe up to dimension $(2n-1)d$.

So far we have not distinguished between monic polynomials and based rational maps
on the one hand, and divisors or tuples of divisors on the other. These concepts are
equivaient as long as we are concerned with based rational functions on $S^{2}$ , or tuples of
divisors in C. For Riemann surfaces the relation between rational functions and divisors
is described in the following

Proposition 4. Let $X$ be a Riemann $s$urface of genus $g>0$ , and let $X’=X\backslash x_{0}$ .
There is a map $j:Sp^{n}(X)arrow J$ , where $J$ is a torus of complex dimension $g$ associated
to $X$ (its Jacobian variety) such that

(a) $A$ $p$air $(\xi,\eta)\in Q_{n}(X)$ arises from a rational function on $X$ if and only if
$j(\xi)=j(\eta)$

(b) $j:Sp^{n}(X)arrow J$ is a smooth fibre $b$un$dle$ with fibre $\mathbb{C}P^{n-g}$ if $n\geq 2g-1$ .
(c) $j:Sp^{n}(X’)arrow J$ is a smooth fibre $b$undle with fibre $\mathbb{C}^{n-g}$ if $n\geq 2g$ .

Here part (a) is Abel’s theorem, part (b) is proved in [M] and part (c) follows from
(b). As a consequence of Proposition 4 one can deduoe results about rational functions
$hom$ results about divisors provided $n\geq 2g$ . Using Proposition 4 and Arnold’s method
Segal obtained the following generalization of Proposition 2 for Riemann surfaces of non
zero genus:
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Theorem 5 (Segal). Let $X$ be a Riemann $s$ urface ofgenus $g>0$ , and let $X’=X\backslash x_{0}$ .
Let $Q_{d}^{9}$ denote the spaoe of $(n+1)$-tuples of divisors of degree $d$ on $X’$ , with empty
intersec$tio$ . Then the stabilization $mapQ_{d}^{g}arrow Q_{d+1}^{g}$ is a homology equivalenoe up to
dimension $(d-2g+1)(2n-1)$ when $g\neq 0$ and $(2n-1)d$ when $g=0$ .

Of course this theorem could equally well be stated for holomorphic functions
$Ho1_{d}(M_{g};\mathbb{C}P^{n})$ .

However, another natural way to generalize Proposition 2 is to consider n-tuples of
divisors which are mutually disjoint, $i$ . $e$ . the set $E_{d}^{n}=\{(\xi_{1}, \xi_{2}, \ldots\xi_{n})$ : $\deg\xi_{i}=$

$d$ and $\xi_{i}\cap\xi_{j}=\emptyset$ for $i\neq j$ }. This space is in some ways more analogous to the case
of pairs of divisors (and like the latter but unlike the case of $(n+1)$-tuples of divisors
$(n>1)$ , it is not simply-connected). We refer to these spaces as (Epshtein spaces”,
after S. I. Epshtein, who in [E] first computed their fundamental groups (His results
include that of Jones, which states that $\pi_{1}(Q_{d})=\mathbb{Z}$ . Jones‘ argument is reproduced in
[S]). For Epshtein spaces we shall prove

Theorem 6. Let $M$ be an Riemann surface and let $E_{d}$ denote the spaoe of n-tuples of
mutually disjoin$t$ divisors of degree $d$ on M. Then the stabilization map $E_{d}arrow E_{d+1}$ is
a homology equivalenoe up to dimension $d$ .

As explained in Yamaguchi’s talk, when $M$ is the Riemann sphere we can in fact
determine the homotopy type of these spaces up to dimension $d$ . Note that $M=S^{2}$

and $n=2$ this result coincides with Segal’s. When $M$ is a Riemann surface of genus
$g>0$ our result is an improvement on the Segal result for divisors (though not for
holomorphic maps!)

Before proving Theorem 6, we shall use the same technique to prove a natural gener-
alization of Proposition 1 of Arnold. Let $\hat{E}_{d}^{n}$ denote the Epshtein spaoe of $(n+1)$-tuples
of monic polynomials, with the additional condition that they have no repeated roots,
or more generally the set of $(n+1)$-tuples of distinct subsets of cardinality $d$ of points
of any connected open manifold $M$ . We can prove

Theorem 7. For any $n$ the space $\hat{E}_{d}^{n}$ stabilizes in homology up to dimension $[d/2]$ .
Theorem 7 will follow from a more general result. First, for positive integers $d_{1},$ $d_{2},$

$\ldots$ ,
$d_{m}$ and an open manifold $M$ , let $\hat{E}(d_{1}, d_{2}, \ldots d_{m}, M)$ be the spaoe of mutually disjoint
sets of points in $M$ of cardinality $d_{1},$ $d_{2},$ $\ldots d_{m}$ . (These spaces have recently played an
important role in the study of representations of braid groups.) By adding a particle
“at infinity” in a standard way, for each $1\leq s\leq m$ , we have the s-th stabilization map

$j_{s}$ : $\hat{E}(d_{1}, d_{2}, \ldots,d_{m} : M)arrow\hat{E}(d_{1}, d_{2}, \ldots, d_{s}+1, \ldots d_{m} : M)$ .

Theorem 8. If $M$ is a connected open manifold of dimension $\geq 2$ , the stabilization
$map$

$j_{s}$ : $\hat{E}(d_{1},d_{2}, \ldots,d_{m} : M)arrow\hat{E}(d_{1}, d_{2}\ldots,d_{s}+1, d_{m} : M)$.
$is$ a homology $eq$ uivalenoe up to dimension $[d_{s}/2]$ .



113

Corollary. If $M$ is a connected open manifold of dimension $\geq 2$ , the $sta$bilization $map$

$j$ : $\hat{E}(d_{1},d_{2}, \ldots,d_{m} : M)arrow\hat{E}(d_{1}+1,d_{2}+1\ldots, d_{m}+1 : M)$.

is a homology $eq$ uivalenoe up to dimension $[d/2]$ , where $d= \min\{d_{s} : 1\leq s\leq m\}$ .

Proof. Consider the stabilization map $\hat{E}(d_{1}, d_{2, )}d_{n})arrow\hat{E}(d_{1}+1, d_{2}, \ldots, d_{n})$ with
respect to the first set of points, and the projection map onto the remaining set of points.
The projection $\hat{E}(d_{1}, d_{2}, \ldots, d_{n})arrow\hat{E}(d_{2},d_{3}, \ldots , d_{n})$ is a bundle map, with the fibre
$C_{d_{1}}$ ($M\backslash \{(d_{2}+d_{3}+\ldots d_{n})$ points}) (where $C_{k}(M)$ denotes the spaoe of configurations
of n-points on $M$), which Is a connected open manifold. The stabilization map induces
a map of bundles

$\hat{E}(d_{1},d_{2}\downarrow\ldots , d_{n})arrow\hat{E}(d_{1}+1,d..d_{n})\downarrow^{2}’.,$

$\hat{E}(d_{2}, \ldots,d_{n})$ $=$ $\hat{E}(d_{2}, \ldots,d_{n})$

with the induced map on the fibres the stabilization map
$C_{d_{1}}(M\backslash \{(d_{2}+d_{3}+\cdots+d_{n})points\})arrow C_{d_{1}+1}$( $M\backslash \{(d_{2}+d_{3}+\cdots+d_{n})$ points}).
By Segal’s generalization of Arnold’s theorem this map is a homology equivalenoe up
to dimension $[d_{1}/2]$ , henoe so is the map on $\hat{E}(d_{1},d_{2},d_{3}, \ldots, d_{n})$. Theorem 8 follows.

We prove Theorem 6 by using essentially the same method.
First, for positive integers $d_{1},d_{2},$ $\ldots,d_{m}$ and a Riemann surface $M$ , let $E(d_{1},d_{2},$ $\ldots d_{m}$ :

$M)$ be the space

{ $(\xi_{1},\xi_{2},$ $\ldots,\xi_{m})$ : $\xi_{k}\in Sp^{d_{k}}(M)$ and $\xi:\cap\xi_{j}=\emptyset$ if $i\neq j$ }.

By adding a particle at infinity in a standard way, for each $1\leq s\leq m$ , we have the s-th
stabilization map

$j_{s}$ : $E(d_{1},d_{2}, \ldots,d_{m} : M)arrow E(d_{1}, d_{2}, \ldots, d_{s}+1, \ldots d_{m} : M)$ .

Again, Theorem 6 will follow from a more general result:
Theorem 9. If $M$ is a connected Rieman$n$ surface, the stabiliza$tIonmap$

$j_{s}$ : $E(d_{1},d_{2}, \ldots,d_{s}\ldots d_{m} : M)arrow E(d_{1}, \ldots,d_{s}+1, \ldots,d_{m} : M)$ ,

$is$ a homology equivalenoe up to dimension $d_{s}$ .
Corollary. If $M$ is a connected Riemann $s$ urface, the $sta$bilization map

$j$ : $E(d_{1},d_{2}, \ldots,d_{m} : M)arrow E(d_{1}+1,d_{2}+1\ldots,d_{m}+1 : M)$ ,

is a homology equivalenoe up to dimension $d$ , where $d= \min\{d_{s} : 1\leq s\leq m\}$ .
We shall only prove Theorem 9 in the case $m=3$, as the general case is quite

analogous.
We shall need a lemma.



114

Lemma 10. If $X$ is a connected based CW-complex, the natural inclusion map

$j:Sp^{d}(X)arrow Sp^{d+1}(X)$

$is$ a homot$opy$ equivalenoe up to dimension $d$ .

Proof. We can suppose that $X$ has only one zero cell. Then $Sp^{d+1}(X)$ is a cell complex,
with a typical cell of dimension $k$ of the form $[\sigma_{1}\cross\sigma_{2}\cross\ldots\sigma_{d+1}]$ with $k_{1}+k_{2}+\cdots+k_{d+1}=$

$k$ , where $k_{:}$ is the dimension of the cell $\sigma:$ . Thus in a cell of dimension $\leq d$ at least
one of the cells $\sigma_{i}$ must be the zero dimensional cell. This means that the $d$ skeleton of
$Sp^{d+1}$ lies in $Sp^{d}$ , whenoe the result follows. $\square$

Proof of Theorem 9. We shffi consider only the case of triples of mutually prime monic
polynomiak $(p,q,r)$ , where $\deg p=d_{1},$ $\deg q=d_{2}$ and $\deg r=d_{3}$ . We shall stabilize
with respect to the first polynomial (by adjoining a root in the way described earlier) and
consider the projection on to the remaining two polynomials. In other words, consider
the map

$E(d_{1},d_{2},d_{3}) \prod_{arrow}E(d_{2},d_{3})$

$(p,q,r)rightarrow(q,r)$

Let us now introduoe abi-filtration on $E(d_{2}, d_{3})$ by defining $B_{:,j}=\{(q,r)$ : $q$ has at least $i$

distinct roots and $r$ has at least $j$ distinct roots}. Let $E_{i}^{d_{j}}=\Pi^{-1}(B_{i,j})$ and let
$X_{1j}^{d}=E_{1j}^{d}\backslash (E^{d_{+1,j}}\cup E_{1j+1}^{d})$. In other words, $X_{i}^{d_{j}}$ consists of triples $(p,q,r)$ of mu-
tually coprime monic polynomials of degrees $d,d_{2}$ and $d_{3}$ respectively, such that $q$ has
exactly $i$ distinct roots and $r$ has exactly $j$ distinct roots. Note that $E_{d_{2},d_{3}}^{d}=X_{d,d_{3}}^{d_{2}}$ and
$E_{0.0}^{d}=E(d, d_{2}, d_{3})$ . Next, note that the map $\Pi|X_{i,j}$ : $X_{i,j}arrow Y_{:,j}$ (where $Y_{:,j}=\Pi(X_{i,j})$)

is a fibre bundle, with fibre $Sp^{d}$ ($M\backslash \{(i+j)$ points}).
Now, consider the stabilization map $E(d_{1}, d_{2}, d_{3})arrow E(d_{1}+1, d_{2},d_{3})$ . It gives rise

the following diagram of fibre bundles

$x_{i^{j}}^{d_{1}}arrow X_{i}^{d_{1}+1}\downarrow^{j}$

$Y_{1,j}=$ $Y_{i,j}$

Since, by Lemma 10, the map induced on the fibres is a homology equivalenoe up to
dimension $d_{1}$ , this holds also for the total spaces (the base spaces being the same). So
we can assume that each of the maps $X_{i,j}^{d_{1}}arrow X_{i,j}^{d_{1}+1}$ is a homology equivalence up to
dimension $d$ . Note that $E_{d_{2^{1}},d_{3}}^{d}arrow E_{d_{2^{1}},d_{3}}^{d+1}$ is a homology equivalenoe up to dimension
$d_{1}$ , since It coincides with the map $X_{d_{2},d_{3}}^{d_{1}}arrow X_{d_{2},d_{3}}^{d_{1}+1}$ . Consider the map $E_{1)j}^{d_{1}}arrow E_{i)j}^{d_{1}+1}$ ,
with $i+j=k$ and suppose by induction that $E_{i,j}^{d_{1}}arrow E_{i)j}^{d_{1}+1}$ is a homology equivalence
up to dimension $d_{1}$ , for $i+j>k$ .
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Note that the stabilization map $E(d_{1},d_{2},d_{3})arrow E(d_{1}+1, d_{2}, d_{3})$ (and each of the
other stabilization maps induced by it) extends to an open embedding $\mathbb{R}^{2}\cross E(d_{1}, d_{2},d_{3})arrow$

$E(d_{1}+1, d_{2}, d_{3})$ , of orientable open manifolds of dimension $2(d_{1}+d_{2}+d_{3}+1)$ . Hence,
by Poincar\’e Duality, the statement we are trying to prove is equivalent to the as-
sertion that $H_{c}^{i}(\mathbb{R}^{2}\cross E(d_{1}, d_{2}, d_{3}))arrow H_{c}^{:}(E(d_{1}+1,d_{2},d_{3}))$ is an isomorphism for
$i>2(d_{1}+d_{2}+d_{3}+1)-d_{1}$ and surjective for $i=2(d_{1}+d_{2}+d_{3}+1)-d_{1}=d_{1}+2d_{2}+2d_{3}+2$ .

We shall next prove inductively that the map $H_{c}^{i}(\mathbb{R}^{2}\cross E_{i,j}^{d_{1}})arrow H_{c}^{:}(E_{i,j}^{d_{1}+1})$ is an
isomorphism for $i>2(d_{1}+d_{2}+d_{3}+1)-d_{1}$ and is surjective for $i=2(d_{1}+d_{2}+d_{3}+1)-d_{1}=$

$d_{1}+2d_{2}+2d_{3}+2$ .
First note that this is true for $i+j=d_{2}+d_{3}$ , sinoe the spaoe $E_{d_{2},d_{3}}^{d_{1}}=X_{d_{2^{1}},d_{3}}^{d}$ is an

open orientable manifold of dimension $2(d_{1}+d_{2}+d_{3}+1)$ . Now, suppose by induction
it holds for all $i+j<k$ . Then, since $E_{i+1,j}^{d_{1}}\cap E_{j+1}^{d_{1}}=E_{i+1,j+1}^{d_{1}}$ , it follows from the
Mayer-Vietoris sequenoe in cohomology with compact supports (see $[B$ , p. 65]) that it
holds for $\mathbb{R}^{2}\cross(E_{i+^{1}1,j}^{d}\cup E_{i,j+1}^{d_{1}})arrow E_{i+^{1}1,j}^{d+1}\cup E_{i,j}^{d_{1}}\ddagger^{1}1$ Now consider the long exact sequence
of cohomology with compact supports for the pair $(E_{i,j}^{d_{1}},E_{+^{1}1,j}^{d}\cup E_{i,j+1}^{d_{1}})$:

$...arrow H_{c}^{k}(\mathbb{R}^{2}\cross X_{i,j}^{d_{1}})$ $arrow H_{c}^{k}(\mathbb{R}^{2}\cross E_{1)j}^{d_{1}})$ $arrow H_{c}^{k}(\mathbb{R}^{2}\cross(E_{i+1,j}^{d_{1}}\cup E_{i,j+1}^{d_{1}}))arrow\ldots$

$\downarrow$ $\downarrow$ $\downarrow$

$...arrow H_{c}^{k}(\mathbb{R}^{2}\cross X_{i,j}^{d_{1}+1})arrow H_{c}^{k}(\mathbb{R}^{2}\cross E_{\dot{\iota},j}^{d_{1}+1})arrow H_{c}^{k}(\mathbb{R}^{2}\cross(E_{+1,j}^{d_{1}+1}\cup E_{j}^{d_{1}}\ddagger^{1}1))arrow\ldots$

From the five lemma and the inductive hypothesis it now follows that the statement $\ddagger s$

valid for the map $E_{i)j}^{d_{1}}arrow E_{i)j}^{d_{1}+1}$ . Hence, going down by induction it is valid for

$E_{0^{1}0}^{d}$ $arrow$ $E_{0^{1}0}^{d+1}$

$\Vert$ $\Vert$

$E(d_{1},d_{2}, d_{3})arrow E(d_{1}+1,d_{2},d_{3})$

This proves our theorem.
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