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ON GLOBAL WEAK SOLUTIONS

OF THE NONSTATIONARY TWO-PHASE

STOKES FLOW

Yoshikazu Giga and Shuji Takahashi

儀我 美一 (北大\cdot 理)

高橋　秀慈 (北大・理)

Abstract. A global-in-time weak solution of the nonstationary two-phase Stokes

fiow is constructed for arbitrary given initial domains (under periodic boundary condition)

when two viscosities are close. We overcome the difficulty that the interface may develop

singularities through the idea of viscosity solution. Surface tention effects are ignored here.

1. Introduction

This paper studies the dynamics of the interface (free boundary) of two immiscible

incompressible viscous fluids with same constant density, say one. We are interested in slow

motions so that each fluid velocity satisfies the Stokes equations with different viscosities.

The interface is assumed to move with the fluid velocities. No surface tension on the

interface is considered in this paper.

Let $\iota/\pm be$ the viscosities of each fluid. Let $\Omega_{\pm}(t)$ the disjoint open sets in a bounded

open rectangle $R(\subset R^{n}(n\geq 2))$ occupied with the fluids of viscosities $l\nearrow\pm at$ time $t$ ,

respectively. The complement of the union of $\Omega_{+}(t)$ and $\Omega_{-}(t)$ is called the interface and

denoted by $\Gamma(t)$ . To write down the equation we assume that the interface $\Gamma(t)$ is a smooth

hypersurface so that $\Gamma(t)$ is the boundary of $\Omega_{\pm}(t)$ . Let $u\pm=u\pm(t, x)$ and $\pi\pm=\tau/\pm(t, c\iota\cdot)$

denote the velocities and pressures of fluids with viscosities $\iota/\pm$ , respectively. The motion

of the fluids determines the dynamics of the interface. Let $V=V(t, x)$ denote the speed of
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$\Gamma(t)$ at $x\in\Gamma(t)$ in the normal direction $n$ from $\Omega_{+}(t)$ to $\Omega_{-}(t)$ . We consider an interface

equation for $\Gamma(t)$ :

(1.1) $V=u+\cdot n$ on $\Gamma(t)$

coupled with the incompressible Stokes system:

(1.2) $\partial_{t\pm}u-\nu\pm\triangle u\pm+\nabla\pi\pm=\nabla\cdot f\pm$ in $(0, T_{0})\cross\Omega\pm(t)$

(1.3) $\nabla\cdot u\pm=0$ in $(0, T_{0})\cross\Omega\pm(t)$

(1.4) $u+=u_{-}$ on $\Gamma(t)$

(1.5) $T_{+}(u+, \pi_{+})\cdot n=T_{-}(u_{-}, \pi_{-})\cdot n$ on $\Gamma(t)$

(1.6) $u\pm(0, x)=0$ in $\Omega_{\pm}(0)$ ,

where $\tau_{\pm}(u\pm, \pi\pm):=\nu\pm D(u\pm)-\pi\pm I$ denotes the stress tensors with

$D(u)$ $:= \frac{\partial u^{k}}{\partial x_{\ell}}+\frac{\partial u^{f}}{\partial x_{k}}$ .

Here $0<\iota/-<\nu+<\infty,$ $0<T_{0}\leq\infty$ and $f=(f_{ij}(t, x))(i,j=1, \cdots n)$ . The initial

velocities are assumed to be zero for simplicity.

Our goal is to construct global weak solutions of the two-phase Stokes system $(1.1)-$

(1.6) for arbitary given initial domains $\Omega\pm 0$ and external force $f\pm under$ the assumption

that $\nu_{+}$ and u-are close. Here we impose periodic boundary conditions to avoid technical

difficulties. Although local solutions have been constructed (cf. [Den]), there is an intrinsic

difficulty to construct global solutions since the interface $\Gamma(t)$ may have singularities in a

finite time.

We first introduce a weak formulation of the transport equation (1.1). Since our

domain $\Omega_{\pm}(t)$ may not be regular, we consider a generalized evolution of (1.1) through a

level set of an auxiliary function. This idea goes back to [ESou]. Recently, the level set

approach is extended to other equations including the mean curvature flow equations (cf.

[ES], [CGGI]). However, our $u$ is merely continuous, so one cannot apply these known

theories directly to our setting. We are forced to extend the definition of generalized

evolutions to (1.1). It turns out that our generalized evolution uniquely exists for aluy

initial domains and any continuous velocity $u$ .
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Using the above interpretation of (1.1), we next introduce a two-valued function $\nu$ to

give an weak formulation of $(1.2)-(1.6)$ . The region occupied with high (low) viscous fluid

corresponds to the place where $\nu$ takes the value $\nu_{+}(\nu_{-})$ . The interface corresponds to

a jump discontinuity of $\nu$ . The velocity $u$ is defined by $u=u+on\Omega+andu=u_{-}$ on
$\Omega_{-}$ , and also the pressure $\pi$ is defined in the same manner. The system (1.2) is formally

equivalent to

(1.7) $u_{t}-\nabla\cdot(\nu D(u))+\nabla\pi=\nabla\cdot f$ , in $(0, T_{0})\cross T$ ,

where $T$ is the torus obtained by identifying each ends of $R$ . The condition (1.5) is

implicitely in (1.7). The condition (1.4) is automatic if $u$ is assumed continuous. We thus

obtain an weak formulation of $(1.1)-(1.6)$ .

To construct solution we seek a fixed point of a mapping defined as follows. For

continuous function $v$ we solve (1.1) and find generalized evolution $\Omega_{\pm}^{v}$ . Let $\nu=\nu_{v}$ be a

two-valued function with $\nu=\nu\pm on\Omega_{\pm}^{v}$ and $\nu=(\nu++\nu_{-})/2$ outside $\Omega_{\pm}^{v}$ . We next solve

(1.7) with $\nabla\cdot u=0$ and $u(O, x)=0$ , and obtain a mapping $S:v u$ . Unfortunately $S$ is

not continuous, so Leray-Schauder’s fixed point theory does not apply. We extend mapping
$S$ to an upper semi-continuous convex set-valued mapping so that we apply Kakutani’s

fixed point theory. To apply Kakutani’s theory we need a compactness which follows from

a priori $L^{p}$ estimates (for large p) for the Stokes system with discontinuous viscosity. Here

a perturbation argument is applied which is similar to [Cam] and [GY]. To get $L^{p}$ estimates

for large $p$ we need to assume that $(\nu_{+}-\nu_{-})/\nu_{+}$ is sufficiently small.

Global solutions for the interface equations coupled with another equations are studied

in [GGI] and in [GY] in different contexts.

Finally we point out that Kohn and Lipton [KL] discussed homogenization problem

for the two-phase Navier-Stokes flow with no surface tension in a formal level.

We are grateful to Professor Hitoshi Ishii and Professor Hisashi Okamoto for criticism

of solutions of the transport equations.

2. Interface equations
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We consider the motion of interfaces with a given speed under periodic boundary

conditions. For $\alpha_{i}>0(i=1, \cdots n)$ let $R$ be a rectangle in $R^{n}$ of the form

$R=\{(x_{1}, \cdots x_{n})\in R^{n};0\leq x_{i}\leq\alpha_{i}, 1\leq i\leq 7\gamma\}$ .

We identify faces $x_{i}=0$ and $x_{i}=\alpha_{i}(1\leq i\leq n)$ of $R$ to get an n-dimensional flat torus T.

Motion of interfaces in $R$ under periodic boundary conditions is interpreted as the motion

in T. We consider $T$ rather than $R^{n}$ for technical convenience because $T$ is compact and

has no boundary. The periodic boundary condition is important because it is often used

in numerical experiments.

Let $\Omega+and\Omega_{-}$ be disjoint open sets in $M=[0, \infty$ ) $\cross T$ . Let $\Gamma$ denote the complenrent

of the union of $\Omega+and\Omega_{-}$ in $M$ . Phisically, $\Gamma(t)$ is called an interface at time $t$ bounding

two phases $\Omega_{\pm}(t)$ of fluids. Here $W(t)$ denotes the cross-section of $W\subset M$ at time $t$ , i.e.,

$W(t)=\{x\in T;(t, x)\in W\}$ .

Suppose that $\Gamma(t)$ is a smooth hypersurface and let $n$ denote the unit normal vector field

pointing from $\Omega_{+}(t)$ to $\Omega_{-}(t)$ . Let $V=V(t, x)$ denote the speed of $\Gamma(t)$ at $x\in\Gamma(t)$ in

the direction $n$ . Suppose that $u$ : $\overline{Q\tau}arrow R^{n}$ is a continuous vector field, i.e., $u\in C(\overline{Q_{T}})$

where $Q_{T}=(0, T)\cross T(0<T\leq\infty)$ and $\overline{Q_{T}}$ denotes the closure of QT in $M$ . Here and

hereafter we do not distinguish the space of real, vector or tensor valued functions. The

equation for $\Gamma(t)$ we consider here is

(2.1) $V=u\cdot n$ on $\Gamma(t)$ ,

where. denotes the standard inner product in $R^{n}$ .

If $u(t, x)$ is Lipschitz continuous in $x$ (uniformly in $t$ ), one can construct a unique short

time classical solution for a given smooth initial data $\Gamma(0)$ by a method of characteristics.

In this case a unique global-in-time weak solution is constructed in [GGI] by a level set

approach introduced by Y.-G. Chen, Giga and Goto [CGGI] and Evans and Spruck [ES].

However, if $u$ is merely continuous, classical solutions may not exist even for a short time

and they are not uniquely determined by the initial data even if they exist. The level set

approach as in [GGI] does not apply to this case so we are forced to extend the approach.
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By the way in [CGG2] we actually need to assume a uniform bound on the gradient of $T$

in [CGG2, (1.6)] and of $\omega$ in [CGG2, (2.13)] although it is not written there.

Largest and smallest solutions. Let $u\in C(\overline{Q_{T}})$ and $a\in C(T)$ . We say $\psi$ : $Q_{T}arrow R$

is a subsolution on QT of

(2.2) $\psi_{t}+(u\cdot\nabla)\psi=0$ in $Q_{T}$ ,

(2.3) $\psi(0, x)=a(x)$ ,

if $\psi$ is a viscosity subsolution of (2.2) on QT and $\psi_{*}(0, x)=a(x)$ , where $h_{*}$ denotes the

lower semicontinuous envelope of $h:Iarrow R$, i.e.,

$h_{*}(y)= \lim_{\epsilon\downarrow 0}\inf\{h(z);|z-y|<\epsilon, z\in I\},$
$y\in\overline{I}$ .

$If-\psi$ is a subsolution of $(2.2)-(2.3)with-a(x)$ , we say $\psi$ is a supersolution of $(2.2)-(2.3)$ .

If $\psi$ is super- and subsolution of $(2.2)-(2.3)$ , we simply say $\psi$ is a solution of $(2.2)-(2.3)$ .

As well known there is a comparison theorem on solutions provided that $|\nabla u|$ is

uniformly bounded. However, for general $u\in C(\overline{Q_{T}})$ there is no uniqueness of solutions of

$(2.2)-(2.3)$ . We thus consider largest and smallest solutions. Let A (resp. $\sigma$ ) be a solution

of $(2.2)-(2.3)$ . We say A (resp. $\sigma$ ) is a largest (resp. smallest) solution if $\lambda\geq\psi(resp.\sigma\leq\psi)$

for all other solutions $\psi$ of $(2.2)-(2.3)$ .

PROPOSITION 2.1. (i) Suppose that $\psi$ is a viscosi$tysub-$ ($\sup$er)solution of (2.2) on

$Q_{T}$ , where $u\in C(\overline{Q}_{T})$ . Then $\psi$ is also a viscosity $sub-(super)sol$ution of

(2.4) $\psi_{t}-L|\nabla\psi|=0$

(2.5) (resp. $\psi_{t}+L|\nabla\psi|=0$ )

on $Q_{T}$ with $L= \sup_{Q_{T}}|u|$ .

(ii) Suppose that $\psi$ is a viscosi$tysuper-(sub)sol$ution of (2.4) (resp. (2.5)). Then $\psi$ is also

a viscosity $super-(,sub)$ solution of (2.2) on $Q\tau$ .

PROOF: We only present the proof of (i) when $\psi$ is a viscosity subsolution of (2.2) because

the remaining three cases can be proved similarly. Suppose that $\zeta\in C^{2}(Q_{T})$ and $(t_{0}, x_{0})\in$
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$Q_{T}$ satisfy

$\max(\psi-\zeta)=(\psi-\zeta)(t_{0}, x_{0})Q\tau$

Since $\psi$ is a viscosity subsolution of (2.2),

$\zeta_{t}+(u\cdot\nabla)\zeta\leq 0$ at $(t_{0}, x_{0})$ .

The Schwarz inequality now yields

$\zeta_{t}-L|\nabla\zeta|\leq\zeta_{t}+(u\cdot\nabla)\zeta\leq 0$ at $(t_{0}, x_{0})$ ,

so $\psi$ is a viscosity subsolution of (2.4) on $Q\tau\cdot 1$

LEMMA 2.2. Suppose that $u\in C(\overline{Q_{T}})$ and $a\in C(T)$ . There are unique 1arges$tmcl$

smalles $t$ solutions A and $\sigma$ of $(2.2)-(2.3)$ , which are boun$ded$ on $e$very compact set in $\overline{Q_{T’}}$ .

$\lambda loreover,$ $\lambda$ and $\sigma are$ expressed as

(2.6) $\lambda(t, x)=\sup${ $\psi(t,$ $x);\psi$ is a $su$ bsolution of $(2.2)-(2.3)$},

(2.7) $\sigma(t, x)=\inf$ { $\psi(t,$ $x);\psi$ is a supersolution of $(2.2)-(2.3)$}.

PROOF: Let $\Lambda$ denote the right hand side of (2.6). As well known there is a unique

viscosity solution $\psi+(resp. \psi^{-})$ of (2.4) (resp. (2.5)) with (2.3). By Proposition 2.1 $1_{r^{j}}^{+}$

and $\psi^{-}$ are, respectively, super- and subsolution of $(2.2)-(2.3)$ . Also any subsolution $\psi$ of

(2.2)$-(2.3)$ is a subsolution of $(2.4)-(2.3)$ so a comparison theorem for (2.4) yields $\psi\leq\psi+$ .

By Perron’s method (cf. [Ish]) we see $\Lambda$ is a solution of $(2.2)-(2.3)$ with

$\psi^{-}\leq\Lambda\leq\psi^{+}$ .

Since $\psi^{\pm}$ is continuous on $\overline{Q\tau},$ $\Lambda$ is bounded on every compact set in $\overline{Q\tau}$ The solution $\Lambda$ is

a unique largest solution $\lambda$ because otherwise there would exist a solution $\varphi$ of $(2.2)-(2.3)$

which is not smaller than $\Lambda$ and this contradicts the definition of $\Lambda$ . We thus proved all

statements on $\lambda=\Lambda$ . The proof for $\sigma$ is completely parallel, so is omitted. I
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LEMMA 2.3 (Uniqueness of level sets). Let $\lambda$ and $\sigma$ be, respectively, the largest and

smallest solution$s$ of $(2.2)-(2.3)$ . Let

(2.8) $\Omega+=\{(t, x)\in[0, T)\cross T;\sigma_{*}(t, x)>0\}$ ,

(2.9) $\Omega_{-}=\{(t, x)\in[0, T)\cross T;\lambda^{*}(t, x)<0\}$ ,

$\iota\nu h$ ere $\lambda^{*}=-(-\lambda)_{*}$ . The set $\Omega+(resp. \Omega_{-})$ is completely determined by the $initi_{\dot{c}}\iota l$ dafil

$\Omega_{+}(0)$ (resp. $\Omega_{-}(0)$) and $u$ , and is independent of the choice of $a$ .

PROOF: Suppose that $a_{i}\in C(T)$ satisfies

$\Omega_{+}(0)=\{x\in T;a_{i}(x)>0\}$ with $i=1,2$ .

Let $\sigma_{i}$ denote the smallest solution of $(2.2)-(2.3)$ with $a=a_{i}$ . We first take $\theta\in C(R)$ which

is (strictly) increasing with $\theta(0)=0$ and $a_{1}\leq\theta(a_{2})$ . Such a function $\theta$ , of course, exists

(cf. [CGGI, Lemma 7.2]). Since the equation (2.2) is geometric, $\varphi=\theta(\sigma_{2})$ is a solution of

$(2.2)-(2.3)$ with $a=\theta(a_{2})$ (cf. [CGGI, Theorem 5.2] or [CGG2, Theorem 2.3]). Moreover

$\varphi$ is the smallest solution of $(2.2)-(2.3)$ with $a=\theta(a_{2})$ since otherwise $\sigma_{2}=\theta^{-1}(\varphi)$ is no

longer the smallest solution with $a=a_{2}$ .

We next observe that $\sigma_{1}\leq\varphi$ . Indeed, $\psi=\min(\sigma_{1}, \varphi)$ is a supersolution of $(2.2)-$

(2.3) with $a=a_{1}$ . If $\sigma_{1}\leq\varphi$ were not true, there would be $(t, x)\in$ QT such that

$\psi(t, x)<\sigma_{1}(t, x)$ . This contradicts the representation (2.7) of the smallest solution $\sigma_{1}$ .

The inequality $\sigma_{1}\leq\varphi$ yields

$\{(t, x);\sigma_{1*}(t, x)>0\}\subset\{(t, x);\sigma_{2*}(t, x)>0\}$ .

If we choose $\theta$ so that $a_{2}\leq\theta(a_{1})$ , the other side inclusion also holds so $\Omega_{+}$ is completely

determined by $\Omega_{+}(0)$ .

The proof for $\Omega_{-}$ is parallel, so is omitted. I

REMARK 2.4: Evans and Souganidis [ESou, Theorem 7.1] proved the uniqueness of

level sets when the equation (2.2) is

(2.10) $u_{t}+H(x, \nabla u)=0$ ,
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where $H$ : $R^{n}\cross R^{n}arrow R$ is uniformly Lipschitz, and positively homogeneous of degree

one in the second variable. In this case there is no need to consider largest and smallest

solutions because solutions of (2.10) with (2.3) are unique by comparison. The proof given

there is different from those in [CGGI, 2] and does not seem to apply to second order

equations. Of course the proof in [CGG1,2] does apply to second order equations.

Generalized evolution. Let $\Omega+(resp. \Omega_{-})$ be an open sets in $M$ . We say $\Omega+(resp$ .

$\Omega_{-})$ is $a+(resp. -)$ generalized evolution with speed $u\in C(\overline{Q_{T}})$ and the initial data $\Omega_{+}(0)$

(resp. $\Omega_{-}(0)$ ) on the interval $[0, T$) if there is a smallest (resp. largest) solution $\sigma$ (resp.

$\lambda)$ of $(2.2)-(2.3)$ with some $a\in C(T)$ such that (2.8) (resp. (2.9)) holds.

Note that the level sets of solutions of (2.2) independently move by (2.1) at least

formally. $The\pm depends$ on the orientation of the interface.

For a given open set $\Omega+0$ in $T$ there is $a\in C(T)$ satisfying $\Omega+0=\{x;a(x)>0\}$ , so

Lemmas 2.2 and 2.3 yield:

THEOREM 2.5. For a given open set $\Omega+0$ (resp. $\Omega_{-0}$ ) in $T$ there is a $unique+(resp$ .

$-)$ generaliz$ede$volution $\Omega+(resp. \Omega_{-})$ with speed $u\in C(\overline{Q_{T}})$ and the initial $d_{c’t}$ta

$\Omega\pm(0)=\Omega\pm 0$ on $[0, T$). If $\Omega+0$ and $\Omega_{-0}$ are disjoint, so are $\Omega+aI1d\Omega_{-}$ .

THEOREM 2.6 (Stability). Let $\Omega+j$ be the $+generalizedevol$ution with speed $\tau\iota_{j}\in$

$C(\overline{Q_{T}})$ and initi$al$ data $\Omega_{+J}(0)=\Omega+0$ on $[0, T$ ), where $j=1,2,$ $\cdots$ . Suppose that $u_{j}arrow u$

in $C(\overline{Q_{T}})$ as $jarrow\infty$ where $T<\infty$ . Let $\Omega_{\dagger}$ be $the+gen$eralized evol$u$ tion with speed $u$

and $\Omega_{+}(0)=\Omega+0$ on $[0, T$). For a $c$ompact set $K$ in $\Omega+,$ $K$ is also contained in $\Omega_{+j}$ for

sufficienily large $j$ . The same holds for–evolution.

PROOF: Let $\sigma_{j}$ be the smallest solution of

$\psi_{t}+(u_{j}\cdot\nabla)\psi=0$ , $\psi(0, x)=a(x)\in C(T)$

with $\Omega_{+0}=\{x;a(x)>0\}$ . By the stability result of Barles and Perthame [BP, Appendix]
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the function

$\varphi(t, x)$ $:= \lim_{*}\sigma_{j}(t, x)$

$:=j arrow\infty\lim_{\epsilon\downarrow 0}\inf\{\sigma_{j}(s, y);|t-s|<\epsilon, |y-x|<\epsilon i\}$

is a viscosity supersolution of (2.2) on QT since $u_{j}arrow u$ in $C(\overline{Q_{T}})$ . Let $L$ be a constant

such that $\sup_{Q_{T}}|u_{j}|\leq L$ for all $j$ . We take a continuous viscosity solution $\psi+(resp. \psi^{-})$

of (2.4) (resp.(2.5)) with (2.3). As in the proof of Lemma 2.2, we have $\psi^{-}\leq\sigma_{j}\leq\psi+$ .

This implies that $\psi^{-}\leq\varphi\leq\psi^{+}$ on $[0, T$) $\cross T$ , so we have $\varphi_{*}(0, x)=a(x)$ . Therefore $\varphi$ is a

supersolution of $(2.2)-(2.3)$ . Let $\sigma$ be the smallest solution of $(2.2)-(2.3)$ so that $\varphi\geq\sigma$ by

(2.7). For any compact set $K\subset\Omega+there$ is $\delta>0$ such that $\inf_{K}\sigma_{*}\geq\delta$ since $\sigma_{*}$ is lower

semicontinuous. Since $\varphi\geq\sigma$ and $K$ is compact we see $\inf_{K}\sigma_{j*}\geq\delta/2$ for sufficiently large

$j$ . This implies $K\subset\Omega_{+j}$ for large $j$ . The proof for – evolution is parallel, so is omitted. 1

3. Main theorem

We say $u$ is a weak solution of

(3.1) $u_{t}-\nabla\cdot(\nu D(u))+\nabla\pi=\nabla\cdot f$ , in $Q=(O, T_{0})\cross T$

(3.2) $\nabla\cdot u=0$ , in $Q$

(3.3) $u|_{t=0}=0$ ,

with $\nu\in L^{\infty}(Q)$ and $f\in(L^{p}(Q))^{n\cross n}(p>1)$ if $u$ is in the class

(3.4) $u\in(C(\overline{Q}))^{n}$ with $\nabla u\in(L^{p}(Q))^{n\cross n}$

and satisfies

$\int_{Q}(-u\cdot\varphi_{t}+\nu D(u)\cdot\nabla\varphi)dxdt=-\int_{Q}f\cdot\nabla\varphi dxdt$

for all $\varphi\in(C_{0\sigma}^{\infty_{)}}(Q))^{n}$ as well as (3.2) and (3.3). Here $C_{0^{\infty}}(Q)$ denotes the space of

smooth functions with compactly supported in $Q$ and $(C_{0^{\infty_{\sigma}}}(Q))^{n}$ the solenoidal subspace

of $(C_{0^{\infty}}(Q))^{n}$ .

We now state our main result in this paper.
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THEOREM 3.1. Let $p>2n,$ $0<T_{0}\leq\infty$ and $Q=(0, T_{0})\cross T$ . Assume that $\Omega_{\pm 0}$

are disjoint open sets in $T$ and that $f\in L^{p}(Q)$ . Then there exists a positive $cons$tant

$\delta=\delta(n,p)$ such that if

(3.5) $\frac{\nu_{+}-\nu_{-}}{\nu_{+}}<\delta$ ,

there exisi $g\in L^{p}(Q)$ , generalized $e$volution $\Omega\pm\subset\overline{Q}$ and weak $solu$ tion $u$ in the $cl$as$s(3.4)$

of

(3.6) $V=u\cdot n$ ,

(3.7) $\Omega_{\pm}(0)=\Omega_{\pm 0}$

(3.8) $u_{t}-\nabla\cdot(\nu D(u))+\nabla\pi=\nabla\cdot f+\nabla\cdot g$ in $Q$ ,

(3.9) $\nabla\cdot u=0$ , in $Q$ ,

(3.10) $u|_{t=0}=0$ ,

where

(311) $\nu=\{$ $(\nu\nu_{-}^{+_{+}}\nu+\nu_{-})/2in\Omega in\Omega_{-}^{+}$

otherwise,

(3.12) spt $g\subset\overline{Q}\backslash (\Omega+\cup\Omega_{-})$ .

In the above theorem, $u$ would be a global weak solution of $(1.7)-(1.10)$ if the Lebesque

measure of $\overline{Q}\backslash (\Omega+\cup\Omega_{-})$ would be zero.

4. Upper semicontinuous convexification

This section establishes a crucial abstract theory for (set-valued) mappings so that lve

apply Kakutani’s fixed point theory. For this purpose we extend a mapping to an upper

semicontinuous convex set-valued mapping.

For a given set $A$ of a vector space $X$ let $coA$ denote the convex hull of $A$ , i.e.,

$coA=\{tx+(1-t)y ; x, y\in A, 0\leq t\leq 1\}$ .
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Let $X$ and $Y$ be Banach spaces equipped with norms $||\cdot||x$ and $||\cdot||_{Y}$ , respectively. For

a set-valued mapping $S:Xarrow 2^{Y}$ we define $S_{\epsilon}$ : $Xarrow 2^{Y}$ by

$S_{\epsilon}(u)=\{S(\omega);||u-\omega||_{X}<\epsilon\}\subset Y$

for $u\in X$ . Here $e>0$ and $2^{Y}$ denotes the family of all subsets of $Y$ . We introduce another

set-valued mapping $S:Xarrow 2^{Y}$ defined by

$S(u)= \bigcap_{\epsilon>0}\overline{coS_{\epsilon}(u)}$
, $u\in X$ ,

where $\overline{B}$ denotes the closure of $B\subset Y$ . In this paper we call $S$ the upper semicontinuo us

convexification of $S$ since it has the following properties;

LEMMA 4.1. (i) For each $u\in X$ th $e$ set $S(u)$ is clos$ed$ and convex in $Y$ .

(ii) The mapping $S$ is $upp$er semicontinuous. In other words, if $u_{j}arrow u$ in $X,$ $v_{j}\in S(\tau\ell_{j})$

and $v_{j}arrow v$ in $Y$ , then $v\in S(u)$ .

(iii) If $S(u)$ is $n$onempty for all $u\in X$ , so is $S$ .

PROOF: (i) Clearly, $S(u)$ is closed. Since the closure of a convex set is convex and the

intersection of a family of convex sets is still convex, we see $S(u)$ is convex.

(ii) Suppose that $v\not\in S(u)$ . Then there would exist $\delta>0$ such that $v\not\in A_{\delta}(u)$ with

$A_{\delta}(u)=\overline{coS_{\delta}(u)}$.

Since $A_{\delta}(u)$ is closed, there would exist $k$ such that $j\geq k$ implies that $v_{j}\not\in A_{\delta}(u)$ . Since

$u_{j}arrow u$ we may asssume that $||u_{j}-u||_{X}<\delta/2$ for $j\geq k$ by taking $k$ larger. By the

definition of $S_{\epsilon}$ we see

$A_{\delta}(u)\supset A_{\delta/2}(u_{j})$ , $j\geq k$ .

This inclusion now would imply $v_{j}\not\in A_{\delta/2}(u_{j})$ , i.e., $v_{j}\not\in S(u_{j})$ for $j\geq k$ , which leads a

contradiction.

(iii) Since $S_{\epsilon}(u)$ containes $S(u)$ , so does $S(u)$ . I
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We have introduced upper semicontinuous convexifications so that we apply Kaku-

tani’s fixed point theory. We state an easy consequence of the fixed point theory for later

use.

PROPOSITION 4.2. Let $K$ be a convex compact subset of a Banach space $X$ and

let $S$ : $Xarrow 2^{K}\subset 2^{X}$ be a nonempty set-valued mapping. Let $S$ be the upper semi-

continuous convexification of S. Then $S$ has a fixed point $\overline{u}\in K\cap S(\overline{u})$ .

PROOF: Since $K$ is convex and closed, values of $S$ are contained in $K$ . By Lemma 4.1.

we see $S$ is an upper semicontinuous set-valued mapping $Xarrow 2^{K}$ with nonempty closed

convex values. The existence of a fixed point of $S$ now follows from Kakutani’s fixed point

theorem [AF]. I

5. A priori estimates

This section establishes a priori estimates for weak solutions of the Stokes system

(3.1)$-(3.3)$ .

We first define the Sobolev spaces of fractional powers. As in [Tri, p. 177], for a domain

$D\subset R\cross R^{n}$ with smooth boundary $\partial D,$ $H_{p^{s,r}}(D)$ denotes the restriction of $H_{p^{s,r}}(R\cross R^{\prime t})$

on $D$ for $1<p<\infty$ and $0<s,$ $r<\infty$ , where

$H_{p}^{s,r}(R\cross R^{n})=\{f\in L^{p}(R\cross R^{n})|\mathcal{F}^{-1}(|\tau|^{s}+|\xi|^{r})\mathcal{F}f\in L^{p}(R\cross R^{n})\}$.

Here $\mathcal{F}$ and $\mathcal{F}^{-1}$ denotes the Fourier transformation and its inverse, respectively. We write
$\partial_{j}=\partial/\partial_{x_{j}}$ $(j=1, \cdots , n)$ . We simply write $Xt_{p}(Q):=H_{p}^{1/2,1}(Q)$ .

LEMMA 5.1. Let $0<T_{0}\leq\infty$ and $Q=(0, T_{0})\cross T$ . Let $2<p<\infty$ and $f\in L^{p}(Q)$ .

$Ass$um$e$ that $u$ in the class

$\nabla u\in L^{p}(Q)$

$is$ a vveak $sol$ution of

$u_{t}-\triangle u=\partial_{j}f$ in $Q(j=1, \cdots n)$

(5.1)
$u|_{t=0}=0$ ,
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in the sense of distribution. Then $u$ is in $H_{p}(Q)$ and satisfies

$||u||_{\mathcal{H}_{p}(Q)}\leq C_{1}||f||_{L^{p}(Q)}$ , $C_{1}=C_{1}(n,p)$ .

The above lemma will be proved in Section 7. We next apply to $(3.1)-(3.3)$ Lemma

5.1 and a perturbation argument (cf. [Cam], [GY]).

LEMMA 5.2. Let $Q=(0, T_{0})\cross T$ for $0<T_{0}\leq\infty$ . Let $2<p<\infty,$ $f\in L^{p}(Q)\partial J1d$

$b\in R(b\neq 0).$ $A$ ssume that $\iota/,$ $1/\nu\in L^{\infty}(Q)$ . Let $u$ be a weak $solu$ tion of $(3.1)-(3.3)$ in the

class

(5.2) $u\in L^{2,\infty}(Q)$ with $\nabla u\in L^{2}(Q)$ .

Then there exists a positive $c$onstant $\delta=\delta(n,p)$ such that

$| \frac{b-\nu}{b}|<\delta$

implies

(5.3) $||u||_{?t_{p}(Q)}\leq C_{2}||f||_{L^{p}(Q)}$

with $C_{2}=C_{2}(n,p, \delta)$ .

PROOF: Applying the projection $P$ on solenoidal vectors in $L^{p}(T)$ to $(3.1)-(3.2)$ leads to

$u_{t}-\nabla\cdot(P\nu D(u))=\nabla\cdot(Pf)$ .

If $Pf$ is smooth, so is $u$ (cf. [LUS]). For any $b\in R^{n}(b\neq 0)u$ satisfies heat equation

$u_{t}-b\triangle u=\nabla\cdot P(f+(\nu-b)D(u))$ .

Applying Lemma 5.1 and transformation $s=t/b$ yields

$||u||_{\mathcal{H}_{p}(Q)} \leq\frac{C_{1}}{b}(||f||_{L^{p}(Q)}+|\nu-b|||\nabla u||_{L^{p}(Q)})$ .

Setting $\delta$ as $C_{1}\delta<1$ yields (5.3). By a density argument on $f\in L^{p}(Q)$ we obtain Lemma

5.2. 1
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6. Proof

This section is devoted to prove Theorem 3.1. We first apply Section 4 to $(3.1)-(3.3)$

and obtain the upper semi-continuous convexified system $(3.8)-(3.10)$ .

Let $Q=(0, T_{0})\cross T$ . For any $f\in L^{p}(Q)$ and positive constant $C$ , let

$K=\{u\in \mathcal{H}_{p}(Q);||u||\prime rt_{p}(Q)\leq C||f||_{L^{p}(Q)}\}$ .

In section 2 we constructed the generalized evolution $\Omega\pm for$ all $u\in C(\overline{Q})$ and $\Omega\pm 0$ . For

the viscosity $\nu=\nu_{u}$ defined by (3.11) there exists a weak solution $\tilde{u}$ of $(3.1)-(3.3)$ in the

class

$\tilde{u}\in L^{2,\infty}(Q)$ with $\nabla\tilde{u}\in L^{2}(Q)$

for $Q=(0, T_{0})\cross T$ with $0<T_{0}<\infty$ (cf. [LM,] and [LUS,]).

For $\delta>0$ satisfying (3.5), the a priori estimats in Section 5 yields $\tilde{u}\in K$ and unique-

ness in $K$ . By the embedding

$\prime kt_{p}(Q)\subset H_{p}^{1/2,1/2}\subset C^{\mu}(Q)(0<\mu<1)$

for $p>2n$ and Rellich’s lemma, $K$ is compact in $C(\overline{Q})$ if $T_{0}<\infty$ (See [Tri, 4.6.1.

p327). We defined a $m$apping $S$ : $C(\overline{Q})arrow K$ by $S(u)$ $:=\tilde{u}$ . However, Leray-Schauder’s

fixed point theory does not apply to $S$ since $S$ is not continuous. We apply the upper

semicontinuous convexification $S$ in Section 4. We show that there exist $g\in L^{p}(Q)$ and

$v\in S(u)$ satisfying $(3.8)-(3.10)$ and (3.12). Let $m=0,1,2,$ $\cdots$ and let $j\geq m$ . For

$u_{j}\in C(\overline{Q})$ satisfying $||u_{j}-u||_{C(\overline{Q})}<1/m$ , we set

$\tilde{u}_{j}=S(u_{j})$ .

A convexification of $\{\tilde{u}_{m}\}$

$\iota_{m}$

$v_{m}= \sum_{j=m}\lambda_{j}^{m}\tilde{u}_{j}$

with

$\sum_{j=m}^{l_{m}}\lambda_{j}^{m}=1$ , $\lambda_{j}^{m}\geq 0$
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satisfies
$\partial_{t}v_{m}-\nabla\cdot(\nu_{\tau\iota}D(v_{m}))+\nabla\pi_{m}=\nabla\cdot f+\nabla\cdot g_{m}$ in $Q$ ,

$\nabla\cdot v_{m}=0$ , in $Q$ ,

$v_{m}|_{t=0}=0$ ,

where

$\pi_{m}=\sum_{j=m}^{l_{m}}$ $\lambda_{j}^{m}\pi_{j}$ ,

$g_{m}= \sum_{j=m}^{l_{m}}$ $\lambda_{j}^{m}(\nu_{u_{j}}-\nu_{u})D(\tilde{u}_{j})$ .

Here $\pi_{j}$ is the pressure associated with $\tilde{u}_{j}$ . Since $\tilde{u}_{j}\in K,$ $||g_{m}||_{L^{p}(Q)}\leq C_{l/}+||.f||_{L_{p}(Q)}$ .

Then there exists a weak limit $g\in L^{p}(Q)$ . Also since $K$ is bounded in $\mathcal{H}_{p}(Q)$ , there exists

a weak limit $v\in K$ of $\tilde{u}_{j}$ in $\mathcal{H}_{p}(Q)$ , which satisfies $(3.8)-(3.9)$ in the weak sense. Applying

Mazur’s theorem (cf. [Yos, Theorem II in Sect. 1, Chap. 5]) to the convex sequence
$v_{m}\in 2^{K}$ yields that $v_{m}arrow v$ strongly in $\mathcal{H}_{p}(Q)$ , so $v$ satisfies (3.10). Since $v$ is in $S(u)$

and since $K$ is convex and compact if $p>2n$ and $T_{0}<\infty$ , Proposition 4.2 yields a fixed

point $\overline{u}\in K\cap S(\overline{u})$ . We now obtain a weak solution of $(3.6)-(3.10)$ for $T_{0}<\infty$ . The

inclusion (3.12) is given by Theorem 2.6 directly.

We last construct a global solution in $(0, \infty)$ . Let $T_{0}>0$ be fixed and let $T_{0}<T_{1}<$

$T_{2}<\cdots<T_{i}arrow\infty$ . Since $\delta$ in Lemma 5.2 is independent of time, there exists a bounded

sequence of fixed points $\{u_{T:}\}$ in $K_{T_{0}}$ . Since the inclusion $\mathcal{H}_{p}(Q_{T_{0}})arrow C(\overline{Q_{T_{0}}})$ is compact

for $p>2n$ , a diagonal argument yields a subsequence $\{u_{T_{t}}, \}$ and $w\in C((O, \infty)\cross T)$

satisfying

(6.1) $u_{T_{i}},$ $arrow w$ in $C(\overline{Q_{T_{0}}})$ ,

where $Q_{T_{0}}=(0, T_{0})\cross T$ . Since $u_{T_{i}},$
$\in S(u_{T_{i}}, )\subset C(\overline{Q_{T_{0}}})$ and the graph of $S:C(\overline{Q_{T_{0}}})arrow$

$2^{C(\overline{Q_{T_{0}}})}$ is closed, (6.1) implies $w\in S(w)\subset C(\overline{Q_{T_{0}}})$ where $S$ depends on $T_{0}$ . Since $T_{0}$ is

arbitrary, this yields a desired global solution in $(0, \infty)$ . I
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