Parabolic Variational Inequality for the Cahn-Hilliard Equation with Constraint

N. KENMOCHI, M. NIEZGODKA

and

I. PAWLOW

1. Introduction

In this paper we study the Cahn-Hilliard equation with constraint by means of subdifferential operator techniques. Such a state constraint problem was resently proposed by Blowey-Elliott [1] as a model of diffusive phase separation. The questions of the existence, uniqueness and asymptotic behaviour of solutions, treated in [1] for the special case of the deep quench limit, are considered in our paper without such a restriction.

The standard Cahn-Hilliard equation is a model of diffusive phase separation in isothermal binary systems, and in terms of the concentration u of one of the components it has the form

$$u_t + \nu \Delta^2 u - \Delta f(u) = 0 \quad \text{in} \quad Q_T = (0, T) \times \Omega. \tag{1.1}$$

Here Ω is a bounded domain in \mathbb{R}^N , $N \ge 1$, with a smooth boundary $\Gamma = \partial \Omega$, ν is a positive constant related to the surface tension, f(u) corresponds to the volumetric part of the chemical potential difference between components and is given by

$$f(u) = F'(u), \tag{1.2}$$

where F(u) is a homogeneous (volumetric) free energy parametrized by temperature θ , with the characteristic double-well form for θ below the critical temperature θ_c . Usually the free energy is approximated by polynomials $F : \mathbf{R} \to \mathbf{R}$, e.g. in the simplest case by quartic polynomial

$$F(u) = F_o(\theta) + \alpha_2(\theta - \theta_c)u^2 + \alpha_4 u^4$$
(1.3)

with constants $\alpha_2, \alpha_4 > 0$ and a given function $F_o(\theta)$ of temperature. To preserve an explicit physical sense, the state variable u often is subject to some constraints, e.g. in the case of concentration natural limitation is

$$0 \le u \le 1. \tag{1.4}$$

Then the free energy F(u) can be assumed in the form of the so-called regular solution model

$$F(u) = F_o(\theta) + \alpha_o \theta [u \log u + (1-u)\log(1-u)] + \alpha_1(\theta - \theta_c)u(u-1)$$
(1.5)

with a function $F_o(\theta)$ and positive constants α_o, α_1 . The corresponding form of the chemical potential f(u) is shown in Fig. 1. Moreover, as the deep quench limit of (1.5), i.e. as the

(b)

$$tX(t,v(t)) + \int_0^t \tau |v'(\tau)|_{V^*}^2 d\tau \le \int_0^t \{\tau |\alpha'(\tau)| + X(\tau,v(\tau))\} d\tau \cdot \exp(\int_0^t |\alpha'(\tau)| d\tau)$$

for all $t > 0$,

and

$$X(t, v(t)) + \int_{s}^{t} |v'|_{V^{\star}}^{2} d\tau \leq \{X(s, v(s)) + \int_{s}^{t} |\alpha'(\tau)| d\tau\} \cdot \exp(\int_{s}^{t} |\alpha'(\tau)| d\tau)$$
(2.1)
for all $0 < s < t$.

In particular, if $v_o \in D$, then (2.1) holds for 0 = s < t, too.

The third theorem is concerned with the large time behaviour of the solution v(t) of (VI).

Theorem 2.3. In addition to the assumptions $(\varphi_1) - (\varphi_3)$ and (p) suppose that $\alpha' \in L^1(\mathbf{R}_+)$, and

(\$\varphi4\$) \$\varphi^t\$ converges to a proper l.s.c. convex function \$\varphi^{\infty}\$ on \$H\$ in the sense of Mosco [11] as $t \to \infty$, i.e. (M1) for any $z \in D(\varphi^{\infty})$ there exists a function <math>w : \mathbf{R}_+ \to H$ such that $w(t) \to z$ in H and $\varphi^t(w(t)) \to \varphi^{\infty}(z)$ as $t \to \infty$; (M2) if $w : \mathbf{R}_+ \to H$ and $w(t) \to z$ weakly in H as $t \to \infty$, then $\liminf_{t \to \infty} \varphi^t(w(t)) \ge \varphi^{\infty}(z)$.

Let v be the solution of (VI) on \mathbf{R}_+ associated with initial datum $v_o \in D_*$, and denote by $\omega(v_o)$ the ω -limit set of v(t) in H as $t \to \infty$, i.e. $\omega(v_o) := \{z \in H; v(t_n) \to z \text{ in } H \text{ for some } t_n \text{ with } t_n \to \infty\}$. Then $\omega(v_o) \neq \emptyset$ and

$$\partial \varphi^{\infty}(v_{\infty}) + p(v_{\infty}) \ni 0$$
 for all $v_{\infty} \in \omega(v_o)$.

Finally we give a result on the continuous dependence of solutions of (VI) upon the data $v_o, \{\varphi^t\}$ and $p(\cdot)$.

Theorem 2.4. Let $\{\varphi_n^t\}$ be a sequence of families of proper l.s.c. convex functions on Hsuch that conditions $(\varphi_1) - (\varphi_3)$ are satisfied for common positive constants C_o , C_1 and a common function $\alpha \in W_{loc}^{1,1}(\mathbf{R}_+)$. Also, let p_n be a sequence of Lipschitz continuous operators in H such that condition (p) is satisfied for a common Lipschitz constant $L_o > 0$ and a nonnegative C^1 -function P_n on H. Suppose that for each $t \leq 0$, φ_n^t converges to φ^t on H in the sense of Mosco as $n \to \infty$, i.e.

(m1) for any $z \in D$, there exists $\{z_n\} \subset H$ such that $z_n \in D_n$ (= $D(\varphi_n^t)$), $z_n \to z$ in Hand $\varphi_n^t(z_n) \to \varphi^t(z)$ as $n \to \infty$;

(m2) if $z_n \in H$ and $z_n \to z$ weakly in H as $n \to \infty$, then $\liminf_{n \to \infty} \varphi_n^t(z_n) \ge \varphi^t(z)$.

Furthermore suppose that for each $z \in H$,

 $p_n(z) \to p(z)$ in H, $P_n(z) \to P(z)$ as $n \to \infty$.

The cases (1.3),(1.5) and (1.6) of free energies can be written in the form (1.7) with appropriate functions $\hat{\beta}$ and \hat{g} , and these special cases have been studied by Blowey-Elliott [1] and Elliott-Luckhaus [5].

2. Abstract results

We shall study evolution system (1.8)-(1.10) in an abstract framework.

Let H and V be (real) Hilbert spaces such that V is densely and compactly embedded in H. V^* will be the dual of V. Then, identifying H with its dual, we have

$$V \subset H \subset V^*$$

with dense and compact injections. Further, let J^* be the duality mapping from V^* onto V, and for $t \in \mathbf{R}_+ = [0, \infty)$, let $\varphi^t(\cdot)$ be a proper, l.s.c., non-negative and convex function on H. We shall consider the following problem (VI):

$$\begin{cases} J^{\star}(v'(t)) + \partial \varphi^{t}(v(t)) + p(v(t)) \ni 0 & \text{ in } H, t > 0, \\ v(0) = v_{o}, \end{cases}$$

where $v' = (\frac{d}{dt})v$, $\partial \varphi^t$ is the subdifferential of φ^t in H; $p(\cdot) : H \to H$ is a Lipschitz continuous operator and v_o a given initial datum.

When it is necessary to indicate the data φ^t , p and v_o explicitly, (VI) is denoted by $(VI;\varphi^t, p, v_o)$.

Throughout this paper we use the following notations:

 (\cdot, \cdot) : the inner product in H;

 $\langle \cdot, \cdot \rangle$: the duality pairing between V^* and V;

 $|\cdot|_W$: the norm in W for any normed space W;

J: the duality mapping from V onto V^* , hence $J^* = J^{-1}$.

We use some basic notions and results about monotone operators and subdifferentials of convex functions; for details we refer to Brézis [2] and Lions [10].

We shall discuss $(VI)=(VI;\varphi^t, p, v_o)$ under the following additional hypotheses:

(φ 1) The effective domain $D(\varphi^t)$ (= { $z \in H; \varphi^t(z) < \infty$ }) of φ^t is independent of $t \in \mathbf{R}_+, D := D(\varphi^t) \subset V$ and

$$\varphi^t(z) \ge C_o |z|_V^2$$
 for all $z \in V$ and all $t \in \mathbf{R}_+$,

where C_o is a positive constant.

(φ 2) $(z_1^* - z_2^*, z_1 - z_2) \ge C_1 |z_1 - z_2|_V^2$ for all $z_i \in D$, $z_i^* \in \partial \varphi^t(z_i)$, i = 1, 2, and all $t \in \mathbb{R}_+$, where C_1 is a positive constant.

(φ 3) There is a function $\alpha \in W_{loc}^{1,1}(\mathbf{R}_+)$ such that

$$\varphi^{t}(z) - \varphi^{s}(z) \leq |\alpha(t) - \alpha(s)|(1 + \varphi^{s}(z))|$$

for all $z \in D$ and $s, t \in \mathbb{R}_+$ with $s \leq t$.

(p) p is a Lipschitz continuous operator in H and there is a non-negative C^1 -function $P: H \to \mathbb{R}$ whose gradient coincides with p, i.e. $p = \nabla P$; hence

$$\frac{d}{dt}P(w(t)) = (p(w(t)), w'(t)) \quad \text{for a.e. } t \in \mathbf{R}, \text{ if } w \in W^{1,2}_{loc}\mathbf{R}_+; H).$$

We now introduce a notion of the solution in a weak sense to problem (VI).

Definition 2.1. (i) Let $0 < T < \infty$. Then a function $v : [0,T] \to H$ is called a solution of (VI) on [0,T], if $v \in L^2(0,T;V) \cap C([0,T];V^*)$, $v' \in L^2_{loc}((0,T];V^*)$, $v(0) = v_o, \varphi^{(\cdot)}(v) \in L^1(0,T)$ and

$$-J^{\star}(v'(t)) - p(v(t)) \in \partial \varphi^{t}(v(t)) \quad \text{for a.e. } t \in [0, T].$$

(ii) A function $v : \mathbf{R}_+ \to H$ is called a solution of (VI) on \mathbf{R}_+ , if the restriction of v to [0, T] is a solution of (VI) on [0, T] for every finite T > 0.

Our results for (VI) are given as follows.

Theorem 2.1. Assume that $(\varphi_1) - (\varphi_3)$ and (p) are satisfied. Let T be any positive number. Then the following two statements (a) and (b) hold:

(a) If v_0 is given in the closure D_* of D in V^* , then (VI) has one and only one solution v on [0, T] such that

$$t^{\frac{1}{2}}v' \in L^2(0,T;V^*), \quad \sup_{0 < t \leq T} t\varphi^t(v(t)) < \infty.$$

(b) If $v_o \in D$, then the solution v of (VI) on [0,T] satisfies that

$$v' \in L^2(0,T;V^*), \quad \sup_{0 \le t \le T} \varphi^t(v(t)) < \infty;$$

hence $v \in C([0,T];H)$.

The second theorem is concerned with the energy inequality for (VI).

Theorem 2.2. Assume that $(\varphi_1) - (\varphi_3)$ and (p) hold. Let v be the solution of (VI) on \mathbb{R}_+ associated with initial datum $v_o \in D_*$. Define

$$X(t,z) = \varphi^t(z) + P(z)$$
 for $z \in D$ and $t \in \mathbf{R}_+$.

Then: (a)

$$\sup_{0 \le \tau \le t} |v(\tau)|_{V^*}^2 + \int_0^t \varphi^\tau(v(\tau)) d\tau \le M_o \{ |v_o|_{V^*}^2 + \int_0^t \varphi^\tau(z) d\tau + (|z|_H^2 + 1) \} e^{M_o t}$$

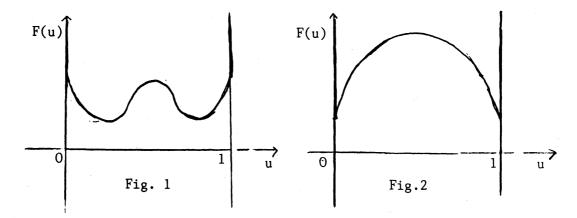
for all $z \in D$ and t > 0,

where M_o is a positive constant dependent only on C_o in ($\varphi 1$), the Lipschitz constant L_p of $p(\cdot)$ and the value $|p(0)|_H$.

limit of (1.5) as $\theta \to 0$, the non-smooth free energy

$$F(u) = \begin{cases} F_o(\theta) + \alpha_1 \theta_c u(1-u) & \text{if } 0 \le u \le 1, \\ \infty & \text{otherwise} \end{cases}$$
(1.6)

is obtained (see Fig. 2); the constraint (1.4) is included in formula (1.6). This type of free energy (1.6) was introduced by Oono-Puri [12], and the corresponding Cahn-Hilliard equation was numerically studied by them; subsequently this model was analized theoretically, too, by Blowey-Elliott [1].



For generality we propose in this paper the representation of (possibly non-smooth) free energy in the form

$$F(u) = \hat{\beta}(u) + \hat{g}(u), \qquad (1.7)$$

where $\hat{\beta}$ is a proper, l.s.c. and convex function on R and \hat{g} is a non-negative function of C^1 -class on R with Lipschitz continuous derivative $g = \hat{g}'$ on R. In such a non-smooth case of free energy functionals, the formula (1.2), giving the volumetric part f(u) of the chemical potential difference, does not make sense any longer. Therefore, following the idea in [1], we introduce a generalized notion of chemical potential which is represented in terms of the multivalued function

$$F(u) = \{\xi + g(u); \xi \in \beta(u)\},\$$

where β is the subdifferential of $\hat{\beta}$ in **R**. Then the Cahn-Hilliard equation (1.1) is extended to the general form

$$u_t + \nu \Delta^2 u - \Delta(\xi + g(u)) = 0, \qquad \xi \in \beta(u) \qquad \text{in } Q_T.$$
(1.8)

Equation (1.8) is to be satisfied together with boundary conditions

$$\frac{\partial u}{\partial n} = 0, \qquad \frac{\partial}{\partial n} (\nu \Delta u + \xi + g(u)) = 0 \qquad \text{on } \Sigma_T := (0, T) \times \gamma$$
 (1.9)

and initial condition

$$u(0,\cdot) = u_o \qquad \text{in } \Omega, \qquad (1.10)$$

where u_o is a given initial datum, and $\frac{\partial}{\partial n}$ denotes the outward normal derivative on Γ .

 $v_n \rightarrow v$ in $C([0,T]; V^*)$,

$$\begin{split} t^{\frac{1}{2}}v'_{n} &\to t^{\frac{1}{2}}v' \quad weakly \ in \ L^{2}(0,T;V^{*}), \\ v_{n} &\to v \quad in \ C([\delta,T];H) \ and \ weakly^{*} \ in \ L^{\infty}(\delta,T;V), \end{split}$$

as $n \to \infty$.

3. Sketch of the proofs

We sketch the proofs of the main theorems.

(1) (Uniqueness) Let v_i , i = 1, 2, be two solutions of (VI) on [0, T] and put $v := v_1 - v_2$. Multiply the difference of two equations, which v_1 and v_2 satisfy, by v, and then use the inequality

$$|z|_{H}^{2} \leq \varepsilon |z|_{V}^{2} + C(\varepsilon)|z|_{V^{\star}}^{2} \quad \text{for all } z \in V,$$

where ϵ is an arbitrary positive number and $C(\epsilon)$ is a suitable positive constant dependent only on ϵ . Then we have an inequality of the form

$$\frac{1}{2}\frac{d}{dt}|v(t)|_{V^*}^2 + k_1|v(t)|_V^2 \le k_2|v(t)|_{V^*}^2 \quad \text{for a.e. } t \in [0,T],$$

where k_1 and k_2 are some positive constants. Therefore, Gronwall's lemma implies that v = 0.

(2) (Approximate problems) Let $v_o \in D$ and μ be any parameter in (0, 1]. Consider the following approximate problem $(VI)_{\mu}$ for (VI):

$$\begin{cases} (J^* + \mu I)(v'_{\mu}(t)) + \partial \varphi^t(v_{\mu}(t)) + p(v_{\mu}(t)) \ni 0 & \text{in } H, \quad 0 < t < T, \\ v_{\mu}(0) = v_o. \end{cases}$$

By making use of the results in [9] this problem $(VI)_{\mu}$ has one only one solution $v_{\mu} \in W^{1,2}(0,T;H) \cap L^{\infty}(0,T;V)$. Also, multiplying the equation of $(VI)_{\mu}$ by v_{μ}, v'_{μ} and tv'_{μ} , we have similar estimates as those in Theorem 2.2.

(3) (Existence and estimates for (VI)) In the case when $v_o \in D$, by the standard monotonicity and compactness methods we can prove that the solution v_{μ} tends to the solution vof (VI) as $\mu \to 0$ in the sense that

> $v_{\mu} \rightarrow v$ in C([0,T]; H) and weakly*in $L^{\infty}(0,T; V)$, $v'_{\mu} \rightarrow v'$ weakly in $L^{2}(0,T; V^{*})$, $\mu v'_{\mu} \rightarrow 0$ in $L^{2}(0,T; H)$.

Moreover we have the estimates in Theorem 2.2 for v. In the case when $v_o \in D_*$, it is enough to approximate v_o by a sequence $\{v_{on}\} \subset D$ and to see the convergence of the solution v_n associated with initial datum v_{on} .

(4) (Proof of Theorem 2.3) From the energy estimates which were obtained in Theorem 2.2, it follows that $v' \in L^2(1, \infty; V^*)$ and $v \in L^{\infty}(1, \infty; V)$; hence Theorem 2.3 holds.

(5) (Proof of Theorem 2.4) Under the assumptions of Theorem 2.4, we see from the energy estimates for v_n that $\{v_n\}$ is bounded in $C([0,T]; H) \cap L^2(0,T; V) \cap L^{\infty}_{loc}((0,T]; V) \cap W^{1,2}_{loc}((0,T]; V^*)$. Hence by the usual monotonicity and compactness argument we have the assertions of Theorem 2.4.

4. Application to the Cahn-Hilliard equation with constraint

We denote by (CHC) the Cahn-Hilliard equation with constraint (1.8)-(1.10). Here we suppose that

- (A1) $g: \mathbf{R} \to \mathbf{R}$ is a Lipschitz continuous function with a non-negative primitive \hat{g} on \mathbf{R} .
- (A2) β is a maximal monotone graph in $\mathbf{R} \times \mathbf{R}$ such that $0 \in R(\beta)$ and $int.D(\beta) \neq \emptyset$; we may assume that there is a non-negative proper l.s.c. convex function on \mathbf{R} such that its subdifferential $\partial \hat{\beta}$ coincides with β in \mathbf{R} .
- (A3) $u_o \in L^2(\Omega), u_o(x) \in \overline{D(\beta)}$ for a.e. $x \in \Omega$.

Definition 4.1. Let $0 < T < \infty$. Then $u : [0, T] \to H$ is called a (weak) solution of (CHC) on [0, T], if u satisfies the following properties (w1)-(w3):

- (w1) $u \in L^{2}(0,T; H^{1}(\Omega)) \cap C([0,T]; (H^{1}(\Omega))^{*}) \cap L^{2}_{loc}((0,T]; H^{2}(\Omega)) \cap L^{\infty}_{loc}((0,T]; H^{1}(\Omega)) \cap W^{1,2}_{loc}((0,T]; (H^{1}(\Omega))^{*}) \text{ and } \hat{\beta}(u) \in L^{1}(Q_{T});$
- (w2) $u(0, \cdot) = u_o$ a.e. in Σ_T ;
- (w3) there is a function $\xi : [0,T] \to L^2(\Omega)$ such that

$$\xi \in L^2_{loc}((0,T]; L^2(\Omega)), \qquad \xi \in \beta(u) \qquad a.e. \text{ in } Q_T$$

and

$$\frac{d}{dt}(u(t),\eta) + \nu(\Delta u(t),\Delta \eta) - (\xi(t) + g(u(t)),\Delta \eta) = 0$$

for all $\eta \in H^2(\Omega)$ with $\frac{\partial \eta}{\partial n}$ a.e. on Γ , and for a.e. $t \in [0, T]$.

Applying Theorems 2.1-2.4 to (CHC) we have:

Theorem 4.1. Assume that (A1)-(A3) hold and

$$m:=\frac{1}{|\Omega|}\int_{\Omega}u_{o}dx\in int.D(\beta).$$

Then for every finite T > 0 problem (CHC) has one and only one solution u on [0, T], and the following statements (a) and (b) hold:

(a) $u \in L^{\infty}(\delta, \infty; H^{1}(\Omega))$, $u'(\delta, \infty; (H^{1}(\Omega))^{*})$ for every $\delta > 0$, and hence the ω -limit set $\omega(u_{o}) := \{z \in L^{2}(\Omega); u(t_{n}) \to z \text{ in } L^{2}(\Omega) \text{ for some } t_{n} \text{ with } t_{n} \to \infty\}$ is non-empty;

(b) $\omega(u_o) \subset H^2(\Omega)$, and any $u_\infty \in \omega(u_o)$ with some $\mu_\infty \in \mathbb{R}$ and $\xi_\infty \in L^2(\Omega)$ solves the following stationary problem

$$-\nu\Delta u_{\infty} + \xi_{\infty} + g(u_{\infty}) = \mu_{\infty} \quad \text{in }\Omega, \quad \xi_{\infty} \in \beta(u_{\infty}) \quad a.e. \in \Omega,$$
$$\frac{\partial u_{\infty}}{\partial n} = 0 \quad a.e. \text{ on } \Gamma, \quad \frac{1}{|\Omega|} \int_{\Omega} u_{\infty} dx = m.$$

Now, let us reformulate (CHC) as an evolution problem of the form (VI) in the space

$$H := \{ z \in L^{2}(\Omega); ; \int_{\Omega} z \, dx = 0 \} \text{ with } |z|_{H} = |z|_{L^{2}(\Omega)};$$

put also

$$V := H \cap H^1(\Omega)$$
 with $|z|_V = |\nabla z|_{L^2(\Omega)}$.

For this purpose we consider the data $\varphi^t = \varphi$, $p(\cdot)$ and v_o as follows:.

$$\varphi(z) := \begin{cases} \frac{\nu}{2} |\nabla z|^2_{L^2(\Omega)} + \int_{\Omega} \hat{\beta}(z+m) dx & \text{if } z \in V, \\ \infty & \text{otherwise,} \end{cases}$$

where $m = \frac{1}{|\Omega|} \int_{\Omega} u_o dx$;

$$p(z) := \pi(g(z+m)), \quad P(z) := \int_{\Omega} \hat{g}(z+m)dx, \quad z \in H;$$
$$v_o := u_o - m.$$

By virtue of the following lemma, problems (CHC) and (VI) associated with the data defined above are equivalent.

Lemma 4.1. Let $\ell \in L^2(\Omega)$. Then $\pi(\ell) \in \partial \varphi(z)$ if and only if $z_m = z + m$ satisfies that there are $\mu_m \in \mathbf{R}$ and $\xi_m \in L^2(\Omega)$ such that

$$-\nu\Delta z_m + \xi_m = \ell + \mu_m \quad in \ L^2(\Omega), \qquad \xi_m \in \beta(z_m) \quad a.e. \ in \ \Omega,$$
$$\frac{\partial z_m}{\partial n} = 0 \qquad a.e. \ on \ \Gamma, \qquad \frac{1}{|\Omega|} \int_{\Omega} z_m dx = m;$$

hence $z_m \in H^2(\Omega)$. Moreover, μ_m can be chosen so that

$$|\mu_m| \leq M(1+|\ell|_{L^2(\Omega)}),$$

where M > 0 is a certain constant dependent only upon β and m, and z_m satisfies that

$$\nu |\Delta z_m|_{L^2(\Omega)} \le |\ell|_{L^2(\Omega)} + |\mu_m| |\Omega|^{\frac{1}{2}}.$$

By Theorem 2.1 problem (VI) has one and only one solution v. Moreover we see from the above lemma that the function u := v + m is the unique solution of (CHC), and from Theorems 2.2 and 2.3 that (a) and (b) hold.

When the state constraint $\xi \in \beta(u)$ is not imposed, the system (1.8)-(1.10) becomes the standard Cahn-Hilliard problem. For such a problem various existence, uniqueness and asymptotic results have been establised; see e.g. Elliott [3], Elliott-Zheng [6] and Zheng [15]. For related results in abstract setting we refer to Temam [13] and von Wahl [14]. For the Cahn-Hilliard models with non-smooth free energy functionals we refer to Elliott-Mikelic [4]. The structure of stationary solutions corresponding to the Cahn-Hilliard equation was studied by Gurtin-Matano [7]; their analysis covers also some cases of free energy F(u) with infinite walls.

Finally we give examples of β and the corresponding Cahn-Hilliard equations.

Example 4.1. (i) (Logarithmic form) For constants $\alpha_o > 0$ and $\theta > 0$, θ being a parameter,

$$\beta(u) := \beta^{\theta}(u) = \begin{cases} \{\alpha_o \theta \log \frac{u}{1-u}\} & \text{for } 0 < u < 1, \\ \emptyset & \text{otherwise.} \end{cases}$$

Gien any Lipschitz continuous function \bar{g} on [0, 1], we extend it to a Lipschitz continuous function g, with support in [-1, 2], on the whole line **R**.

(ii) (The limit of β^{θ} as $\theta \to 0$)

$$\beta(u) := \beta^{0}(u) = \begin{cases} [0, \infty) & \text{if } u = 1, \\ \{0\} & \text{if } 0 < u < 1, \\ (-\infty, 0] & \text{if } u = 0, \\ \emptyset & \text{otherwise,} \end{cases}$$

and g is the same as in (i).

Example 4.2. Denote by $(CHC)_{\theta}$ and $(CHC)_0$ the Cahn-Hilliard equations (CHC) associated with $\beta = \beta^{\theta}$ and $\beta = \beta^{0}$, respectibely. Then, by the theorems proved above, $(CHC)_{\theta}$ and $(CHC)_0$ have the unique solutions u^{θ} and u^{0} , respectively, and moreover $u^{\theta} \rightarrow u^{0}$ as $\theta \rightarrow 0$ in the similar sense as Theorem 2.4.

References

- J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy, Part I: Mathematical analysis, European J. Appl. Math. 2(1991), 233-280.
- [2] H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam, 1973.

- [3] C. M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation, in Mathematical Models for Phase Change Problems J. F. Rodrigues ed., ISNM 88, Birkhäuser, Basel, 1989, pp.35-73.
- [4] C. M. Elliott and A. Mikelic, Existence for the Cahn-Hilliard phase separation model with a non-differentiable energy, Ann. Mat. pura appl. 158(1991), 181-203.
- [5] C. M. Elliott and S. Luckhaus, A generalized diffusion equation for phase separation of a multi-component mixture with interfacial free energy, preprint.
- [6] C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation, Arch. Rat. Mech. Anal. 96(1986), 339-357.
- [7] M. E. Gurtin and H. Matano, On the structure of equilibrium phase transitions within the gradient theory of fluids, Quart. Appl. Math. 156(1988), 301-317.
- [8] N. Kenmochi, M. Niezgódka and I. Pawlow, Subdifferential operator approach to the Cahn-Hilliard equation with constraint, preprint.
- [9] N. Kenmochi and I. Pawlow, A class of nonlinear elliptic-parabolic equations with timedependent constraints, Nonlinear Anal. TMA 10(1986), 1181-1202.
- [10] J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod Gauthier- Villars, Paris, 1969.
- [11] U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Avdances Math. 3(1969), 510-585.
- [12] Y. Oono and S, Puri, Study of the phase separation dynamics by use of call dynamical systems, I. Modelling Phys. Rev. (A) 38(1988), 434-453.
- [13] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer Verlag, Berlin, 1988.
- [14] W. von Wahl, On the Cahn-Hilliard equation $u' + \Delta^2 u \Delta f(u) = 0$, Delft Progress Report 10(1985), 291-310.
- [15] S. Zheng, Asymptotic behaviour of the solution to the Cahn-Hilliard equation, Applic. Anal. 23(1986), 165-184.
- N. Kenmochi: Department of Mathematics, Faculty of Education, Chiba University 1-33 Yayoi-chō, Chiba, 260 Japan
- M. Niezgódka: Institute of Applied Mathematics and Mechanics, Warsaw University Banacha 2, 00-913 Warsaw, Poland
- I. Pawlow: Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland