CONBINATORIAL PROPERTIES OF FINITE FULL TRANSFORMATION SEMIGROUPS

Tatsuhiko Saito (斎藤 立彦)

Let X be the finite set $\{1, 2, ..., n\}$ and let T(X) be the semigroup (under composition of mappings from X into X. The symmetric group G(X), consisting of all permutations of X, is a subgroup of T(X), while the set $S_n = T(X)\backslash G(X)$ of all singular mappings from X into X is a subsemigroup of T(X). We denote the *image* of α of S_n by $im\alpha$, i. e., $im\alpha = \{x\alpha \mid x \in X\}$, and define the rank of α to be $rank\alpha = |im\alpha|$. Let E be the set of idempotents of S_n . In [1], it has shown that S_n is generated by the n(n-1) idempotents of rank n-1. Then there arise the following two problems:

Problem 1. Find the least integer k for which $E^k = S$.

Problem 2. For each $\alpha \in S_n$, find the least integer $k(\alpha)$ for which $\alpha \in E^{k(\alpha)}$.

Let E_1 be the set of idempotents of rank n-1 in S_n . Iwahori [3] and Howie [2] found the least integer $l(\alpha)$ for which $\alpha \in E_1^{l(\alpha)}$. By using this result, Howie [2] solved Problem 1, that is k = [3(n-1)/2].

In this survey, we discuss on Problem 2. The proofs of the results here are not given. But to make the results understandable, we will give examples.

Let $\alpha \in S_n$. We define $fix\alpha = \{x \in X \mid x\alpha = x\}$, and an *orbit* of α to be an equivalence class under the equivalence $\omega = \{(x, y) \in X \times X \mid x\alpha^i = y\alpha^m \text{ for some } l, m \ge 0\}$. Then each orbit Ω of α has a kernel $K(\Omega)$ characterised by the property (for each x in Ω) $x \in K(\Omega)$ if and only if $x \in x\alpha^{-N}$ where $x\alpha^{-N} = \{y \in X \mid y\alpha^i = x \text{ for some } i \ge 1\}$. Then orbits classified into the following four types:

standard orbit : $|\Omega| > |K(\Omega)| > 1$ acyclic orbit : $|\Omega| > |K(\Omega)| = 1$ cyclic orbit : $|\Omega| = |K(\Omega)| > 1$ singleton orbit : $|\Omega| = |K(\Omega)| = 1$.

Example 1. Let n = 14 and let

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ 2 & 3 & 4 & 5 & 3 & 5 & 8 & 9 & 9 & 9 & 12 & 13 & 11 & 14 \end{pmatrix}$$

The orbits of α can be decicted as follows:

Then $|\Omega_1| = 6 > |K(\Omega_1)| = 3 > 1$, $|\Omega_2| = 4 > |K(\Omega_2)| = 1$, $|\Omega_3| = |K(\Omega_3)| = 3 > 1$, $|\Omega_4| = |K(\Omega_4)|$ = 1, so that Ω_1 is standard, Ω_2 is acyclic, Ω_3 is cyclic and Ω_4 is singleton.

It is easy to see that $\alpha \in S_n$ is an idempotent if and only if $im\alpha = fix\alpha$. Thus we have that, if ε is an idempotent of rank n-1, then there exist a and b in X such that $a\varepsilon = b$ and $x\varepsilon = b$ $x \text{ if } a \neq b.$ We write $\varepsilon = \begin{pmatrix} a \\ b \end{pmatrix}$. For example, $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$.

Let $\alpha \in S_n$. Then the number of cyclic orbits of α is denoted by $c(\alpha)$. We define the gravity of α to be $g(\alpha) = n - |fix\alpha| + c(\alpha)$, and the defect of α to be $d(\alpha) = n - rank\alpha$.

THEOREM 1. (Nobuko Iwahori [3] and J. M. Howie [2])

Let S_n be the semigroup of all singular mappings from X into X where X is the finite set $\{1, 2, 1\}$..., n} and let E_1 be the set of idempotents of defect 1 (rank n-1) in S_n . For each $\alpha \in S_n$ the least $l(\alpha)$ for which $\alpha \in E^{l(\alpha)}$ is $g(\alpha)$, where $g(\alpha)$ is the gravity of α .

We state the outline of the proof of Theorem 1 by using the α in Example 1. In this case, $|fix\alpha| = 2$ and $c(\alpha) = 1$, so that $g(\alpha) = 14 - 2 + 1 = 13$. For Ω_1 , take $x \in \Omega_1$ such that $x \notin \Omega_2$ $K(\Omega_1)$ and $x\alpha \in K(\Omega_1)$, say x = 6, and take $y \in K(\Omega_1)$ such that $x\alpha = y\alpha$, i. e., x = 4. Then $\Omega_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 3 & 5 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$ For Ω_{2} , $\Omega_{2} = \begin{pmatrix} 7 & 8 & 9 & 10 \\ 8 & 9 & 9 & 9 \end{pmatrix} = \begin{pmatrix} 8 \\ 9 \end{pmatrix} \begin{pmatrix} 7 \\ 8 \end{pmatrix} \begin{pmatrix} 10 \\ 9 \end{pmatrix}.$

For
$$\Omega_2$$
, $\Omega_2 = \begin{pmatrix} 7 & 8 & 9 & 10 \\ 8 & 9 & 9 & 9 \end{pmatrix} = \begin{pmatrix} 8 \\ 9 \end{pmatrix} \begin{pmatrix} 7 \\ 8 \end{pmatrix} \begin{pmatrix} 10 \\ 9 \end{pmatrix}$.

For Ω_{v} , take $x \in X \setminus im\alpha$, say x = 1. Then

$$\Omega_3 = \begin{pmatrix} 11 & 12 & 13 \\ 12 & 13 & 11 \end{pmatrix} = \begin{pmatrix} 11 \\ 1 \end{pmatrix} \begin{pmatrix} 13 \\ 11 \end{pmatrix} \begin{pmatrix} 12 \\ 13 \end{pmatrix} \begin{pmatrix} 1 \\ 12 \end{pmatrix}.$$

We obtain
$$\alpha = \begin{pmatrix} 4 \\ 6 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 8 \\ 9 \end{pmatrix} \begin{pmatrix} 7 \\ 8 \end{pmatrix} \begin{pmatrix} 10 \\ 9 \end{pmatrix} \begin{pmatrix} 11 \\ 11 \end{pmatrix} \begin{pmatrix} 13 \\ 13 \end{pmatrix} \begin{pmatrix} 12 \\ 13 \end{pmatrix} \begin{pmatrix} 1 \\ 12 \end{pmatrix}$$

Let $a_1, ..., a_k$ be distinct elements in X, and let $b_1, ..., b_k$ be elements (not necessarily distinct) in X such that $\{a_1, ..., a_k\} \cap \{b_1, ..., b_k\} = \emptyset$. Then the semigroup generated by the idempotents $\begin{pmatrix} a_1 \\ b_1 \end{pmatrix}$, ..., $\begin{pmatrix} a_k \\ b_k \end{pmatrix}$ is a semilattice of order 2^{k-1} in which the rank of each element

is greater than n - k - 1. We write $\begin{pmatrix} a_1 \\ b_1 \end{pmatrix} \dots \begin{pmatrix} a_k \\ b_k \end{pmatrix} = \begin{pmatrix} a_1 \dots a_k \\ b_1 \dots a_k \end{pmatrix}$.

Then $\begin{pmatrix} a_1 & \dots & a_k \\ b_1 & \dots & a_k \end{pmatrix}$ is an idempotent of defect k (rank n - k).

Conversely, an idempotent of defect k can be written in the above form.

For $\alpha, \beta \in S_n$, it is easy to see that $rank(\alpha\beta) \le rank\alpha$ and $rank(\alpha b) \le rank\beta$, so that $d(\alpha) \le d(\alpha\beta)$ and $d(\beta) \le d(\alpha\beta)$.

LEMMA 1. Let $\alpha \in S_n$. Then $g(\alpha)/d(\alpha) \le k(\alpha)$, where $k(\alpha)$ means that of Problem 2. Proof. Let $\alpha = \varepsilon_1 \varepsilon_2 \dots \varepsilon_{k(\alpha)}$, where each ε_i ($i = 1, 2, ..., k(\alpha)$) is an idempotent with $d(\varepsilon_i) \le d(\alpha)$. Let $d(\varepsilon_i) = d_i$. Since an idempotent of defect d_i is a product of d_i idempotents of defect 1, α is a product of $d_1 + ... + d_{k(\alpha)}$ idempotents of defect 1. By Theorem 1, $g(\alpha) \le d_1 + ... + d_{k(\alpha)} \le d(\alpha)k(\alpha)$. Thus $g(\alpha)/d(\alpha) \le k(\alpha)$.

LEMMA 2. Let $a, b, c \in X$. Then

(1)
$$\binom{a}{b}\binom{a}{c} = \binom{a}{b}$$
, where $a \neq b$, $a \neq c$.

(2)
$$\binom{a}{b}\binom{b}{c} = \binom{a}{c}\binom{a}{c} = \binom{b}{a}\binom{a}{c}$$
, where $a \neq b$, $b \neq c$, $a \neq c$.

We introduce a new notation to be more easily visible.

We write
$$\begin{pmatrix} a \\ b \end{pmatrix} = (b \leftarrow a), \begin{pmatrix} b \\ a \end{pmatrix} \begin{pmatrix} c \\ b \end{pmatrix} = (a \leftarrow b)(b \leftarrow c) = (a \leftarrow b \leftarrow c)$$

and $\begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} (b \leftarrow a) \\ (d \leftarrow c) \end{pmatrix}$.

LEMMA 3. Let $a_1, \ldots, a_k, b_1, \ldots, b_m$ be distinct elements in X, and let $c \in X$ with $c \neq a_k, c \neq a_{k-1}, c \neq b_m$. Then

$$\begin{aligned} &(c \leftarrow a_{k} \leftarrow \ldots \leftarrow a_{i} \leftarrow \ldots \leftarrow a_{l})(a_{i} \leftarrow b_{m} \leftarrow \ldots \leftarrow b_{l}) \\ &= \left((c \leftarrow a_{k} \leftarrow \ldots \leftarrow a_{i} \leftarrow \ldots \leftarrow a_{l}) \right) \\ &(a_{i-1} \leftarrow b_{m} \leftarrow \ldots \leftarrow b_{l}) \end{aligned}$$

We suggest a proof of Lemma 3 by using the following example.

Example 2.
$$(4 \leftarrow 3 \leftarrow 2 \leftarrow 1)(3 \leftarrow 5 \leftarrow 6) = {3 \choose 4} {2 \choose 3} {1 \choose 2} {5 \choose 3} {6 \choose 5}$$

$$= \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 2 & 5 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \end{pmatrix}$$

$$= \begin{pmatrix} (4 \leftarrow 3 \leftarrow 2 \leftarrow 1) \\ (2 \leftarrow 5 \leftarrow 6)$$

Example 3. Let
$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 3 & 4 & 5 & 3 & 5 & 8 & 9 & 9 & 9 \end{pmatrix}$$
.

By the previous result of α in Example 1, we have

$$\beta = {4 \choose 6} {3 \choose 4} {5 \choose 3} {6 \choose 5} {2 \choose 3} {1 \choose 2} {8 \choose 9} {7 \choose 8} {10 \choose 9}$$

$$= \begin{cases} (6 \leftarrow 4 \leftarrow 3 \leftarrow 5 \leftarrow 6)(3 \leftarrow 2 \leftarrow 1) = \begin{cases} (6 \leftarrow 4 \leftarrow 3 \leftarrow 5 \leftarrow 6) \\ (9 \leftarrow 8 \leftarrow 7) \\ (9 \leftarrow 10) \end{cases}$$

$$= {4 \choose 6} {2 \choose 5} {3 \choose 9} {3 \choose 4} {3 \choose 2} {5 \choose 3} {6 \choose 5}.$$

Then we have that in the above expression of β the last member of each series (... \leftarrow ...) belongs to $X \setminus im\beta$ and they are mutually distinct.

The α of Example 1 can be expressed as follows:

$$\alpha = \begin{cases} (6 \leftarrow 4 \leftarrow 7 \leftarrow 5 \leftarrow 6) \\ (5 \leftarrow 2 \leftarrow 1 \leftarrow 11 \leftarrow 13 \leftarrow 12 \leftarrow 1) \\ (9 \leftarrow 8 \leftarrow 7) \\ (9 \leftarrow 10) \end{cases}$$

Then the number of series in the above expression of α coincides with $d(\alpha)$ and the number of all arrows coincides with $g(\alpha)$.

LEMMA 4. Let a_1, \ldots, a_m $(m \ge 3)$ be distinct elements in X and let $\begin{pmatrix} a_m & b \\ c & d \end{pmatrix}$ be an idempotent of defect 2. Then

$$\begin{pmatrix}
(c \leftarrow a_m \leftarrow \dots \leftarrow a_i \leftarrow \dots \leftarrow a_j) = \\
(d \leftarrow b) & (d \leftarrow b \leftarrow a_i \leftarrow \dots \leftarrow a_j)
\end{pmatrix} = \begin{pmatrix}
(c \leftarrow a_m \leftarrow \dots \leftarrow a_{i+1} \leftarrow b) \\
(d \leftarrow b \leftarrow a_i \leftarrow \dots \leftarrow a_j)
\end{pmatrix}.$$

We also suggest a proof of Lemma 4 by using the following example.

Example 3.
$$\begin{pmatrix} (5 \leftarrow 4 \leftarrow 3 \leftarrow 2 \leftarrow 1) = \begin{pmatrix} 4 & 7 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} 4 & 7 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 (by (1) of Lemma 2)
$$= \begin{pmatrix} 4 & 7 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 (by (2) of Lemma 2)
$$= \begin{pmatrix} 4 & 7 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 4 & 7 \end{pmatrix} \begin{pmatrix} 7 & 1 \\ 3 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 4 & 7 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 4 & 7 \end{pmatrix} \begin{pmatrix} 7 & 1 \\ 3 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} (5 \leftarrow 4 \leftarrow 3 \leftarrow 7) \\ (6 \leftarrow 7 \leftarrow 2 \leftarrow 1) .$$

The length of $(a_m \leftarrow ... \leftarrow a_1)$ is the number of arrows in it. Lemma 4 shows that the length of $(c \leftarrow a_m \leftarrow ... \leftarrow a_1)$ decreases by k and the length of $(d \leftarrow b)$ increases by k + 1.

Let $V_0 = \{v_1, v_2, ..., v_d\}$ be a multi-set of positive integers $(d \ge 2)$, where $v_1, ..., v_d$ are not necessarily distinct. Let us subtract k from some v_i and add k+1 to some v_j where k is a integer. Let $V_1 = \{v_1, ..., v_i-k, ..., v_j+k+1, ..., v_d\}$. By repeating this procedure on V_1 , we obtain a new multi-set V_2 .

LEMMA 5. Let $V_0 = \{v_1, v_2, ..., v_d\}$ be a multi-set of positive integers $(d \ge 2)$ with $v_1 + v_2 + ... + v_d = g$. By suitable repeating of the above procedure, there exists V_t such that $\lceil g/d \rceil \le \max V_t \le \lceil g/d \rceil + 1$ and $\max V_t = \lceil g/d \rceil$ if $g = 1 \pmod{d}$, where $\lceil x \rceil$ denotes the least integer m for which $m \ge x$.

Example 5. Let
$$V_0 = \{1, 8, 26, 32, 54\}$$
. Then $V_1 = \{31, 8, 25, 32, 25\}$, $V_2 = \{31, 16, 26, 25, 25\}$, $V_3 = \{25, 23, 26, 25, 25\}$ and $V_4 = \{25, 25, 25, 25, 25\}$.

Let
$$\alpha$$
 be as in Example 1. Then $\alpha = \begin{cases} (6 \leftarrow 4 \leftarrow 3 \leftarrow 5 \leftarrow 6) \\ (5 \leftarrow 2 \leftarrow 1 \leftarrow 11 \leftarrow 13 \leftarrow 12 \leftarrow 1) \\ (9 \leftarrow 8 \leftarrow 7) \\ (9 \leftarrow 10) \end{cases}$.

Let V_0 be the multi-set of the lengths of the series in the above expression of α , i. e., $V_0 = \{4, 6, 2, 1\}$. By applying Lemma 5 to the expression of α , we have

$$\alpha = \begin{cases} (6 \leftarrow 4 \leftarrow 3 \leftarrow 5 \leftarrow 6) &= \begin{pmatrix} 4 & 2 & 8 & 10 \\ 6 & 5 & 9 & 9 \end{pmatrix} \begin{pmatrix} 3 & 1 & 7 & 13 \\ 4 & 2 & 8 & 10 \end{pmatrix} \begin{pmatrix} 5 & 11 & 12 \\ 3 & 1 & 13 \end{pmatrix} \begin{pmatrix} 6 & 10 & 1 \\ 5 & 11 & 12 \end{pmatrix}.$$

$$(5 \leftarrow 2 \leftarrow 1 \leftarrow 11 \leftarrow 10)$$

$$(9 \leftarrow 8 \leftarrow 7)$$

$$(9 \leftarrow 10 \leftarrow 13 \leftarrow 12 \leftarrow 1)$$
In this case, $V_1 = \{4, 4, 2, 4\}$ and $\max V_1 = 4 = \lceil 13/4 \rceil = \lceil g(\alpha)/d(\alpha) \rceil$. Thus we obtain:

THEOREM 2. Let S_n be the semigroup of all singular mappings from X into X where $X = \{1, 2, ..., n\}$, and let E be the set of idempotents of S_n . For each $\alpha \in S_n$, let $k(\alpha)$ be the unique positive integer for which $\alpha \in E^{k(\alpha)}$, $\alpha \notin E^{k(\alpha)-1}$, and $g(\alpha)$ the gravity of α and $d(\alpha)$ the defect of α . Then $k(\alpha) = \lceil g(\alpha)/d(\alpha) \rceil$ or $\lceil g(\alpha)/d(\alpha) \rceil + 1$, and equals to $\lceil g(\alpha)/d(\alpha) \rceil$ if $g(\alpha) = 1$ (mod $d(\alpha)$), where $\lceil x \rceil$ for any real number x denotes the least integer m for which $m \ge x$.

REFERENCES

- [1] J. M. Howie, The subsemigroup generated by the idempotents of a full transformation semigroup, J. London Math. Soc. 41 (1966), 707-716.
- [2] J. M. Howie, Products of idempotents in finite full transformation semigroups, Proc. Roy Soc. Edinburgh Sect A 86 (1980), 243-254.
- [3] Nobuko Iwahori, A length formula in a semigroup of mappings, J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 24 (1977), 255-260.
- [4] Tatsuhiko Saito, Products of idempotents in finite full transformation semigroups, Semigroup Forum Vol. 39 (1989), 295-309.

Shimonoseki University of Fisheries Nagata-Honmachi, Shimonoseki, Japan