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Abstract

Global optimization problems are very important in designing of VLSI circuits and
solving combinatorial problems by neural networks. In this paper, we show an efficient
algorithm for finding global minimum points of the Hopfield’s type energy functions based
on a partitioning technique. At the first step, we partition the energy function into the
$smaU$ systems, and find all the local minimum points to each partitioned small functions,
where some of them are chosen as the candidates of the global minimum points. At the
second step, we estimate the energy of the original function at the points obtained by the
combinations of these earlier candidates from each partitioned functions.

1. Introduction
In this paper we show an efficient algorithm for finding all of the global minimum

points of Hopfield’s type energy functions based on a partitioning technique. In our algo-
rithm, we first partition a given energy function into $P$ small size energy functions. For
each energy function, we calculate the approximate energy at near the local minimum
points, and some of the lower energies are chosen as candidates of the global minimum
points of original energy function [1]. The exact global minimum points are calculated by
the Newton-Raphson method starting from the approximate minimum points. Theorem 3
in section 3 is the main result of this paper.
For special types of the Hopfield’s networks [2-3] and the cellular neural networks [4-5],

all of the solutions lie in a restricted domain such as $0<x_{i}<1and/or-1\leq x_{i}\leq 1$ on each
axis because of the special type of sigmoid functions, and their local minimum points are
located at the corner points of the domains such as 1, $0$ or-l.
In thi$s$ paper, we restrict our discussion on the optimization problem of the Hopfield’s

type energy functions, because the ideas can be easily applied to the cellular neural net-
works.

2. Properties of the Hopfield networks
Consider the well known Hopfield network [2-3] having $N$ sigmoids. The circuit equa-

tion is described by the following form:

$C_{i} \frac{du_{i}}{dt}=\sum_{j\approx 1}^{N}w_{ij}x_{j}-\frac{u_{1}}{R_{:}}+I_{1}$ (1.1)

$x:= \frac{1}{2}(1+\tanh\frac{u:}{a}),$ $0<x_{i}<1$ (1.2)
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$u_{i}=f(x_{i})= \frac{a}{2}\log\frac{x_{1}}{1-x_{i}}$ (1.3)

$i=1,2,\ldots,N$

where $w:j$ shows the weight of synapse coupling, and has the following properties of
$w_{1j}=w_{j:}$ and $w_{i*}\cdot=0$ . Thus, the coefficient matrix $W$ of (1.1) is a symmetric matrix whose
diagonal elements are zeros. We assume through this paper that any principal minor of
$W$ larger than 2 is full rank. Then, we have following properties [7].

Property 1 : Assume $A$ is a nonsingular symmetric matrix whose diagonal element are all
zeros. Then, the eigenvalues contain both positive and negative reals.
Property 2 : Given two real symmetric matrices, $A$ and $B$ , with $A$ positive definite, there
exists a nonsingular matrix $T$ such that

$T^{T}AT=I$ (2)

where $I$ is a unit matrix.

$T^{T}BT=diag[\mu J$ (3)

The stiffness of the sigmoid function (1) depends on the value “ $a^{\prime t}$ , where the stiffness
means that the characteristic curve changes in a small domain only as shown in Fig.1.
The sigmoid function becomes $ve$ry stiff; i.e., the slope is very step around $\uparrow a$“. For this
kind of systems, we can prove that the local minimum points are located around the

Fig.1 Sigmoid function $a=0.5$ .
Let us describe the energy function of Hopfield circuit by

$\phi(x)=-\frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}w_{ij^{X}i^{X}j}+\sum_{i=1}^{N}\frac{1}{R_{1}}\int_{0^{:}}^{x}f(x_{i})dx_{i}-\sum_{i=1}^{N}x_{i}I_{i}$ $(4)$

where the second term is given by

$\int_{0^{j}}^{x}f(x_{i})dx_{i}=\frac{a}{2}[xJogx_{i}+(1-x_{i})\log(1-x_{i})]$ (5)
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The stationary points of the energy function $\phi(x)$ are corresponding to the steady-state
solutions of (1), and we can prove the following interesting theorem about local ninimum
points [8-9].

Theorem 1 : The stationary points of (1) will be local minimum points if they satisfy the
following relations:

$\max|\mu_{i}|<\max|\frac{\partial u_{1}}{\partial x_{1}}|/R_{1}$ $i=1,2,\ldots,N$ (6)

where $\mu_{i}$ is the eigenvalue of the coefficient matrix $W$.
Proof: In order to estimate the stability of a stationary point $x_{0}$ , consider the variational
equation of (1) by substituting $x=x_{0}+\Delta x$ : namely

$C \frac{\partial ud\Delta x}{\partial xdt}=W\Delta x-\frac{1\partial u}{R\partial x}\Delta x$ (7)

where we have assumed $C=diag[C_{1}],$ $R=diag[RJ$ , and

$\frac{\partial u}{\partial x}=diag[\frac{\partial u_{1}}{\partial x_{1}}]$, $\lambda_{i}\equiv\frac{\partial u_{1}}{\partial x_{i}}>0$ (8)

Now, we introduce a scaler matrix such that

$S_{1}=diag[ \frac{\sqrt{R_{i}}}{\sqrt{\partial u_{j}/\partial x_{1}}}]$ (9)

Put $\Delta x=S_{1}z$ . Then, we have from (7)

$CR \frac{dz}{dt}=S_{1}^{T}WS_{1}z-z$ (10)

where $S_{1}^{T}WS_{1}$ is also symmetric matrix, so that there is an orthogonal transformation
matrix $S_{2}$ such as $z=S_{2}y$ , which transforms (10) into the following form:

$S_{2}^{T}CRS_{2^{\frac{dy}{dt}}}=S_{2}^{T}S_{1}^{T}WS_{1}S_{2}y-y$

$=(diag[\alpha J-1)y$ (11)

Using property 2 with $T=Ssub2,$ $A=CR$ and $B=S_{1}^{T}WS_{1}$ , this is true. Hence, the steady-
state solution $\hat{x}$ will be stable if it satisfies

$\max|\alpha_{i}|=||S_{2}^{T}S_{1}^{T}WS_{1}S_{2}||\leq||W||\cross\max\{\frac{R_{1}}{\partial u_{i}/\partial x_{1}}\}<1$ (12)

where the norms denote spectrum norm. Thus, we proved the theorem. Q.E.D.

Note that the derivative $\partial u_{i}/\partial x_{i}$ of the sigmoid function around the corner points of $[0,1]$

is always very large. Therefore, we conclude that the stationary points located on around
the corners are all local minimum points.

Next, we will prove that, under well defined conditions, the components $x_{i}$ at the
local minimum points are located at corner points of $[0,1]$ only, and no local minimum
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exists outside the corner points.
Theorem 2 : Let any sub-matrix of $W$ larger than 2 x2 be full rank. Assume that the solu-
tion of (1) contains two kinds of components. Namely, the first K-components $(N-K\geq 2)$ ,
$x_{1},x_{2},$ $\cdots x_{K}$ are lying around corner points of the domain $[1,0]$ . Hence, we can assume
that the derivatives

$\beta_{2}=\partial u_{i}/\partial x_{i}$ , $i=1,2,\ldots,K$ (13)

are sufficiently large.
Another (N-K)-components $x_{N-K},x_{N-K+1},$ $\cdots x_{N}$ are apart from the corner points.
Hence, we can assume that the derivatives

$\epsilon_{i}=\partial u_{i}/\partial x_{i}$ , $i=K+1,\ldots,N$ (14)

are sufficiently small.
Then, the solution point will never be the local minimum point.

Proof. The first K-variational equations can be written in the following form:

$\beta_{i}C_{1}\frac{d\Delta x_{1}}{dt}=\sum_{jarrow 1}^{N}w:j\Delta x_{j}-\frac{\beta_{1}}{R_{1}}\Delta x_{i}$ (15)

For sufficiently large $\beta_{i}$ , we can neglect first term of (15) because $1/\beta_{i}$ is small enough.
Thus, we have

$\frac{d\Delta x_{i}}{dt}=-\frac{1}{R_{1}\cdot C_{i}}\Delta x_{i}$ (16)

The solution $\Delta x_{i}$ becomes to zero as $\prime\prime t^{t\prime}$ infinitive.

On the other hand, the second (N-K)-variational equations can be written in the fol-
lowing form:

$\epsilon_{i}C_{1}\frac{d\Delta x_{1}}{dt}=\sum_{j=1}^{K}w_{1j}\Delta x_{j}+\sum_{j=K+1}^{N}w_{ij}\Delta x_{j}-\frac{\epsilon_{i}}{R_{1}}\Delta x_{i}$ (17)

For a sufficiently small $\epsilon_{i}$ , the third term in the right hand side is negligible compared
with other two terms, so that the essential term is written by

$\frac{d\Delta x_{1}}{dt}=\frac{1}{\epsilon_{i}C_{1}}\sum_{j\simeq 1}^{K}w_{1j}\Delta x_{j}+\frac{1}{\epsilon_{i}C_{1}}\sum_{j=K+1}^{N}w_{ij}\Delta x_{j}$ (18)

The system of equations (16) is stable, so that it has zero solutions $(\Delta x_{i}=0,i=1,2,\ldots,K)$ at
steady-state. Substituting the result into (19), we have

$\frac{d\Delta x_{1}}{dt}=\frac{1}{\epsilon_{i}C_{1}}\sum_{j=K+1}^{N}w_{ij}\Delta x_{j}$ (19)

where the coefficient matrix $w:j$ is also symmetric and the diagonal elements are all zeros.
Thus, from property 1, the eigenvalues contain both positive and negative reals, so that
the system of equations (19) is always unstable.
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Thus, we conclude that if more than 2 components of $x_{i}$ are apart from the corner
points of $[0,1]$ , then the solution will be unstable and cannot be the local minimum
point.Q.E.D.
Remark: When $R_{i},$ $i=1,2,\ldots,N$ are sufficiently large, diagonal elements will become so
small that the solution $(u:=0,i=1,2,\ldots,N)$ will be unstable from property 1. Furthermore,
from these two theorems, we conclude that when the sigmoid function is very stiff, only
those solutions whose components are located around corner points of $[0,1]$ could be local
or global minimum point.

In our examples, we substitute $x_{i}=0.999$ , or 0.001 for $i=1,2,\ldots,N$ into (4) for getting
the approximate local minimum points. The exact global minimum point can be obtained
by solving the algebraic equation

$\sum_{j=1}^{N}w_{1j}x_{j}-\frac{a}{2R:}\log\frac{x_{1}}{1-x_{1}}+I_{1}=0$ (20)

with the Newton-Raphson method starting from the approximate lowest energy points.

3. A computational technique of the energy function based on a parti-
tioning technique.

For large scale Hopfield networks, it is time-consuming to calculate the energy func-
tion (4). In this section, we show an efficient algorithm based on a partitioning technique.
To understand the ideas of our partitioning technique, consider a simple example of parti-
tioning the energy function into 2 functions. Suppose the energy function (4) is written by

$\phi(x)=-\frac{1}{2}[x_{1}^{T},x_{2}\eta\{\begin{array}{ll}W_{11} W_{12}W_{21} W_{22}\end{array}\} \{\begin{array}{l}x_{1}x_{2}\end{array}\}+h_{1}(x_{1})/R_{1}+h_{2}(x_{2})/R_{2}-x_{1}^{T}I_{1}-x_{2^{T}}I_{2}$ (21)

where

$h_{i}(x_{i})/R_{i}= \sum_{k\approx 1}^{N_{1}}f(x_{k})/R_{k},$ $i=1,2$

Partition it into two energy functions :

$\phi_{1}(x_{1},x_{2})=-\frac{1}{2}x_{1}^{T}W_{11^{X}1}-x_{2}^{T}W_{21^{X}1}+f_{1}(x_{1})/R_{1}-x_{1}^{T}I_{1}$ (22.1)

$\phi_{2}(x_{1)}x_{2})=-x_{2}^{T}W_{22^{X}2}\underline{1}-x_{1}^{T}W_{12^{X}2}+f_{2}(x_{2})/R_{2}-x_{2^{T}}I_{2}$ (22.2)
2

where $x_{1}\in R^{N_{1}},$ $x_{2}\in R^{N_{2}},$ $\phi_{1}(.,.):R^{N}arrow R^{N_{1}},$ $\phi_{2}(.,.):R^{N}arrow R^{N_{2}}$ Note that two energy
functions of (22) are coupled with $x_{2}^{T}W_{21}x_{1}$ and $x_{1}^{T}W_{12}x_{2}$ in each other. In this case, the
minimal points are stationary points of the following partitioned circuit equations :

$C_{1} \frac{dx_{1}}{dt}=W_{11}x_{1}+W_{12}x_{2}-\frac{\partial f_{1}}{R_{1}\partial x_{1}}+I_{1}$ (23.1)

$C_{2} \frac{dx_{2}}{dt}=W_{22}x_{2}+W_{21}x_{1}-\frac{\partial f_{2}}{R_{2}\partial x_{2}}+I_{2}$ (23.2)
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which are corresponding to the subnetworks of Hopfield’s circuit coupled with $W_{12}x_{2}$ and
$W_{21}x_{1}$ in each other. Therefore, when the couplings are weak enough, the solutions
obtained from each subnetwork by setting the couplings being zeros will give the good
approximate solutions. Thus, consider the following energy functions:

$\phi_{1}(x_{1},0)=-\frac{1}{2}x_{1}^{T}W_{11}x_{1}+f_{1}(x_{1})-x_{1}^{T}I_{1}$ (24.1)

$\phi_{2}(0,x_{2})=-\frac{1}{2}x_{2}^{T}W_{22}x_{2}+f_{2}(x_{2})-x_{2}^{T}I_{2}$ (24.2)

Now, we have obtained the energy of (24), and list them in the order as follows:

For local minima of $\phi_{1}$ :

$\phi_{11}\geq\phi_{12}\geq$ $\phi_{1H}\cdots\geq\phi_{1,K_{1}};K_{1}=2^{N_{1}}$ (25.1)

For local minima of $\phi_{2}$ :

$\phi_{21}\geq\phi_{22}\geq$ $\phi_{2H}\cdots\geq\phi_{2,K_{2}};K_{2}=2$
馬 (25.2)

Observe that if the couplings of subnetworks are weak enough, only some lower energy
points in (25) will be chosen as candidates $(P_{1},P_{2})$ of the approximate minimum points.

Now, we have a very important theorem about circuit partitioning technique.

Theorem 3: Let the maximum energies be $\phi_{1H}$ and $\phi_{2H}$ satisfying the following conditions,
respectively:

$||W_{12}||\geq\phi_{1H}-\phi_{1L},$ $||W_{21}||\geq\phi_{2H}-\phi_{2L}$ (26)

where $\phi_{1L}=\phi_{1,K_{1}}$ and $\phi_{2L}=\phi_{2,K_{2}}$ are the lowest energies of $\phi_{1}(x_{1},0)$ and $\phi_{2}(0,x_{2})$ , and

$||W_{12}||= \sum_{\dot{\iota}-1}^{N_{1}}\sum_{j=N_{1}+1}^{N}|W_{1j}|,$ $||W_{21}||= \sum_{i=N_{1}+1}^{N}\sum_{j=1}^{N_{1}}|W:j|$ (27)

then, the points corresponding to $(\phi_{1,k}, \phi_{2,k}, k=H,\ldots,L)$ in (25) will be chosen as the candi-
dates. The approximate global minimum points are found by the combinations of these
points and estimation of energy (4).

Proof: Let us rewrite the partitioned energy function (21) as follows:

$\phi(x_{1},x_{2})=\phi_{1}(x_{1},0)+\phi_{2}(0,x_{2})-\frac{1}{2}x_{1}^{T}W_{12}x_{2}-\frac{1}{2}x_{2^{T}}W_{21}x_{1}$ (28)

Note that the maximum and minimum values of the third and fourth terms in (28) are
attained at $x_{1i}=1$ and $x_{2i}=1$ for all $i=1,\ldots,N$. Put the minimum energy $\phi(x_{1H},x_{2H})$ .
Then, we have from (28)

$\phi(x_{1H},x_{2H})\leq\emptyset_{1L^{+\dashv|W_{12}||+\phi_{2L}+\dashv|W_{21}||}}^{11}22$ (29)

and

$\phi(x_{1H},x_{2H})\geq\phi_{1}(x_{1H},0)-\dashv_{2}^{1}|W_{12}||+\phi_{2}(O,x_{2H})-\dashv_{2}^{1}|W_{21}||$ (30)



34

Hence, we have from (29) and (30)

$\phi_{1L}+\phi_{2L}\geq\phi_{1}(x_{1H},0)+\phi_{2}(O,x_{2H})-||W_{12}||-||W_{21}||$ (31)

This inequality will be met for the energies satisfying condition (26). Q.E.D.

The partitioning technique can also efficiently be applied to weakly coupled circuits as
cellular networks [3-4].

4. Illustrative examples
In this section, we show illustrative examples of a Hopfield network for solving a lay-

out problem of printed board [10].

5.1 The first example is the circuit having 12 synapses, and the circuit equation is given
by

$\frac{du_{i}}{dt}=\sum_{j=1}^{6}w_{1j}x_{j}-u_{i}+I_{i},$ $i=1,2,\ldots,12$ (32)

where

$I=[212120202121212120202121]^{T}$ (34)

and the sigmoid functions are given by

$u_{i}= \frac{a}{2}\log\frac{x_{i}}{1-x_{i}}$ , $;=1,2,\ldots,12$ (35)

Then energy function is described by

$\phi(x)=-\frac{1}{2}\sum_{=:1j}^{12}\sum_{\Rightarrow 1}^{12}w_{ij}x_{i}x_{j}+\frac{a}{2}\sum_{1=1}^{12}[x_{i}\log x_{i}+(1-x_{i})\log(1-x_{i})]-\sum_{1\simeq 1}^{12}x_{i}I_{1}$ (36)

For $a=1.5$ , we found using a homotopy method that there are at least 335 stationary
points, and they are traced from an initial guess

$x_{0}=(0.80.20.80.70.80.90.70.80.90.70.80.8)$

and the step size was $h=0.03$ . It takes about 5 minutes by using SUN(SPARC station
IPC). We have also tried to get the approximate global minimum points according to sec-
tion 3 by choosing $x_{i}=0.001$ and 0.999. We were rapidly obtained 4 global minimum



35

points,

and the exact solutions are obtained at the energy -76.13433 by the Newton-Raphson
method which are the same from the homotopy method.

5.2 The second example of $N=24$ whose coefficient matrix is given by

$W=$
$\{\begin{array}{ll}W_{11} 00 0W_{12}0W_{12}^{T} 00 W_{11}\end{array}\}$ (37)

$I=[I_{2}I_{2}]^{T}$ (38)

where the sub-matrices $W_{11}$ is equal to (33), and

$W_{12}=\{\begin{array}{llll}10 -2-2-2-2 10 -2-2-2-2 -2-2 -2-2-02 -2-2-2 -2-2 O -2-2-2-2 0 1-2-2-2-2 1 0\end{array}\}$ (39)

Furthermore, the current components $I_{2}$ is equal to that of (34). In this example, we take
11276.0 $\sec$ by the direct method, and 67.2 $\sec$ by the partitioning technique given in sec-
tion 3, where 4.7 $\sec$ has been used for getting local minimum points and 62.5 $\sec$ for the
combinational calculation of energy function from the candidate points. The ratio is
about 180. Thus, the partitioning technique can be quite efficiently applied to the sparse
systems.

5.3 The algorithm can be also applied to a problem of the image cording [11].

5. Conclusions
We have proved very important theorems concerning the global minimum points of

Hopfield networks containing stiff sigmoid characteristics. They are all located exclusively
around corner points of $x_{i}=[0,1]$ . The exact minimum points are found by the Newton
method starting from the approximate minimum points.
For relatively large scal$e$ energy functions, the partitioning technique in section 3 can be
efficiently applied to get the minimum point when the coupling strength are weak enough,
satisfying a well defined condition (Theorem 3). In many practical problems such as cir-
cuit designs, the partitioning technique can also be usefully applied because of circuit
equations being generally sparse.
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