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Introduction

We are concerned with a linearized stability for semilinear boundary value evolution prob-

lems of the form:

(BE) $\{\begin{array}{l}(d/dt)u(t)=Au(t)+F(u(t))\tau\iota(0)=x_{0}\end{array}$

$Lu(t)=\Phi(u(t))$ , $t\geq 0$ ,

Recently, Greiner [G1] has investigated this problem and obtained the linearized stability

for it. Also, Thieme [Th] has treated this problem as a semilinear evolution problem

with non-densely defined linear operator and obtained the linearized stability as well. But

their hypotheses are a little different. Greiner [G1] imposed the assumption on $\Phi’(ae)oA$ ,

while Thieme [Th] made a condition on $L$ instead. Thieme’s condition is similar to one

assumed by Greiner [G2] in linear case. Here we are going on the line of Thieme, but

for simplicity, we $wiU$ assume on $L$ the same condition as in [G2]. The purpose here is

to give a different approach based on the theory of nonlinear evolution equations of the

form $(d/dt)u(t)+Bu(t)=0$, where $B$ is a quasi-m-accretive operator. Recently, the

author [K1] has obtained a principle of linearized stability for such a nonlinear evolution

equation, which is introduced in \S 1. We will show how the abstract boundary value

evolution equations such as (BE) can be treated as a nonlinear framework and obtain the

linearized stability for (BE).
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1. Nonlinear evolution equations

In this section, we review a main result of [K1]. Let (X, $\cdot$ $|$ ) be a Banach space and

$B:D(B)\subset Xarrow X$ be a single-valued nonlinear operator such that $B+\omega I$ is m-accretive

for some $\omega\geq 0$ . In this section, we consider the nonlinear evolution equation

$(E)$ $(d/dt)u(t)+Bu(t)=0$ , $t\geq 0$ .

We call a a stationary solution of $(E)$ if $\overline{u}\in D(B)$ and $Bu=0$ . Throughout this section,

we fix a stationary solution a of $(E)$ and investigate the asymptotic stability of $\overline{u}$. We

assume the following hypotheses:

(H1) There exists an open ball $U_{\delta}(\overline{u})$ of radius 6 with center a such that for each $x\in$

$U_{\delta}(\overline{u})\cap D(B)$ , there exists a linear operator $\theta B(x)$ : $D(\theta B(x))\subset Xarrow X$ such that

$\partial B(x)+\omega I$ is m-accretive and

$G( \theta B(ae))=\lim_{t\downarrow 0}t^{-1}[G(B)-(x, Bx)]$ ,

where $G$ stands for the graph of operators and the $\lim_{\ell\downarrow 0}$ is taken in the sense of set

sequences. $\theta B(x)$ is called the proto-derivative of $B$ at $x$ . See [R] (or [K1]).

(H2) There exist a $\lambda_{\overline{u}}>0$ and a nondecreasing function $L_{\overline{u}}$ : $[0, \infty$ ) $arrow[0, \infty$ ) such that

$|(I+\lambda\theta B(x))^{-1}v-(I+\lambda\partial B(z))^{-1}v|\leq\lambda|x-z|L_{\overline{u}}(|v|)$

for $0<\lambda<\lambda_{\overline{u}},$ ae, $z\in U_{\delta}(\overline{u})\cap D(B),$ $v\in X$ .

Recall that $B$ generates a nonlinear semigroup $\{S(t)\}$ on $\overline{D(B)}$ such that $|S(t)ae-S(t)y|\leq$

$e^{\omega\ell}|x-y|$ , by the Crandall-Liggett theorem.

Definition. $We$ say that th $e$ stationary solution ti is exponentially asymptoti$c$ally stable

if there exist constants $\eta>0,$ $C\geq 1,$ $\alpha>0$ such that

$|S(t)u_{0}-\overline{u}|\leq Ce^{-\alpha t}|u_{0}-\overline{u}|$

for $u_{0}\in\overline{D(B)}$ with $|u_{0}-\overline{u}|<\eta$ , and $t>0$ .

A principle of linearized stability for $(E)$ obtained in [K1] is as follows:
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Theorem 1. $Ass$ume th$e$ above hypotheses $(HI)$ and $(H2)$ . If there exist $\gamma>0$ an$d$

$M\geq 1$ such that the $proto- deriratire-\theta B(\overline{u})$ of-B at ti is the infinitesimal generator of

a $(C_{0})$-semigroup $\{T(t)\}$ such th$at||T(t)||\leq Me^{-\gamma\ell}$ , then tt is exponentially asymptotically

stable.

2. Senilinear boundary value evolution problems

In this section, we consider the following abstract evolution equations with semihnear

boundary conditions:

(BE) $\{\begin{array}{l}(d/dt)u(t)=Au(t)+F(u(t))u(0)=Wo\cdot\end{array}$

$Lu(t)=\Phi(u(t))$ , $t\geq 0$ ,

We assume the following basic assumptions:

Al (a) $X,$ $Y,$ $\theta X$ are Banach spaces. $Y$ is densely and continuously embeded in $X$ .
(b) $A:Yarrow X$ is a bounded linear operator.

(c) $F:Xarrow X$ is continuously Fr\’echet differentiable (in the sense defined below).

(d) $L:Yarrow\theta X$ is a bounded linear surjection.

(e) $\Phi$ : $Xarrow\theta X$ is continuously Fr\’echet differentiable (in the sense defined below).

Here, an operator $K$ : $Xarrow Z$ is said to be continuously Fr\’echet differentiable if for any

$\phi\in X$ , there exists $K’(\phi)\in \mathcal{L}(X, Z)$ such that $K(\phi+h)=K(\phi)+K’(\phi)h+o_{K}(h)$ ,

$h\in X$ , where $0_{K}$ : $Xarrow Z,$ $|o_{K}(h)|_{Z}\leq b_{K}(r)|h|$ for $|h|\leq r$ , and $b_{K}$ : $[0, \infty$ ) $arrow[0, \infty$)

is a continuous increasing function satisfying $b_{K}(0)=0$ ; and there exists a continuous

increasing function $d_{K}$ : $[0, \infty$ ) $arrow[0, \infty$ ) such that $||K’(\phi)-K$ ‘
$(\psi)||_{\mathcal{L}(X,Z)}\leq d_{K}(r)|\phi-\psi|$ ,

for $|\phi|,$ $|\psi|\leq r$ .

A2 $A_{0}$ $:=A|_{kerL}$ is the infinitesimal generator of a $(C_{0})$-semigroup $\{T_{0}(t)\}$ .

A3 There exist constants $\gamma>0$ and $\mu_{0}\in R$ such that $|Lx|_{\partial X}\geq\mu\gamma|x|$ for any $\mu>\mu_{0}$ and

$x\in ker(\mu-A)$ .
The conditions Al and A2 are the same ones as assumed in [G1]. The condition A3 is the

one assumed in [G2, (2.1)] in linear case. We may change it by the similar condition as
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assumed by Thieme [Th, Assumptions 6.1 $(d)$]. In stead of A2, by the standard renorming,

we may assume without loss of generality that

A2’ $-A_{0}$ is m-accretive in $X$ .
The solution we employ is the mild solution defined by Greiner [G2] (Thieme [Th]

called the ‘integral solution’).

Definition. A function $u\in C([0, T);X)$ is called a mild solution of$(BE)if \int_{0}^{t}u(s)ds\in Y$ ,

$u(t)=x_{0}+A( \int_{0}^{t}u(s)ds)+\int_{0}F(u(s))d\epsilon$ , and $L( \int_{0^{l}}u(s)d\epsilon)=\int_{0^{\ell}}\Phi(u(s))ds$ for $t\in[0,T$).

Applying Theorem 1, we can obtain a similar result by Thieme [Th]:

Theorem 2. Let ti be a stationary solution of (BE), that is ti $\in Y,$ $A\overline{u}+F(\overline{u})=0$ , and

LOf $=\Phi(\overline{u})$ . If the growth bound of the $sem$igroup generated by $B_{1}$ $:=A+F$‘
$(\overline{u})|_{ker(L-B’(\overline{u}))}$

is less than $0$ , then $\overline{u}$ is exponentially asymptoticaUy stable in the $sen$se that ther$e$ exist

constants $\eta>0,$ $C\geq 1$ and $\alpha>0$ such that $if|x_{0}-\overline{u}|<\eta$ , then the mild solution $u(t)$ of

(BE) with initial data $x_{0}$ exists for all $t\geq 0$ and satisfies $|u(t)-\overline{u}|\leq Ce^{-\alpha t}|x_{0}-\overline{u}|$ for

$aIlt\geq 0$ .

3. Proof of Theorem 2

Let $\mu>0$ . Then $\mu$ belongs to the resolvent set of $A_{0}$ . By [G2, Lemma 1.2], one has

$D(A)=D(A_{0})\oplus ker(\mu-A)$ and $L|_{kcr(\mu-A)}$ is an isomorphism of $ker(\mu-A)$ onto $\theta X$ .
Therefore, $L_{\mu};=(L|_{kcr(\mu-A)})^{-1}$ : $\partial Xarrow(ker(\mu-A), |\cdot|_{Y})$ is continuous by the open

mapping theorem, and hence, $L_{\mu}$ is also continuous &om $\theta X$ into (X, $|\cdot|$ ). Note that, by

A3, we have 1I $L_{\mu}||_{\mathcal{L}(\partial X,X)}\leq 1/\mu\gamma$ for $\mu>\max\{0, \mu_{0}\}$ .

Let ti be a stationary solution of (BE), that is a $\in D(A),$ $A\overline{u}+F(\overline{u})=0$ , and

$L\overline{u}=\Phi(\overline{u})$ . Choose $r_{0}>0$ such that $|\overline{u}|<r_{0}$ and define the radial truncations of $F$ and

$\Phi$ by

$F_{0}(\phi):=t^{F(\phi)}F(r_{0}\phi/|\phi|)$ $ifif|\begin{array}{l}\phi\phi\end{array}|\leq r_{0;}$ $\Phi_{0}(\phi)$ $:=\{_{\Phi(r_{0}\phi/|\phi|)}^{\Phi(\phi)}$ $ifif|\begin{array}{l}\phi\phi\end{array}|>\leq;_{0}^{0;}$.
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It is known that $F_{0}$ and $\Phi_{0}$ are globally Lipschitz continuous on $X$ and continuously Fr\’echet

differentiable on the $ba\mathbb{I}U_{0}(0)$ in $X$ with the derivatives $F$‘ $(x),$ $\Phi’(x)$ for $x\in U_{0}(0)$ . See

e.g. [$W$ , Proposition 3.10].

Lemuna 3.1. For $\mu>\max\{\mu_{0}, ||\Phi_{0}||_{Lip}/\gamma\},$ $I-L_{\mu}\Phi_{0}$ is invertible an$d$ the inverse (I-

$L_{\mu}\Phi_{0})^{-1}$ is LipscJni $tz$ conti$n$uous with constan $t\mu\gamma/(\mu\gamma-||\Phi_{0}||_{L:_{P}})$ . $F\alpha$rther, $ifz\in D(A)$ ,

then $(I-L_{\mu}\Phi_{0})^{-1}z\in D(A)$ .

Now define an operator $B$ on $X$ by

$B\phi=-A\phi-F_{0}(\phi)$ , for $\phi\in D(B)$ $:=\{\phi\in D(A)|L\phi=\Phi_{0}(\phi)\}$ .

Proposition 3.2. $B+\omega I$ is a densely deRned m-accretive operator in $X$ , where $\omega=$

$||\Phi_{0}||_{L:}p/\gamma+||F_{0}||_{L:}p$ .

Proof. Firstly, we show the range condition $R(I+\lambda B)=X$ for sufficiently small $\lambda>0$ . Let

$y\in X$ . For $x\in D(A)$ , define an operator $K$ : $D(A)arrow D(A)$ by $Kx=(I-L_{\mu}\Phi_{0})^{-1}(I-$

$\lambda A_{0})^{-1}(\lambda F_{0}(z)+y)$ , where $\mu=1/\lambda$ and $\lambda$ is sufliciently small. We want to seek the fixed

point of $K$ and it is easily seen that $K$ is a contraction. Next, we show that $B+\omega I$ is

accretive in $X$ . We should remark that for sufficiently small $\lambda>0,$ $(I+\lambda B)^{-1}$ : $Xarrow X$

is well-defined as a single-valued operator and it satisfies

$(I+\lambda B)^{-1}y=(I-L_{\mu}\Phi_{0})^{-1}(I-\lambda A_{0})^{-1}(\lambda F_{0}((I+\lambda B)^{-1}y)+y)$ ,

where $\mu=1/\lambda$ . Let $x_{i}=(I+\lambda B)^{-1}y_{i}$ for $i=1,2$ . Using the above relation, we get

$(1-\lambda\omega)|x_{1}-x_{2}|\leq|y_{1}-y_{2}|$ , which shows $B+\omega I$ is accretive.

Finally, after a little long calculation, we can show that

$\lim_{\lambda\downarrow 0}(I+\lambda B)^{-1}y=y$ , $\forall y\in X$ ,

which guarantees that $\overline{D(B)}=X$ . $\square$
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In the following, $J_{\lambda}$ represents the resolvent $(I+\lambda B)^{-1}$ . Choose $r>0$ so small that

$|\overline{u}|+r<r_{0}$ . Then $u\in U$, (ti) implies $u\in U_{0}(0)$ . For $u\in D(B)\cap U,(\overline{u})$ , define a linear

operator $\theta B(u)$ : $Xarrow X$ by

$\theta B(u)h=-Ah-F’(u)h$ for $h\in D(\partial B(u)):=\{h\in D(A)|Lh=\Phi’(u)h\}$ .

Then by the same reason as above proposition, we have

Proposition 3.3. With $\omega_{u};=||\Phi’(u)||_{\mathcal{L}(X,\theta X)}/\gamma+||F’(u)||,$ $\theta B(u)+\omega_{u}I$ is m-accreti$ve$

in $X$ .

Lemuna 3.4. Let $\lambda_{0}=1/\max\{\mu_{0},1/2\omega\}$ and set $E$ $:=\{v\in X|J_{\lambda}v\in U,(\overline{u}),$ $0<\lambda<$

$\lambda_{0}\}$ . Then $J_{\lambda}$ is G\^ateaux differentiable on $E$ and A$as$ a G\^at$eaux$ derivative $dJ_{\lambda}(v)h=$

$(I+\lambda\theta B(J_{\lambda}v))^{-1}h$ for $v\in E,$ $h\in X,$ $0<\lambda<\lambda_{0}$ .

Proposition 3.5. For $u\in D(B)\cap U,(\overline{u}),$ $G( \theta B(u))=\lim_{t\downarrow 0}t^{-1}[G(B)-(u, Bu)]$ .

Prvof. Let $v=(I+\lambda B)u$ for $u\in D(B)\cap U$, (ti) and $0<\lambda<\lambda_{0}$ . By Lemma 3.4,

$dJ_{\lambda}(v)h=(I+\lambda\theta B(J_{\lambda}v))^{-1}h$ . Define $\Psi_{\lambda}(x, y)=(ae+\lambda y, x)$ . Then by [K2, Lemma

4.1], we obtain $\lim_{\ell\downarrow 0}t^{-1}[\Psi_{\lambda}^{-1}(G(J_{\lambda}))-\Psi_{\lambda}^{-1}(v, J_{\lambda}v)]=\Psi_{\lambda}^{-1}(G(dJ_{\lambda}(v)))$ . This reads as

$\lim_{\ell\downarrow 0}t^{-1}[G(B)-(J_{\lambda}v, BJ_{\lambda}v)]=G(\theta \mathcal{A}(J_{\lambda}v))$ , which is the result. $\square$

Combining Propositions 3.3 and 3.5, we have

Proposition 3.6. $\theta B(u)+\omega I$ is m-accretive in $X$ for $u\in D(B)\cap U,(\overline{u})$ .

Finally, we get

Proposition 3.7. Ther$e$ exist $\lambda_{\overline{u}}>0,$ $\delta_{\varpi}\in(0,r$] such that

$|(I+\lambda\theta B(z))^{-1}v-(I+\lambda\theta B(u))^{-1}v|\leq 4\lambda(d_{F}(r_{0})+d_{t}(r_{0}))|z-u||v|$

for $0<\lambda<\lambda_{\overline{u}},$ $z,u\in U_{\delta_{*}}(\overline{u})\cap D(B)$ and $v\in X$ .

Consequently, the hypotheses (H1) and (H2) in \S 1 with $\delta=\delta_{\varpi}$ are fulfilled. Let

$\{S(t)\}$ be a nonlinear semigroup generated by $-B$ and put $u(t)$ $:=S(t)x_{0}$ for $x_{0}\in X$ .
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By Proposition 4.1 in the next section, we can characterize $u(t)$ as the mild solution of

(BE) with $F_{0}$ and $\Phi_{0}$ instead of $F$ and $\Phi$ . If $u(t)$ lies in the ball $U_{0}(0)$ , then $u(t)$ is a

mild solution of the original problem (BE) since $F_{0}$ and $\Phi_{0}$ are identical to $F$ and $\Phi$ on

$U_{o}(0)$ , respectively. Since $B_{1}=-\theta B(\overline{u})$ , we achieve the proof of Theorem 2 by applying

Theorem 1.

4. Semigroups and nild solutions

In this section, we characterize the semigroup solution generated by the quasi-m-accretive

operator $B$ as the mild solution. More precisely, we show the following

Proposition 4.1. Let $u(t):=S(t)z$ for $x\in X$ , where $S(t)$ is the semigroup generat$ed$

by $-A$ defin$ed$ in \S 2. Then $u(t)\in C([0, \infty);X)$ satisfies $\int_{0}u(\epsilon)ds\in Y,$ $u(t)=x+$

$A( \int_{0}^{t}u(s)ds+\int_{0}^{t}F_{0}u(s)ds$ , and $L( \int_{0^{\ell}}u(s)d\epsilon)=\int_{0^{l}}\Phi_{0}u(\epsilon)ds$ for ail $t\geq 0$ .

Let $\mathcal{X}=\theta X\cross X$ be a Banach space with norm $||(z, y)||=|x|_{\partial X}+|y|$ . Define an

operator $\mathcal{A}$ on X by

$\mathcal{A}(0, y)=(-Ly,Ay)$ for $(0, y)\in D(\mathcal{A}):=\{O\}\cross D(A)$ .

Note that $\overline{D(\mathcal{A})}=\{0\}\cross X$ . Define $\mathcal{F}$ : $\{0\}\cross Xarrow \mathcal{X}$ by $\mathcal{F}(0, y)=(\Phi_{0}y, F_{0}y)$ . Let

$B=-(\mathcal{A}+\mathcal{F})$ and let $\mathcal{B}_{0}$ denote the part of $B$ on $\{O\}\cross X$ , i.e.,

$D(B_{0})=\{(0, y)\in D(A)|(\mathcal{A}+\mathcal{F})(0, y)\in\{O\}\cross X\}$ ,

$B_{0}(0, y)=-(\mathcal{A}+\mathcal{F})(0, y)$ .

If we identify $\{0\}\cross X$ with $X,$ $\mathcal{B}_{0}$ can be identified with $B$ defined in \S 2. Hence by

Proposition 3.2, we have

Proposition 4.2. $B_{0}+\omega \mathcal{I}$ is m-accretive in $\{0\}\cross X$ , where $\omega=||\Phi_{0}||_{Lip}/\gamma+||F_{0}||_{Lip}$ and $\mathcal{I}$

stands for the identi$ty$ in $\{O\}\cross X$ . Furthermore, $\overline{D(B_{0})}=\{O\}\cross X$ , and $(\mathcal{I}+\lambda \mathcal{B}_{0})^{-1}(0, z)=$

$(0, (I+\lambda B)^{-1}z)$ .
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Now, we are going to prove Proposition 4.1. By Proposition 4.2, $\mathcal{B}_{0}$ generates a

nonlinear semigroup $\{S(t)\}$ on $\{0\}\cross X$ by the exponential formura

$S(t)( O, y)=\lim_{narrow\infty}(\mathcal{I}+\frac{t}{n}B_{0})^{-n}(0,y)$

$= \lim_{narrow\infty}(0, (I+\frac{t}{n}B)^{-n}y)=(0, S(t)y)$ .

By Thieme [Th, Lemma 6.2], it is shown that the part $\mathcal{A}r$ of $A$ in $\{0\}\cross X$ generates a

strongly continuous semigroup $\{\mathcal{T}_{0}(t)\}$ on $\{0\}\cross X$ such that $\mathcal{T}_{0}(t)(0, ae)$ $=(0,T_{0}(t)x)$ ,

where $\{T_{0}(t)\}$ is the semigroup generated by $A_{0}$ , and

$\mathcal{T}_{0}(t)(0, z)=\lim_{narrow\infty}(\mathcal{I}-\frac{t}{n}\mathcal{A})^{-n}(0, z)$ , $\forall(0, x)\in\{O\}\cross X$ .

Since

$( \mathcal{I}-\lambda A)^{-1}(\mathcal{I}-\frac{t}{n}(\mathcal{A}+\mathcal{F}))^{-n}(0, x)=(\mathcal{I}-\lambda \mathcal{A})^{-1}(\mathcal{I}-\frac{t}{n}\mathcal{A})^{-n}(0, x)$

$+ \frac{t}{n}\sum_{:=1}^{n}(\mathcal{I}-\frac{t}{n}\mathcal{A})^{(n-:+1)}(\mathcal{I}-\lambda \mathcal{A})^{-1}\mathcal{F}(\mathcal{I}-\frac{t}{n}(\mathcal{A}+\mathcal{F}))^{-:}(0, x)$,

passing to the limit $narrow\infty$ , we have

$(\mathcal{I}-\lambda A)^{-1}S(t)(0, x)=(\mathcal{I}-\lambda \mathcal{A})^{-1}\mathcal{T}_{0}(t)(0, x)$

$+ \int_{0}^{\ell}\mathcal{T}_{0}(t-s)(\mathcal{I}-\lambda \mathcal{A})^{-1}\mathcal{F}S(\epsilon)(0,x)ds$ .

Hence letting $\lambda\downarrow 0$ implies

$S(t)( O, x)=\mathcal{T}_{0}(t)(0,x)+\lim_{\lambda\downarrow 0}\int_{0}^{t}\mathcal{T}_{0}(t-s)(\mathcal{I}-\lambda A)^{-1}\mathcal{F}S(\epsilon)(0, x)ds$.

As shown in [Th], this is $e$quivalent to the fact that $\int_{0^{\ell}}S(s)(O, x)d\epsilon\in D(\mathcal{A})$ and

$S(t)(0, x)=(0, x)+ \mathcal{A}(\int_{0}^{\ell}S(s)(0, x)ds)+\int_{0}^{\ell}\mathcal{F}S(s)(0, x)ds,$ $t\geq 0$ .

This is translated as $\int_{0}S(s)d\epsilon\in D(A)$ and

$S(t)x=x+A( \int_{0}^{\ell}S(\epsilon)xds)+\int_{0}^{\ell}F_{0}S(s)xds$

$L( \int_{0}^{t}S(s)xd\epsilon)=\int_{0}^{t}\Phi_{0}S(s)xd\epsilon$ . $\square$
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