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Viscosity solutions for monotone systems

under Dirichlet condition

都立大・理学部 小池 茂昭 (Shigeaki Koike)

\S 1. Introduction

We consider the following system of fully nonlinear second-order PDEs :

$F^{k}(x, u(x),$ $Du^{k}(x),$ $D^{2}u^{k}(x))=0$ for $x\in\Omega,$ $k\in A\equiv\{1,2, \ldots, m\}$ (1)

where $F=(F^{1}, \ldots, F^{m})$ : $\overline{\Omega}\cross R^{m}\cross R^{n}\cross S^{n}arrow R^{m}$ is a given function,

$u=(u^{1}, \ldots, u^{m})$ : $\overline{\Omega}arrow R^{m}$ is the unknown function and $\Omega$ is a bounded

open set in $R^{n}$ . Here $S^{n}$ denotes the space of real symmetric matrices

of order $n$ .

We will assume that $F$ is monotone in the sense of Ishii [2]. We note

that many examples from control and game theory satisfy the monotone

condition; e.g. switching games, weakly coupled systems. For the details

we refer to [2], [4], [5]. We remark that our monotone condition can

be satisfied by not only systems mentioned above but also systems in

which the comparison principle does not hold. For example, consider the

following system:

$\{-\triangle 2_{2}-\triangle u^{u}$ in $\Omega$ and $u^{1}=u^{2}=0$ on $\partial\Omega$ .

From the maximum principle we easily see that the unique classical solu-

tion $u=(u^{1}, u^{2})$ satisfies that

$u^{1}<0$ and $u^{2}>0$ in $\Omega$ .
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However, although $(0,0)$ is a classical subsolution of the above system,

we do not have $(0,0)\leq(u^{1}, u^{2})$ . Therefore, in this paper we shall

give some uniqueness theorems for viscosity solutions of (1) instead of

comparlson ones.

On the other hand, in the theory of visosity solutions, we should treat

the (Dirichlet) boundary condition in the viscosity sense. We shall explain

it by the following simple first order ODE: Let $\Omega$ be the interval $(0,1)$

and consider the value function $u:(0,1)arrow R$ in the following way: Set

$u(x) \equiv\int_{0}^{\tau_{l}}e^{-t}f(X(t))dt+e^{-\tau_{x}}g(X(\tau_{x}))$ .

Here, $\tau_{x}$ is the first exit time from $\overline{\Omega}$ of the solution $X(t)$ of

$\{\begin{array}{l}dX(t)=-dtt>0X(0)=x\end{array}$

From the point of view of viscosity solution theory, we expect that $u$ is

the viscosity solution of

$\{\begin{array}{l}\frac{du}{dx}+u=fin\Omega u=gon\partial\Omega\end{array}$

In fact, for smooth $f,$ $g$ , we easily see that $u$ satisfies the above ODE in

$\Omega$ and that $u(O)=g(0)$ . However, noting that $\tau_{x}=x$ and $X(\tau_{x})=0$ ,

we see that $u$ does not satisfy the boundary value at $x=1$ . But, $u$

satisfies the differential equation at $x=1$ (even in the sense of viscosity

solution which will be stated in \S 2). Therefore, roughly speaking, we

will call a viscosity solution of the boundary value problem if either the

differential equation or the boundary condition holds on the boundary.
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This is one of the motivation of the definition for boundary value problem

in the viscosity sense. For other motivations we refer to [3] and [1].

In this paper we shall mainly treat the uniqueness result for mono-

tone systems of Dirichlet boundary value problems in the viscosity sense.

Before that we give a known uniqueness result for monotone systems of

Dirichlet boundary value problems in the classical sense without stating

our hypotheses and the definitions.

Theorem $0$ . ([5]) Let $u,$ $v\in C(\overline{\Omega};R^{m})$ be viscosity solutions of

(1). Assume $u=v$ on $\partial\Omega$ . Then, $u\equiv v$ .

Remark. We remark that the above theorem is true if we suppose the

hypotheses below.

The plan of this paper is as follows : \S 2 is devoted to give some no-

tations, the definition of viscosity solutions and an equivalent definition

of it. In \S 3, following [8], we present a uniqueness result for continuous

viscosity solutions. In \S 4 we present a sufficient condition to obtain the

continuity of viscosity solutions. This is a part of [7]. In the final section

we will give some comments on the existence of viscosity solutions which

has the sufficient condition in \S 4.

\S 2. Preliminaries

We shall give the standard notation : for a function $g$ : $U\subset R^{N}arrow R$ ,
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we define upper and lower semicontinuous envelopes as follows.

$g^{*}(x) \equiv\lim_{y\in\overline{U}}\sup_{arrow x}g(y),$ $g_{*}(x) \equiv\lim\inf_{xy\in\overline{U}arrow}g(y)$ ,

and for $g=(g_{1}, \ldots, g_{m})$ : $Uarrow R^{m}$ we write $g_{*}=(g_{1*}, \ldots,g_{m*}),$ $g^{*}=$

$(g_{1}^{*}, \ldots, g_{m}^{*})$ .

For a boundary data $f=(f^{1}, \ldots, f^{m})\in C(\overline{\Omega};R^{m})$ we set

$G_{k}(x, r,p, X)=\{\begin{array}{l}F_{k}(x,r,p,X)forx\in\Omega r_{k}-f_{k}(x)forx\in\partial\Omega\end{array}$

For simplicity, throughout this paper we assume

$F\in C(\overline{\Omega}\cross R^{m}\cross R^{n}\cross S^{n};R^{m})$ .

For the Dirichlet problem of (1) with the boundary data $f$ in the viscosity

sense, we will consider the following system:

$G_{k}(x, u(x),$ $Du^{k}(x),$ $D^{2}u^{k}(x))=0$ for $x\in\overline{\Omega}$ and $k\in A$ . (2)

For a multi-valued function $u:\overline{\Omega}arrow 2^{R^{m}}$ we set

$\overline{u}(x)=\{r\in R^{m}|r^{:}\in u(x^{i_{i}}),\lim^{\overline{\Omega}}\exists x\in,$$\exists r_{\infty}^{i}\in Rsuchthatarrow x=^{m}x,\lim_{iarrow\infty}r^{*}=r\}$ .

Throughout this paper, we shall assume that the multi-valued function

is bounded and well-defined in $\overline{\Omega}$ ;

$\sup\{|r||r\in u(x), x\in\overline{\Omega}\}<\infty$ and $u(x)\neq\emptyset$ for all $x\in\overline{\Omega}$ .

As an extension of semicontinuous envelope for a multi-valued function
$u:\overline{\Omega}arrow 2^{R^{m}}$ we set

$u_{k}^{*}(x)= \max\{r_{k}|r\in\overline{u}(x)\}$ and $u_{k*}(x)= \min\{r_{k}|r\in\overline{u}(x)\}$ .
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We note that, for an $R^{m}$-valued function, these notations are equivalent

to those of semicontinuous envelopes. We also note that these are upper

and lower semicontinuous in $\overline{\Omega}_{)}$ respectively. Generally, for bounded

subsets $U,$ $V\subset R^{m}$ , we define

$U_{k}^{*}= \max\{r_{k}|r\in\overline{U}\},$ $U_{k*}= \min${ $r_{k}$ I $r\in\overline{U}$}

and, moreover, we set

$d(U, V)= \max_{k\in A}\{\max\{U_{k}^{*}-V_{k*}, V_{k}^{*}-U_{k*}\}\}$.

We also define

$A^{+}(U, V)=\{k\in A|U_{k}^{*}-V_{k*}=d(U, V)\}$ ,

$A^{-}(U, V)=\{k\in A|V_{k^{*}}-U_{k*}=d(U, V)\}$

and

$A(U, V)=A^{+}(U, V)\cup A^{-}(U, V)$ .

Note that, for $r,$ $s\in R^{m}$ , we have

$d( \{r\}, \{s\})=\max k\in A|r_{k}-s_{k}|$ .

Thus,

$A^{+}(\{r\}, \{s\})=$ {$j\in A$ I $r_{j}-s_{j}= \max k\in A|r_{k}-s_{k}|$},

$A^{-}( \{r\}, \{s\})=\{j\in A|s_{j}-r_{j}=\max k\in A|r_{k}-s_{k}|\}$.

Definition. ([2]) For $u:\overline{\Omega}arrow 2^{R^{m}}$ ,

(1) $u$ is a viscosity subsolution of (2) if, for any $\psi\in C^{2}(\overline{\Omega})$ and $k\in A$ ,

$u_{k}^{*}(x)- \psi(x)=\max_{y\in\overline{\Omega}}\{u_{k}^{*}(y)-\psi(y)\}$ holds for some $x\in\overline{\Omega}$ , then

$\min\{G_{k*}(x, r, D\psi(x), D^{2}\psi(x))|r\in\overline{u}(x), r_{k}=u_{k}^{*}(x)\}\leq 0$ .
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(2) $u$ is a viscosity supersolution of (2) if, for any $\psi\in C^{2}(\overline{\Omega})$ and

$k\in A,$ $u_{k*}(x)- \psi(x)=\min_{y\in\overline{\Omega}}\{u_{k*}(y)-\psi(y)\}$ holds for some $x\in\overline{\Omega}$ ,

then

$\max\{G_{k}^{*}(x, r, D\psi(x), D^{2}\psi(x))|r\in\overline{u}(x), r_{k}=u_{k*}(x)\}\geq 0$.

(3) $u$ is a viscosity solution of (2) if $u$ is both a viscosity sub- and

supersolution of (2).

We shall omit the terminology “viscosity” since we only treat viscosity

sub-, super- and solutions.

In order to present an equivalent definition to a solution we give some

notation: for $v:\overline{\Omega}arrow R$ we denote $\overline{J}^{2,\pm}v(x)$ by

$\{(p, X)\in R^{n}\cross S^{n}|\lim_{iarrow\infty}(xv(x^{i}),p^{i},X^{i}\cdot)(x^{\pm}v(x^{\backslash }suchtha^{i}t(p,X)\in Jv(x_{)}^{n_{1}})_{p,X)}\exists(x_{i},p, X^{i})_{i}\in\overline{\Omega}.x_{=}R_{2}^{n},\cross S\}$,

where

$J^{2,+}v(x)= \{(p, X)\in R^{n}\cross S^{n}|v(x+h)\leq v(x)+<p,hasx+h\in\overline{\Omega}andharrow 0+\frac{1}{2}<Xh,h>+o(|h|^{2})^{>}\}$

and

$J^{2,-}v(x)= \{(p, X)\in R^{n}\cross S^{n}|v(x+h)\geq v(x)+<p,hasx+h\in\overline{\Omega}andharrow 0+\frac{1}{2}<Xh,h>+o(|h|^{2})^{>}\}$ .
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Proposition 1. ([2]) For $u$ : $\overline{\Omega}arrow 2^{R^{m}},$
$u$ is a subsolution (resp., a

supersolution) of (2) if and only if

$\min\{G_{k*}(x, r,p, X)|r\in\overline{u}(x), r_{k}=u_{k}^{*}(x)\}\leq 0$

for all $x\in\overline{\Omega}$ and $(p, X)\in\overline{J}^{2,+}u_{k}^{*}(x)$

resp., $\max\{G_{k}^{*}(x, r,p,X)|r\in\overline{u}(x), r_{k}=u_{k*}(x)\}\geq 0$

for all $x\in\overline{\Omega}$ and $(p, X)\in\overline{J}^{2,-}u_{k*}(x)$

\S 3. A uniqueness result for continuous solutions

We shall give our hypotheses:

(A.1) There are $r,$ $s>0$ and $n\in C(\overline{\Omega};R^{n})$ satisfying that, for each

$z\in\partial\Omega$ ,

$y+ \bigcup_{0<t<\tau}B(tn(z), st)\subset\Omega$ for all $y\in B(z, r)\cap\overline{\Omega}$ .

Here $B(x, r)$ denotes the closed ball with its center $x$ and its radius $r$ .

(A.2) There is $\lambda>0$ such that if $U,$ $V$ are compact subsets of $R^{m}$ and

$d(U, V)>0$ , then, for each $(j, x,p)\in A(U, V)\cross\overline{\Omega}\cross R^{n}$ , if $j\in A^{+}(U, V)$ ,

$\min\{F_{j}(x, r,p, X)|r\in U, r_{j}=U_{j}^{*}\}$

$\geq\max\{F_{j}(x, r,p, X)|r\in V, r_{j}=V_{j*}\}+\lambda(U_{j}^{*}-V_{j*})$ ,

and if $j\in A^{-}(U, V)$ ,

$\min\{F_{j}(x, r,p, X)|r\in V, r_{j}=V_{j}^{*}\}$

$\geq\max\{F_{j}(x, r,p, X)|r\in U, r_{j}=U_{j*}\}+\lambda(V_{j}^{*}-U_{J*})$

7
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for all $X\in S^{n}$ .

(A.3) $\exists\omega_{1}\in M$ satisfying that if $X,$ $Y\in S^{n},$ $\nu>1$ and

$-3\nu\langle[I0I0)\leq(\begin{array}{ll}X 00 Y\end{array})\leq 3\nu(-II-II,$ , (3)

then

$F_{k}(y, r,p, -Y)-F_{k}(x, r,p, X)\leq\omega_{1}(\nu|x-y|^{2}+|x-y|(1+|p|))$

for all $(k, x, y, r,p)\in A\cross\overline{\Omega}\cross\overline{\Omega}\cross R^{m}\cross R^{n}$. Here $M=\{\omega\in$

$C([0, \infty);[0, \infty))|\omega(0)=0\}$ .

(A.4) $\exists\omega_{2}\in M$ satisfying that

$F_{k}(x, r, p, X)-F_{k}(x, r, q, X)\leq\omega_{2}(|p-q|)$

for all $(k, x, r,p, q, X)\in A\cross\overline{\Omega}\cross R^{m}\cross R^{n}\cross R^{n}\cross S^{n}$ .

(A.5) $\exists\omega_{3}\in M$ and satisfying that

$F_{k}(x, r+\epsilon e_{k},p, X)-F_{k}(x, r,p, X)\leq\omega_{3}(\epsilon)$

for all $(k, \epsilon, x, r, p, X)\in A\cross(O, \infty)\cross\overline{\Omega}\cross R^{m}\cross R^{n}\cross S^{n}$ , where $e_{k}$ is

the k-th unit vector in $R^{m}$ .

Theorem 2. ([8]) Assume (A.1-5). Let $u,$ $v\in C(\overline{\Omega};R^{m})$ be solu-

tions of (2). Then, $u\equiv v$ .

Remark. Since $u$ and $v$ are $R^{m}$-valued and continuous, we can

weaken the assumption (A.2) in the following way.

(A.2’) $\exists\lambda>0$ such that if $r,$ $s\in R^{m}$ satisfy that $\max_{k\in A}|r_{k}-s_{k}|>0$ ,

8
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then, for each $(j, x,p)\in A(\{r\}, \{s\})\cross\overline{\Omega}\cross R^{n}$, if $j\in A^{+}(\{r\}, \{s\})$ ,

$F_{j}(x, r,p, X)\geq F_{j}(x, s,p, X)+\lambda(r_{j}-s_{j})$ ,

and if $j\in A^{-}(\{r\}, \{s\})$ ,

$F_{j}(x, s,p, X)\geq F_{j}(x, r,p, X)+\lambda(s_{j}-r_{j})$ .

for all $X\in S^{n}$ . Moreover, in this case we can adapt the standard defini-

tion of solutions which is stronger than that of ours. Because, we know

that the same equivalent definition as in Proposition 1 holds under the

assumption (A.2’) for continuous solutions. For the details we refer to [5]

and [8].

Sketch of proof of Theorem 2. Assume

$\max\{|u_{k}(x)-v_{k}(x)||x\in\overline{\Omega}, k\in A\}\equiv\Theta>0$ .

Then, we will get a contradiction.

For simplicity, let us assume that the mapping

$(x, k)\in\overline{\Omega}\cross Aarrow|u_{k}(x)-v_{k}(x)|$

attains its unique maximum at $(z,j)\in\overline{\Omega}\cross A$ . In this case, we do not

need the assumptions (A.4-5). If the maximum point of the above map-

ping is not unique, we need to use two kinds of perturbation techniques.

For the details we refer to [8]. The idea below was first utilized by Soner

[9].
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We shall only treat the case $z\in\partial\Omega$ , since the other case is easier.

We may assume

$\Theta=u_{j}(z)-v_{j}(z)$ .

First, we consider the case of $u_{j}(z)>f_{j}(z)$ . Fix $t>0$ . Set $\Phi(x, y)=$

$d(\overline{u}(x),\overline{v}(y))-|\alpha^{i}(x-y)+tn(z)|^{2}$ , where $\frac{t}{a}\in(0, r)$ and $\lim_{iarrow\infty}\alpha^{1}=\infty$ .

Note that since $u,$ $v$ are continuous here,

$d( \overline{u}(x),\overline{v}(y))=\max k\in A|u_{k}(x)-v_{k}(y)|$ .

Let $(x^{i}, y^{i})\in\overline{\Omega}\cross\overline{\Omega}$ be the maximum point of $\Phi(x, y)$ over $\overline{\Omega}\cross\overline{\Omega}$ .

Using $\Phi(x^{1}, y^{i})\geq\Phi(z, z+\frac{tn(\dot{z})}{\alpha})$ , from the uniqueness of $(z, j)$ , we have

$\lim_{iarrow\infty}x^{i}=\lim_{iarrow\infty}y^{i}=z$ ,
(4)

$A^{+}(\overline{u}(x^{i}),\overline{v}(y^{i}))=\{j\},$ $A^{-}(\overline{u}(x_{\alpha^{i}}),\overline{v}(y_{\alpha^{i}}))=\#$ .

Moreover,

$\lim_{iarrow\infty}|\alpha^{i}(x^{i}-y^{i})|=t|n(z)|$ .

Note that $u_{j}(x^{1})>f_{j}(x^{i})$ for large $i$ . Furthermore,by (A.1) we have

$y^{i}\in\Omega$ .

Therefore, from (A.2), we have

$F_{j}(x^{1}, u(x^{i}),p^{i},$ $X$ ) $\geq F_{j}(x^{i}, v(y^{*}),p^{1},$ $X$ ) $+\lambda(u_{j}(x^{:})-v_{j}(y^{i}))$ (5)

for all $X\in S^{n}$ , where $p^{i}=2\alpha^{i}(\alpha^{i}(x^{i}-y^{i})+tn(z))$ .

On the other hand, by a basic lemma (see e.g. [1]) in the theory of

viscosity solutions for second-order PDEs, we see that there are $X^{l},$ $Y^{i}\in$

$S^{n}$ satisfying that

$(p^{i}, X^{1})\in\overline{J}^{2,+}u_{j}(x^{i}),$ $(p^{i}, -Y^{i})\in\overline{J}^{2,-}v_{j}(y^{i})$
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and

$-6\alpha^{i2}(\begin{array}{ll}I 00 I\end{array})\leq(\begin{array}{ll}X^{i} 00 Y^{i}\end{array})\leq 6\alpha^{i2}(\begin{array}{ll}I -I-I I\end{array})$ .

Hence, by (A.3), we have

$F_{j}(y^{i}, v(y^{i}),p^{1},$ $-Y^{i}$ ) $-F_{j}(x^{:}, u(x^{i}),p^{i},$ $X^{i}$ )
(6)

$\leq\omega_{1}(2\alpha^{i2}|x^{i}-y^{1}|^{2}+|x^{i}-y^{i}|(1+|p^{i}|))$ .

Combining (5) and (6) with the definition of sub- and supersolutions of

(2) and remembering that $u_{j}(x^{i})>f_{j}(x^{i})$ and that $y^{i}\in\Omega$ , by sending

$iarrow\infty$ , we have

$\lambda\Theta\leq\omega_{1}(t^{2}|n(z)|^{2})$ .

For small $t>0$ , this yields a contradiction.

Secondly, in case of $u_{j}(z)\leq f_{j}(z)$ we can proceed the same argument

as in the above by taking $\Phi(x, y)=d(\overline{u}(x),\overline{v}(y))-|\alpha^{i}(x-y)-tn(z)|^{2}$.

Then, we can get the same contradiction as above. $qed$

Remark. We remark that we do not need to use the notion of multi-

valued mapping in the above since $u$ and $v$ are continuous. However,

since the above argument can be applied to the proof of Theorem 3 in

the next section, we have used it.

\S 4. A sufficient condition for continuity of solutions

In this section we will assume a stronger hypothesis on the shape of $\Omega$

than (A.1).

(A.1’) $\exists r,$ $s,t>0$ and $\exists n\in C(\overline{\Omega};R^{n})$ satisfying that, for each $z\in\partial\Omega$ ,

$K_{z} \equiv z+\bigcup_{0<r’<r}B(r’n(z), r’s)\subset\Omega$ and
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$y+ \bigcup_{0<r^{l}<r}B(r‘\frac{x}{|x|}, r’t)\subset\Omega$ for all $x\in K_{z}-z$ and $y\in B(z,r)\cap\overline{\Omega}$ .

Theorem 3. ([7]) Assume (A.1’) and (A.2-5). Let $u$ : $\overline{\Omega}arrow 2^{R^{m}}$ be a

solution of (2) satisfying that, for each $z\in\partial\Omega$ ,

$\lim_{x\in K}\sup_{z^{arrow z}}u^{*}(x)=u^{*}(z)$ and $\lim_{x\in K_{z}}\inf_{arrow z}u_{*}(x)=u_{*}(z)$ . (6)

Then, $u\in C(\overline{\Omega};R^{m})$ .

Remark. We can find the basic idea for the proof of this theorem in

[3]. We note that Katsoulakis [6] have recently shown that there exists

a solution which has this kind of nontangential semicontinuity in case of

$m=1$ (i.e. single PDEs).

Sketch of proof of Theorem 3. Assume $\max_{x\in\overline{\Omega}}d(\overline{u}(x),\overline{u}(x))\equiv\Theta>0$.

Then, we will get a contradiction. This concludes our assertion.

As in the proof of Theorem 3, we shall only treat the case when there

is a unique $(z,j)\in\partial\Omega\cross A$ such that $u_{j}^{*}(z)-u_{j*}(z)=\Theta$ and when

$u_{j}^{*}(z)>f_{j}(z)$ .

Choose $z^{i}\in K_{z}$ satisfying that $\lim_{iarrow\infty}z^{i}=z$ and $\lim_{iarrow\infty}u_{\dot{J}}^{*}(z^{i})=$

$u_{j}^{*}(z)$ . Set $\Phi(x, y)=d(\overline{u}(x),\overline{u}(y))-\alpha^{i}|x-y-z^{1}+z|^{2}$ , where $\alpha^{*}=\frac{s^{2}}{|z-z|^{2}}$

for a small $s>0$ . Let $(x^{i}, y^{i})$ be a maximum point of $\Phi$ over $\overline{\Omega}\cross\overline{\Omega}$ .

Using $\Phi(x^{i}, y^{i})\geq\Phi(z^{i}, z)$ , we have (4) and

$\lim_{iarrow\infty}\alpha^{i}|x^{i}-y^{i}|=s$.

We only note that, in order to show $y^{i}\in\Omega$ , we need to assume (A.1’)

instead of (A.1).
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Therefore, a simil$ar$ argument to that of proof of Theorem 3 yields

$\lambda\Theta\leq\omega_{1}(s^{2})$ .

This is a contradiction for small $s>0$ . $qed$

\S 5. A remark for an existence result

As stated in the above, Katsoulakis [6] have shown the existence of so-

lutions which have the property (6) for single PDEs under appropriate

hypotheses. However, his argument can work only when the comparison

principle holds. As stated in the introduction we do not have it for our

monotone systems. But, we can obtain a weak version of comparison

principle which will play an important role for the existence of solutions

for monotone systems. We shall only state it. See [7] for the details.

Theorem 4. ([7]) Assume (A.1’) and (A.2-5). Let $u$ and $v:\overline{\Omega}arrow 2^{R^{m}}$

be sub- and supersolutions of (2), respectively. Assume that $v_{*}\leq u_{*}$

and $v^{*}\leq u^{*}$ in $\overline{\Omega}$ . Then, $u^{*}\leq v_{*}$ in $\overline{\Omega}$ . Moreover, $u\equiv v\in C(\overline{\Omega};R^{m})$ .
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