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Asymptotic behavior as $tarrow\infty$ of solutions

of quasi-linear heat equations

TADASHI KAWANAGO (川中子 正)

Osaka University

0. Introduction

We consider the large time behavior of weak solutions of the following initial-

boundary value problem:

(I) $\{\begin{array}{l}u_{l}=\Delta\phi(u)in\Omega\cross(0,\infty)u(x,t)=0on\partial\Omega\cross(0,\infty)u(x,0)=u_{0}(x)in\Omega\end{array}$

Here, $\Omega\subset R^{N}$ is a bounded domain with smooth boundary $\partial\Omega$ . We assume that

(A1) $\phi\in C^{1}(R)$ and $\phi’(r)>0$ if $r\neq 0$ ,

(A2) $u0\in L^{2}(\Omega),$ $u_{0}\not\equiv 0$ in $\Omega$ .

If we set $k=\phi’$ , then we can rewrite the equation as

$u_{t}=\nabla\cdot(k(u)\nabla u)$ .

We shall study the following two cases:

1o (The degenerate case) When $k(0)=0$ , the eqaution arises in gas flow through

porous media.

$2^{o}$ (The nondegenerate case) When $k(0)>0$ , the eqaution arises in heat flow through

solids.
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In this article we intend to extend and make more precise some results of Kawanago

[5]. We shall recall a definition of weak solutions of (I) by the nonlinear semigroup

theory. We define operator $A:L^{1}(\Omega)arrow L^{1}(\Omega)$ by

$Au=-\Delta\phi(u)$ for $u\in D(A)$

with $D(A)=\{u\in L^{1}(\Omega);\phi(u)\in W_{0}^{1,1}(\Omega), \Delta\phi(u)\in L^{1}(\Omega)\}$. The operator $A$ is m-

accretive in $L^{1}(\Omega)$ under the condition (0.1). Therefore $A$ generates the contraction

semigroup $S_{A}(t)$ . Hence we can define a unique weak solution of (I) by $S_{A}(t)u_{0}$ for

any $u_{0}\in\overline{D(A)}=L^{1}(\Omega)$ .

In the proofs of our result we often compute formally. We remark that it is not

difficult to make our formal proofs rigorous.

Notation.

1. $\{\lambda_{\nu}\}_{\nu=1}^{\infty}(0<\lambda_{1}<\lambda_{2}<\cdots)$ are all distinct eigenvalues of-A with zero-Dirichlet

condition.

2. $P_{j}$ is the orthogonal projection of the eigenspace of $\lambda_{j}$ and $R(P_{j})$ is the eigenspace

of $\lambda_{j}$ for $i\in$ N.

3. $(\cdot, \cdot)$ denotes the inner product in $L^{2}(\Omega)$ .

4. $||\cdot||_{p}$ denotes the norm of $L^{p}(\Omega)$ .

5. $f(t)=o(g(t))$ means that $\lim\sup_{tarrow\infty}|f(t)/g(t)|=0,$ $f(t)=O(g(t))$ that

$\lim\sup_{tarrow\infty}|f(t)/g(t)|<\infty$ , and $f(t)\sim g(t)$ that $a< \lim\inf_{tarrow\infty}|f(t)/g(t)|\leq$

$\lim\sup_{tarrow\infty}|f(t)/g(t)|<b$ for some $a,$ $b>0$ .

1. The degenerate case

We state the large time behavior for solutions of (I) under the condition: $k(O)=0$

(and also $k(O)\geq 0$ ). When $\phi(r)=|r|^{m-1_{\gamma}}(m>1)$ and $u_{0}\geq 0$ in $\Omega$ , Aronson and
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Peletier [2] showed that

$||(1+t)^{1/(m-1)}u(t)-h\Vert_{\infty}\leq C(1+t)^{-1}$ for $t\geq 0$ ,

where $h(x)$ is the unique positive solution of the problem:

$\{\begin{array}{l}\Delta(h^{m})+1/(m-1)h=0h(x)=0on\partial\Omega\end{array}$

in $\Omega$ ,

The corresponding results were obtained under milder assumption on $\phi$ :

(1.1) $0<\alpha<\phi(r)\phi’’(r)/[\phi’(r)]^{2}\leq 1$

in some nonempty neighborhood of $r=0$ for some $\alpha\in(0,1)$ ,

by Bertsch and Peletier [3]. We remark that the solutions of equations they consid-

ered decay at most algebraically $and^{\vee}does$ not depend on $\Omega$ . We shall give some decay
the decay order

results under a different assumption. And we shall show that there are some degen-

erate equations of which solutions decay exponentially and the decay order depends

on $\Omega$ (see Example following Theorem 1).

Theorem 1. Let (A1-2) be satisfied an$dk(0)\geq 0$ . We assume that $k(r)$ is non-

decreasin$g$ (non-increasing) on $(0,\epsilon)$ an$d$ that

(1.2) $\frac{\phi(r)}{r}\geq k(\alpha r)$ (resp. $\frac{\phi(r)}{r}\leq k(\alpha r)$ ) for $0<r\leq\epsilon$

for some $\alpha\in(0,1)$ and $\epsilon>0$ . Also $ass$ume that there exists $\omega\in R(P_{1})$ such that

$u_{0}\geq\omega>0$ (resp. $u_{0}\leq\omega$) in $\Omega$ . Then, the weak $so|_{\{l}tio|’\tau"\downarrow\iota 0^{\cdot}$} (I) $sot$is $fies$

(1.3) $(u(t), e_{1})\sim y(t)$ ,
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where $e_{1}$ is an element of $R(P_{1})$ such that $e_{1}>0$ in $\Omega$ and $||e_{1}||_{2}=1$ . An$dy(t)$ is

any fixed positive solution of the ordinary equation: $y^{/}(t)=-\lambda_{1}\phi(y)$ .

Remark. All examples of $\phi$ given in [3] satisfy the condition (1.2). Hence it

seems that the condition (1.2) is substantially weaker than (1.1).

Sketch of proof of Theorem 1. We state only the case when $k(r)$ is non-

decreasing on $(0,\epsilon)because^{\vee}the$ other case when $k(r)$ is non-increasing is similar.
$\star\{\gamma$

We denote by $y(t;yo)$ the solution of the ordinary equation: $y’(t)=-\lambda_{1}\phi(y)$ with

the initial value $y_{0}>0$ . Then we can easily verify that $y(t;a)\sim y(t;b)$ for any

$a,$ $b\in(0, \infty)$ . Therefore we have only to show that $(u(t), e_{1})\sim y(t;a)$ for any fixed

$a\in(0, \infty)$ . In what follows, we choose $\omega_{1}\in R(P_{1})$ such that $\omega_{1}>0$ in $\Omega$ and

$0<||\omega_{1}||_{\infty}\leq\alpha(<1)$ . We divide the proof into two steps.

Step 1. We shall prove that

(1.4) $(u(t), e_{1})\leq Cy(t)$ for $t\geq 0$

for some $C\in(O, \infty)$ . We already see in [5] that

(1.5) $\Vert u(t)||_{\infty}arrow 0$ as $tarrow\infty$

(see [5, Proposition 4.1]). Therefore we may assume without loss of generality that

$||u(t)||_{\infty}\leq\epsilon$ for $t\geq 0$ . By the convexity of $\phi$ and Jensen’s inequality, we have

$\frac{d}{dt}(u(t),\omega_{1})=-\lambda_{1}\int\phi(u)\omega_{1}dx\leq-\lambda_{1}\int\phi(u\omega_{1})dx\leq-\lambda_{1}|\Omega|\phi(\frac{1}{|\Omega|}(u,\omega_{1}))$ ,

where we denote by I $\Omega|$ the Lebesque measure of I $\Omega|$ . It follows that

$\frac{1}{|\Omega|}(u(t),\omega_{1})\leq y(t;\frac{1}{|\Omega|}(u_{0},\omega_{1}))$ .
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Hence we have proved (1.4).

Step 2. We shall prove that

(1.6) $(u, e_{1})\geq Cy(t)$ for $t\geq 0$

for some $C\in(0, \infty)$ . We shall show that $z(x,t)=\omega_{1}(x)y(t;a)(a>0)$ is a subsolu-

tion of (I). Indeed we obtain from (1.2) and the convexity of $\phi$ that

(1.7) $z_{t}- \Delta\phi(z)\leq-\lambda_{1}\omega_{1}y\{\frac{\phi(y)}{y}-k(\omega_{1}y)\}\leq-\lambda_{1}\omega_{1}y\{k(\alpha y)-k(\omega_{1}y)\}\leq 0$.

Hence $z(x, t)$ is a subsolution of (I). Moreover, we may choose $a\in(0, \infty)$ so small

that

(1.8) $z(x, 0)=a\omega_{1}(x)\leq\omega(x)\leq u_{0}(x)$ in $\Omega$ .

It follows from (1.7), (1.8) and the comparison principle that

$u(x,t)\geq z(x,t)=\omega_{1}(x)y(t)$ ,

which implies (1.6). 1

Example. When $k(r)=\theta/(-\log r)^{\rho}$ for $0<r\leq\epsilon$ ($\theta,$ $\rho\in(0,$ $\infty)$ are constants),

(1.2) holds. And $y(t)$ satisfies that

$y(t)\sim\exp\{-((\rho+1)\theta\lambda_{1}t)^{1/(\rho+1)}\}$

Moreover, in this $ex$ample the $|vea\ltimes so|_{1r}l_{|’0h}\tau\iota$ of (I) $so\uparrow|’s\}_{1}es$ that

$(^{*})$ $\frac{u(t)}{(u(t),e_{1})}arrow e_{1}tarrow\infty$ in $L^{2}(\Omega)$
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when $N=1$ .

Sketch of proof of $(^{*})$ in the above example. We set $v=u(t)-(u, e_{1})e_{1}$ . It is

sufficient to derive that $||v(t)||_{2}=o(y(t))$ . In view of (1.5), we may assume that

$\sup_{t\geq 0}\Vert u(t)||_{\infty}$ is sufficiently small. We set $h(r)= \int_{0}^{r}\sqrt{k(s)}ds$ . Then,

$\frac{d}{dt}\int v^{2}=-2\int\{h(u)_{x}\}^{2}+2\lambda_{1}(u,e_{1})(\phi(u),e_{1})$

$=-2 \sum_{j=1}^{\infty}\lambda_{j}(h(u), e_{j})^{2}+2\lambda_{1}(u, e_{1})(\phi(u), e_{1})$

$\leq 2(\lambda_{2}-\lambda_{1})(h(u), e_{1})^{2}-2\lambda_{2}\int h(u)^{2}+2\lambda_{1}(u, e_{1})(\phi(u), e_{1})$ .

We set $g(r)=h(\sqrt{r})^{2}$ . By Jensen’s inequality,

$\frac{d}{dt}\int v^{2}\leq-2\lambda_{2}|\Omega|g(\frac{1}{|\Omega|}\int u^{2})+2(\lambda_{2}-\lambda_{1})(h(u),e_{1})^{2}+2\lambda_{1}(u, e_{1})(\phi(u), e_{1})$ .

We may assume by rescaling that $|\Omega|=1$ . We can easily verify that

$g(r) \geq 2^{\rho}\phi(r)\{1-\frac{C}{(-\log r)^{2}}\}$ for some $C\in(O, \infty)$ .

It follows that

(1.9)

$\frac{d}{dt}\int v^{2}\leq-\frac{2^{\rho+1}\theta\lambda_{2}}{(-1og\int u^{2})^{\rho}}\{\int v^{2}+(u, e_{1})^{2}\}+\frac{C}{(-\log\int u^{2})^{\rho+2}}\int u^{2}$

$+2(\lambda_{2}-\lambda_{1})(h(u),e_{1})^{2}+2\lambda_{1}(u, e_{1})(\phi(u), e_{1})$ .

We can easily verify that

(1.10) $h(r) \leq\frac{\sqrt{\theta}r}{(-\log r)^{\rho/2}}$
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We obtain from (1.10) that

(1.11)

$I=- \frac{2^{\rho+1}\theta\lambda_{2}}{(-\log\int u^{2})^{\rho}}(u,e_{1})^{2}+2(\lambda_{2}-\lambda_{1})(h(u), e_{1})^{2}+2\lambda_{1}(u, e_{1})(\phi(u), e_{1})$

$\leq 2\theta(u, e_{1})^{2}\{\frac{-\lambda_{2}}{(-\log||u||_{2})^{\rho}}+\frac{\lambda_{2}-\lambda_{1}}{(-\log\Vert u||_{\infty})^{\rho}}+\frac{\lambda_{1}}{(-\log||u||_{\infty})^{\rho}}\}$

$=2 \theta\lambda_{2}(u, e_{1})^{2}\{\frac{1}{(-\log||u||_{\infty})^{\rho}}-\frac{1}{(-\log||u||_{2})^{\rho}}\}$.

On the other hand, it follows from [6, Lemma 3.3] that

(1.12) $||\phi(u(t))\Vert_{\infty}\leq C\Vert\nabla\phi(u(t))||_{2}\leq\sqrt{\frac{k(\Vert u(t-t_{0})\Vert_{\infty})}{2t_{0}}}||u(t-t_{0})||_{2}$ for $t>t_{0}$

for any $t_{0}\in(0, \infty)$ . By (1.12) and [5, (4.12)],

(1.13) $||u(t)||_{\infty}\leq Ct^{\sigma}\exp\{-((\rho+1)\theta\lambda_{1}t)^{1/(\rho+1)}\}$ for $t\geq 0$

for some $\sigma\in(0, \infty)$ . It follows from (1.11), (1.13) and the mean value theorem that

(1.14) $I \leq\frac{C\log t}{t}y(t)^{2}$ .

In view of (1.9) and (1.14), we have

$\frac{d}{dt}\int v^{2}\leq-\frac{2\theta\lambda_{2}}{((\rho+1)\theta\lambda_{1}t)^{\rho/(\rho+1)}+C}\int v^{2}+\frac{C\log t}{t}\exp\{-2((\rho+1)\theta\lambda_{1}t)^{1/(\rho+1)}\}$,

which implies that

$\Vert v||_{2}\leq Ct^{\epsilon-1/(2\rho+2)}y(t)$ for $t\geq 0$

for any small $\epsilon\in(0,1)$ . $1$

2. The nondegenerate case

We consider the nondegenerate case. By rescaling, we can assume without loss of

generality that $k(O)=1$ .

We shall recall a result of [5].
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Theorem 2. ([5]) Let (A1-2) be satisfied. We assume that

(2.1) $|k(r)-1|\leq\theta/(-\log|r|)^{\rho}$ for $|r|\leq\epsilon$

for some $\theta\in(0,\infty),$ $\rho\in(1,\infty)$ an$d\epsilon\in(0,1)$ . Lct $1t^{J}$ be th$e$ weak $so|_{U}t_{t0}n$ of (I)

Then, there exists an eigenvector $\omega_{1}\in R(P_{1})$ satisfying

(2.2) $e^{\lambda_{1}t}u(t)arrow\omega_{1}\ellarrow\infty$ in $H_{0}^{1}(\Omega)$ .

Moreover, $\omega_{1}>0$ in $\Omega$ if $u_{0}\geq 0$ in $\Omega$ .

The condition (2.1) is a sufficient and an almost necessary condition for (2.2).

Indeed if the graph of the heat conduction $k(r)$ is not ‘mild’ near $r=0$ , then, by

Theorem 2, the decay order of solutions of (I) is different from that of the linear case,

i.e. $\phi(r)\equiv r$ (see Theorem 3 and Example following it). On the other hand, when

the graph of $k(r)$ is ‘mild’ near $r=0$ , we are interested in some delicate difference

of large time behavior between the solutions of quasilinear equation and those of

linear equation. In this case we shall study the behavior for solutions of quasilinear

equations in detail by observing some first terms of the asymptotic expansion of the

solutions (see Theorem 4 and Example 2 following it).

Theorem 3. Let (A1-2) be satisfied and $k(O)=1$ . We assume that $k(r)$ is non-

decreasing (resp. non-increasing) on $(0,\epsilon)$ and that

(2.3) $\frac{\phi(r)}{r}\geq k(\alpha r)$ (resp. $\frac{\phi(r)}{r}\leq k(\alpha r)$ ) for $0<r\leq\epsilon$

for some $\epsilon>0$ and $\alpha\in(0,1)$ . Also $assume$ that there exists $\omega\in R(P_{1})$ such that

$u0\geq\omega>0$ (resp. $u0\leq\omega$ ) in $\Omega$ . Then, the weak $S0|uf\downarrow’0\cap u$ of (I) satisfies that

(24) $arrow e_{1}$ in $L^{2}(\Omega)$ ,
$u(t)$

$(u(t), e_{1})tarrow\infty$
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(2.5) $(u(t), e_{1})\sim y(t)$ ,

where $e_{1}$ is an element of $R(P_{1})$ such that $e_{1}>0$ in $\Omega$ an$d\Vert e_{1}\Vert_{L^{2}}=1$ . And $y(t)$ is

any fixed $pos$itive solution of the ordinary equation: $y^{/}(t)=-\lambda_{1}\phi(y)$ .

Example. When $k(r)=1+\theta/(-\log r)^{\rho}$ for $0<r\leq\epsilon(\theta\in R$ and $\rho\in(0,1$ ] are

constants), (2.3) holds. In this case, we can verify that the decay order $y(t)$ satisfies

that

$\log y(t)=-\lambda_{1}t-\frac{\theta(\lambda_{1}t)^{1-\rho}}{1-\rho}+o(t^{1-\rho})$ if $\rho\in(0,1)$ ,

$y(t)\sim(t+1)^{-\theta}e^{-\lambda_{1}t}$ if $\rho=1$ .

Sketch of proof of Theorem 3. In view of Theorem 1, we have only to prove that

(2.6) $||u(t)-(u, e_{1})e_{1}||_{2}=o(y(t))$ .

We set $v=u(t)-(u, e_{1})e_{1}$ . We remark that $(v, e_{1})=(\nabla v, \nabla e_{1})=0$ .

(27) $\frac{d}{dt}\int v^{2}=2\int\nabla v\cdot k(u)\nabla u$

$=-2 \int k(u)|\nabla v|^{2}-2(u, e_{1})\int\{k(u)-1\}\nabla v\cdot\nabla e_{1}$ .

In view of (1.5), we may assume without loss of generality that $k(u(x, t))\geq 1-\epsilon$ for

any $(x, t)\in\Omega\cross[0, \infty)$ , where $\epsilon\in(0,1)$ is any small constant. Therefore, we have

$\frac{d}{dt}\int v^{2}\leq-2(1-\epsilon)||\nabla v||_{2}^{2}+2(u, e_{1})||k(u)-1\Vert_{\infty}\Vert\nabla v||_{2}||\nabla e_{1}||_{2}$

$\leq-2(1-2\epsilon)\Vert\nabla v\Vert_{2}^{2}+C\Vert k(u)-1\Vert_{\infty}^{2}(u, e_{1})^{2}$ .
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It follows that

$||v(t)||_{2}^{2}\leq e^{-2(1-2\epsilon)\lambda_{2}t}\Vert v(0)||_{2}^{2}$

$+Ce^{-2(1-2e)\lambda_{2}\ell} \int_{0}^{t}e^{2(1-2e)\lambda_{2}s}||k(u(s))-1||_{\infty}^{2}(u(s), e_{1})^{2}ds$.

On the other hand, we can easily verify that $y(t)\geq Ce^{-(\lambda_{1}-\epsilon)t}$ for $t\geq 0$ . We can

choose $\epsilon$ so small that $\lambda_{1}-\epsilon-2(1-2\epsilon)\lambda_{2}<0$ . It follows from l’Hospital’s theorem

that

$\lim_{tarrow}\sup_{\infty}\frac{||v(t)||_{2}^{2}}{y(t)^{2}}\leq C\lim_{tarrow\infty}\frac{\int_{0^{l}}e^{2(1-2\epsilon)\lambda_{2}s}||k(u(s))-1\Vert_{\infty}^{2}y(s)^{2}ds}{e^{2(1-2\epsilon)\lambda_{2}}{}^{t}y(t)^{2}}$

$=C \lim_{\ellarrow\infty}\frac{e^{2(1-2\epsilon)\lambda_{2}t}||k(u(t))-1||_{\infty}^{2}y(t)^{2}}{\{e^{2(1-2\epsilon)\lambda_{2}}{}^{t}y(t)^{2}\}}$

$=C \lim_{tarrow\infty}\frac{||k(u(t))-1||_{\infty}^{2}}{2(1-\epsilon)\lambda_{2}-2\lambda_{1}\phi(y)/y}$

$=0$ .

Hence, we have $||v(t)\Vert_{2}=o(y(t))$ . I

Next, we shall consider the large time behavior under the following condition on $\phi$ :

(A3) $|k(r)-1|\leq a|r|^{\alpha}$ for $|r|\leq\epsilon$

for some $a,$ $\alpha,$ $\epsilon\in(0, \infty)$ .

And we shall study the following more general form of equation:

(II) $\{\begin{array}{l}u_{t}=\Delta\phi(u)-f(u)in\Omega\cross(0,\infty)u(x,t)=0on\partial\Omega\cross(0,\infty)u(x,0)=u_{0}(x)in\Omega\end{array}$

Here, we assume that

(A4) $f$ : $Rarrow R$ is a locally Lipschitz continuous function satisfying that $rf(r)\geq 0$
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for $r\in R$ and that there exist constants $b\geq 0$ and $p>1$ such that $|f(r)|\leq b|r|^{p}$ in

some nonempty neighborhood of $r=0$,

We can not define weak solutions of (II) by the nonlinear semigroup theory since

we does not assume that $f$ is monotone. Instead, we define weak solutions by the

following:

Definition. A weak solution $u$ of (II) on $t\in(O, \infty)$ is a locally H\"older continuous

function in $\Omega\cross R^{+}$ with the properties:

(i) $u(x, t)\in L^{\infty}(\Omega\cross R^{+})$ ,

(ii) $\int_{\Omega}\{u_{0}(x)\eta(x,0)-u(x,T)\eta(x,T)\}dx$

$+ \int_{0}^{T}dt\int_{\Omega}\{u\eta\iota+\phi(u)\Delta\eta-f(u)\eta\}dx=0$

for any $T>0$ and for any $\eta\in C^{2}(\overline{\Omega}\cross[0, T])$ such that $\eta(x, t)=0$ on $\partial\Omega\cross[0, T]$ .

Proposition 1. We assume (A1-4). Then (II) has a unique weak solution $u$ .

Proof. For the uniqueness, see [1, Theorem 12 $(i)$ ]. For the existence, the proof is

similar to that of [6, Proposition 1.1]. 1

Theorem 4. ([7]) Let the conditions (A1-4) be satisfied. $1e\dagger\prime w$ be the weak
$L$ softition ot $(\pi)$ .Then we $h$ave the following:

(i) There exist $m\in N$ and a non-zero eigenvector $\omega_{m}\in R(P_{m})$ satisfying

$e^{\lambda_{m}}{}^{t}u(t)_{\iota_{\vee\infty}^{-}}\omega_{m}$ in $H_{0}^{1}(\Omega)$ .

(ii) More precisely, let $\kappa=\min\{\alpha+1,p\}$ and $n= \max\{j\in N;\lambda_{j}<\kappa\lambda_{m}\}$

$(\geq m)$ . Then, also for each $m<j\leq n$ , there exists eigenvector $\omega_{j}\in R(P_{i})$ satisfying

(28) $u(t)- \sum_{j=m}^{n}e^{-\lambda_{j}t}\omega_{j}=\{\begin{array}{l}O(e^{-\kappa\lambda_{m}t})if\kappa\lambda_{m}<\lambda_{n+l}O(te^{-\kappa\lambda_{m}t})if\kappa\lambda_{m}=\lambda_{n+l}\end{array}$ in $H_{0}^{1}(\Omega)$ .
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We can derive Theorem 4 by combining the computations in [5] and those in [4].

Example 1. When $k(r)=1+e^{-1/|r|}$ and $f\equiv 0$ , we can easily obtain from

Theorem 4 the following asymptotic expansion in $H_{0}^{1}(\Omega)$ :

$u(t)= \sum e^{-\lambda_{j}}{}^{t}\omega_{j}\infty$,
$j=1$

where $\omega;\in R(P_{j})$ for $j\in N$ .

This expansion is just the same form as the linear case: $k\equiv 1$ . Example 1 is,

however, an extreme and exceptional case. We shall study a typical example: $k(r)=$

$1+a|r|^{\alpha}+o(|r|^{\alpha})$ and $f(r)=b|r|^{p-1}r+o(|r|^{p})$ , from which we see that the estimate

(2.8) is optimal.

Example 2. We shall state the case: $k(r)=1+a|r|^{\alpha}+o(|r|^{\alpha})$ and $f(r)=$

$b|r|^{p-1}r+o(|r|^{p})$ ( $a,$ $b>0$ are constants.) We use the same notations as in the

statement of Theorem 4 and define $xf(\alpha,p)(j\in N)$ by

$\chi_{j}(\alpha,p)=\{\begin{array}{l}a\lambda_{j}/(\alpha+1)if\alpha+1<pa\lambda_{j}/(\alpha+1)+bif\alpha+l=pbif\alpha+1>p\end{array}$

Then we have the following:

(i) Let $\kappa\lambda_{m}<\lambda_{\mathfrak{n}+1}$ . Then,

$u(t)= \sum_{j=m}^{n}e^{-\lambda_{j}t}\omega_{j}+e^{-\kappa\lambda_{m}t}\nu_{1}+o(e^{-\kappa\lambda_{m}t})$

in $L^{2}(\Omega)$ , where

$\nu_{1}=\sum_{j=1}^{\infty}\frac{\chi_{j}(\alpha,p)}{\kappa\lambda_{m}-\lambda_{j}}P_{j}(|\omega_{m}|^{\kappa-1}\omega_{m})\not\equiv 0$ in $\Omega$ .
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(ii) Let $\kappa\lambda_{m}=\lambda_{n+1}$ . Then,

$u(t)= \sum^{n}e^{-\lambda_{j}t}\omega_{j}+te^{-\lambda_{\mathfrak{n}+1}t}\nu_{2}+o(te^{-\lambda_{\mathfrak{n}+1}t})$

$j=m$

in $L^{2}(\Omega)$ , where

$\nu_{2}=-\chi_{n+1}(\alpha,p)P_{n+1}(|\omega_{m}|^{\kappa-}\omega_{m})$ .

Moreover, if $\nu_{2}\equiv 0$ in $\Omega$ , then there also exists $\omega_{n+1}\in R(P_{n+1})$ such that

$u(t)= \sum_{j=m}^{n+1}e^{-\lambda_{j}t}\omega_{j}+e^{-\lambda_{\mathfrak{n}+1}t}\nu_{3}+o(e^{-\lambda_{\mathfrak{n}+1}t})$

in $L^{2}(\Omega)$ , where

$\nu_{3}=(\sum^{n}+.\sum^{\infty})\frac{\chi_{j}(\alpha,p)}{\kappa\lambda_{m}-\lambda_{j}}P_{j}(|\omega_{m}|^{\kappa-1}\omega_{m})\not\equiv 0$ in $\Omega$ .
$j=1$ $J^{=n+2}$
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