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Abstract. Nonlinear boundary value problems (NBVPs in abbreviation) with pa-

rameters are called parametrized nonlinear boundary value problems. This paper studies

numerical verification of solutions of parametrized NBVPs defined on one-dimensional

bounded intervals. Around turning points the original problem is extended so that the

extented problem has an invertible Fr\’echet derivative. Then, the usual procedure of nu-

merical verification of solutions can be applied to the extended problem. A numerical

examples is given.
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1. Introduction.

For the past several years a theory for numerical verification of solutions of differential

equations has been developed [N1-5]. By the theory the existence of exact solutions of

differential equations are verified on computers by certain procedures in finite steps.

Let $\Lambda\subset R$ be a bounded interval for parameter. Here we deal with the following

nonlinear two-point boundary value problem with a parameter $\lambda\in\Lambda$ on the bounded

interval $J$ $:=(a, b)$ :

(1.1) $\{$ $u(a)=u(b)=0-u”=f(\lambda, x, u)$

in $J$,

where $f$ : $\Lambda\cross J\cross Rarrow R$ is a given smooth function. Since (1.1) has the parameter $\lambda$ ,

the set of the solutions of (1.1) would form one dimensional curves. There, however, may

exist singular points on the curves. For example, a solution curve might fold (the folding

point is call a turning point), or several solution curves might intersect at one point

(the intersecting point is called a bifurcation point). In this paper we consider the case

of turning points.

Let $(\lambda, u)$ be a solution of (1.1). The above singularities occur when the following

eigenvalue problem has the eigenvalue $\mu=0$ :

(1.2) $L\psi=\mu\psi$ ,

where the differential operator $L$ is defined by

$L\psi$ $:=-\psi’’-f_{y}(\lambda, x, u)\psi$ ,

and $f_{y}(\lambda, x, y)$ denotes the derivative of $f$ with respect to $y$ . More precisely, if $\mu=0$ is

not an eigenvalue of (1.2), by the implicit function theorem, there exists a unique solution

curve around $(\lambda, u)$ , and it is parametrized by A. Such a solution curve is called a regular

branch. On regular branches the usual procedure of numerical verification of solutions

of (1.1) can be applied.

However, during the solution branch following, the usual procedure may become di-

vergent when we get closer to a $\iota turning$ point: the number of iteration becomes bigger
or smaller mesh size may be needed. Moreover, at a turning point, our theory cannot be

applied, and we have to find a new theory of numerical verification.

Our goal is to overcome this difficulty and establish a new procedure for numerical

verification around turning points. The main idea is as follows: In [TB1] the original



129

equation is extended around turning points so that the extended equation has an invertible

Fr\’echet derivative. Then a straightforward modification of the usual numerical verification

procedure works well around tuning points.

In the last section a numerical examples is given.

2. Parametrized NBVP.

As is stated in Section 1, we consider the twxpoint boundary value problem

(2.1) $\{$ $u(a)=u(b)=0-u^{u}=f(\lambda, x, u)$

in $J$,

where $J$ $:=(a, b)\subset R$ is a bounded interval, and $\lambda\in$ A $C\mathbb{R}$ is a parameter.

Let $H_{0^{1}}(J),$ $H^{-1}(J)$ , etc. are the usual Sobolev spaces. In notation we omit ‘ $(J)$

whenever there is no danger of confusion. The weak form of (2.1) is written as

(2.2) Find $u\in H_{0}^{1}$ such that $(u’, v’)=(f(\lambda, x, u), v)$ , for $\forall v\in H_{0}^{1}$ ,

where $(\cdot, \cdot)$ is the inner product of $L^{2}$ defined by $(g, h)$ $:= \int_{J}$ ghdx for $g,$ $h\in L^{2}$ . Now,

define the operators $L$ : A $\cross H_{0}^{1}arrow H^{-1}$ and $F$ : A $\cross H_{0}^{1}arrow L^{2}\subset H^{-1}$ by, for $(\lambda, u)\in$ A $\cross H_{0}^{1}$ ,

(2.3) $<L(\lambda, u),$ $v>;= \int_{J}u’v’dx$ , $\forall v\in H_{0}^{1}$ ,

(2.4) $<F(\lambda, u),$ $v>:= \int_{J}f(\lambda, x, u)vdx$ , $\forall v\in H_{0}^{1}$ ,

where $<.,$ $\cdot>$ is the duality pair of $H^{-1}$ and $H_{0}^{1}$ . Since the inclusion $\iota$ : $L^{2}-H^{-1}$ is

compact, the operator $L-F$ : $\Lambda\cross H_{0^{1}}arrow H^{-1}$ is a Fredholm operator of index 1.

For $F$ to be smooth, we suppose the following assumption:

Afunction $\psi$ : $A\cross J\cross Rarrow \mathbb{R}$ is called Carath\’eodory continuous if $\psi$ satisfies the

following conditions: for $(\lambda, x, y)\in\Lambda\cross J\cross \mathbb{R}$ ,

$\{\begin{array}{l}\psi(\lambda,x,y)iscontinuouswithrespectto\lambda andyforalmostallx\psi(\lambda,x,y)isLebesguemeasurablewithrespecttoxforall\lambda andy\end{array}$

If $\psi(\lambda, x, y)$ is $Carath\acute{e}odor\grave{y}$ continuous, $\psi(\lambda, x, u(x))$ is Lebesgue measurable with

respect to $x$ for any Lebesgue measurable function $u$ .
Let $\alpha=(\alpha_{1}, \alpha_{2})$ be usual multiple index with respect to $\lambda$ and $y$ . That is, for

$\partial^{|a|}$

$\alpha=(\alpha_{1}, \alpha_{2}),$ $D^{\alpha}f(\lambda, x, y)$ means $\ovalbox{\tt\small REJECT}_{y}^{12}f(\lambda, x, y)$ .
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Let $d\geq 1$ be an integer. For $\alpha,$ $|\alpha|\leq d$ , we define the map $F^{\alpha}(\lambda, u)$ for $(\lambda, u)\in\Lambda\cross H_{0^{1}}$

by

(2.5) $F^{\alpha}(\lambda, u)(x)$ $:=D^{\alpha}f(\lambda, x, u(x))$ .

We then assume that

Assumption 2.1. Let $d\geq 2$ . For $ail\alpha,$ $|\alpha|\leq d$ , we $su$ppose that

(1) For almost a11 $x\in J_{\rangle}D^{a}f(\lambda, x, y)$ exists at any $(\lambda, y)\in\Lambda\cross \mathbb{R}$ , an$d$ that is Carath\’eodory

$con$ tinuous.

(2) The mapping $F^{\alpha}$ defined by (2.5) is $a$ con tinuous operator from $\Lambda\cross H_{0^{1}}$ to $L^{2}$ , an $d$

the image $F^{\alpha}(U)$ of any bounded subset $U\subset\Lambda\cross H_{0}^{1}$ is $bo$unded. $\triangleleft$

Assumption 2.1 is satisfied if $f$ : $\Lambda\cross J\cross Rarrow R$ is, for instance, $C^{d}$ function.

Lemma 2.2. Suppose that Assumption 2.1 holds. Then, the operator $F$ : $\Lambda\cross H_{0}^{1}arrow$

$H^{-1}$ is of $C^{d}$ class, and its partial derivatives are written as

$<D_{u}F(\lambda, u)\psi,$ $v>$ $=$ $\int_{J}f_{y}(\lambda, x, u(x))\psi vdx$ ,

$<D_{\lambda}F(\lambda, u)\eta,$ $v>$ $=$ $\eta\int_{J}f_{\lambda}(\lambda, x, u(x))vdx$ ,

for $\psi,$ $v\in H_{0^{1}}$ , an $d\eta\in \mathbb{R}$ . $\triangleleft$

By the theory due to Fink and Rheinboldt [R], we have the following fact (also see

[BRR2]). Let $\mathcal{R}(L-F)\subset\Lambda\cross H_{0}^{1}$ be defined by

$\mathcal{R}(L-F)$ $:=\{(\lambda, u)\in\Lambda\cross H_{0}^{1}|D(L-F)(\lambda, u)$ is $onto\}$ .

Theorem 2.3. Suppose that $f$ satisfies Assumption 2.1. \‘Also, $su$ppose that $0\in$

$(L-F)(\mathcal{R}(L-F))$ . Then, the set of solu tion$s$ of (2.2)

$\mathcal{M}=\mathcal{M}_{0}$ $:=\{(\lambda, u)\in \mathcal{R}(L-F)|(L-F)(\lambda, u)=0\}$

is $a$ one-dimensional $C^{d}- m$anifold without $bo$ undary. $\triangleleft$
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Now, let $L_{0}$ $:=L|_{H_{0^{1}}}$ . Then, $L_{0}$ : $H_{0^{1}}arrow H^{-1}$ is an isomorphism. Hence, if we define
$\Phi\in \mathcal{L}(H^{-1}, H_{0}^{1})$ by $\Phi$ $:=L_{0}^{-1}$ , there exists a constant $C_{1}$ such that

(2.6) $||\Phi f||_{H^{2}}\leq C_{1}||f\Vert_{L^{2}}$

for any $f\in L^{2}$ . Note that in this case the constant $C_{1}$ is easily determined. That is, $C_{1}$

is available in numerical verification procedures.

Let $(\lambda, u)\in \mathcal{M}_{0}$ be such that

$D_{\lambda}(L-F)(\lambda, u)=-D_{\lambda}F(\lambda, u)\neq 0$ .

By assumptions, we have $dimKerD(L-F)(\lambda, u)=1$ . Let $(\mu, \psi)\in R\cross H_{0^{1}}$ be the basis

of $KerD(L-F)(\lambda, u)$ . By [TBl,Lemma8.1], we have $\psi\neq 0$ . Let $x_{0}\in J$ be such that
$\psi(x_{0})\neq 0$ . Define the map $G:\Lambda\cross H_{0}^{1}arrow \mathbb{R}\cross H_{0}^{1}$ by

(2.7) $G(\lambda, u)$ $:=(\lambda-u(x_{0})+\gamma, \Phi oF(\lambda, u))$ ,

where $\gamma\in \mathbb{R}$ is given. Note that, since $F(\lambda, u)\in L^{2}$ for any $(\lambda, u)\in\Lambda\cross H_{0^{1}},$ $\Phi oF$ is a

compact operator.

As in [TB1,2], the equation (2.1) is rewritten as

(2.8) $\{\begin{array}{l}-u’’=f(\lambda,x,u)u(x_{0})=\gamma,u(a)=u(b)=0\end{array}$

provided $D_{\lambda}(L-F)(\lambda, u)\neq 0$ . Using $G$ defined by (2.7), the equation (2.8) can be written

as a fixed point problem:

(2.9) $(\lambda, u)=G(\lambda, u)$ , $(\lambda, u)\in\Lambda\cross H_{0}^{1}$ .

That is, a solution $(\lambda, u)\in\Lambda\cross H_{0}^{1}$ of (2.1) is a fixed point of $G$ provided $D_{\lambda}(L-F)(\lambda, u)\neq$

$0$ . Note that by [TBl,Lemma8.1] the Fr\’echet derivative $I-DG(\lambda, u)$ is an isomorphism

for any $(\lambda, u)\in \mathcal{R}(L-F)$ . Here and in the sequel, $I$ is the identity of $\mathbb{R}\cross H_{0}^{1}$ .

Remark 2.4. One may wonder how $x_{0}\in J$ can be taken. In this paper, to compute

finite element solutions of (2.8), we use the continuation program package PITCON de-

veloped by Rheinboldt and his colleagues. During path following, PITCON picks up a

certain nodal point of the finite element space in use. From the design of PITCON, we

may expect that the nodal $poin^{\backslash }t$ satisfies what $x_{0}$ has to satisfy (see [TB1,Remark8.3]).

In Section 6, we present a verification procedure which verifies that the selection of

the nodal point $x_{0}$ is correct: for the basis $(\mu, \psi)\in \mathbb{R}\cross H_{0^{1}}$ of $KerD(L-F)(\lambda_{h}, u_{h})$ , we

have $\psi(x_{0})\neq 0$ , where $(\lambda_{h}, u_{h})\in\Lambda\cross S_{h}$ is the obtained finite element solution. $\triangleleft$
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3. Formulation of Numerical Verification.

Let $S_{h}\subset H_{0^{1}}$ be a finite element space. The projection $P_{h0}$ : $H_{0^{1}}arrow S_{h}$ is defined by

$((u-P_{h0}u)’, v_{h}’)=0$ , $\forall v_{h}\in S_{h}$ .

For $S_{h}$ , we suppose the following assumption:

Assumption 3.1. There exists a $c$omputable constant $C_{2}$ which is independent of $h$

and $u$ , and satisfies the following estimate:

(3.1) $||u-P_{h0}u||_{H_{0^{1}}}\leq C_{2}h|u|_{H^{2}}$ , $\forall u\in H_{0}^{1}\cap H^{2}$ . $\triangleleft$

It is well known that the finite element space of piecewise linear functions satisfies

Assumption 3.1.

The projection $P_{h}$ : $R\cross H_{0}^{1}arrow R\cross S_{h}$ is defined by

(3.2) $P_{h}(\mu, u):=(\mu, P_{h0}u)$ , for $(\mu, u)\in \mathbb{R}\cross H_{0}^{1}$ .

As stated in Remark 2.4, we suppose that a nodal point $x_{0}\in J$ of $S_{h}$ is taken in a

certain way so that $I-DG(\lambda, u)$ is an isomorphism for any $(\lambda, u)\in \mathcal{R}(L-F)$ . The finite

element solution $(\lambda_{h}, u_{h})\in R\cross S_{h}$ of (2.8) is defined naturally by

(3.3) $(u_{h}’, v_{h}’)=(f(\lambda_{h}, x, u_{h}), v_{h})$ , $\forall v_{h}\in S_{h}$ , and $u_{h}(x_{0})=\gamma$ .

Assumption 3.2. At the computed finite element solution $(\lambda_{h}, u_{h})\in \mathbb{R}\cross S_{h}$ of (3.3),

the restricted operator $P_{h}(I-DG(\lambda_{h}, u_{h}))|_{R\cross S_{h}}$ has the inverse

$[I-DG^{h}]_{h}^{-1}$ : $R\cross S_{h}arrow \mathbb{R}\cross S_{h}$ . $\triangleleft$

In the sequel, we denote $DG(\lambda_{h}, u_{h})$ and $DF(\lambda_{h}, u_{h})$ by $DG^{h}$ and $DF^{h}$ , respectively.

Assumption 3.2 means that} for all $(\mu, w_{h})\in \mathbb{R}\cross S_{h}$ , there exists the unique solution
$(\delta, y_{h})\in \mathbb{R}\cross S_{h}$ of the equation $P_{h}(I-DG^{h})(\delta, y_{h})=(\mu, w_{h})$ . Since $DG^{h}(\delta, y_{h})=$

$(\delta-y_{h}(x_{0}), DF^{h}(\delta, y_{h}))$ , we see that $(I-DG^{h})(\delta, y_{h})=(y_{h}(x_{0}), y_{h}-DF^{h}(\delta, y_{h}))$ , and

(3.4) $\{\begin{array}{l}\mu=y_{h}(x_{0})((y_{h}-DF^{h}(\delta,y_{h})-w_{h})’,v_{h}’)=0\end{array}$

$\forall v_{h}\in S_{h}$ .
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Let $M$ $:=\dim S_{h}$ . Let $\{\phi_{j}\}_{j=1}^{M}$ be the basis of $S_{h}$ and $y_{h}= \sum_{j=1}^{M}a_{j}\phi_{j},$ $w_{h}= \sum_{j=1}^{M}b_{j}\phi_{j}$ .

Then, Assumption 3.2 implies that the equation

(3.5) $\{\begin{array}{l}\mu=a_{p}(pistheindexsuchthat\phi_{p}(x_{0})=1)MM\sum_{j=1}a_{\dot{J}}((I-D_{u}F^{h})\phi_{J}\cdot)-\delta(D_{\lambda}F^{h}),\phi_{k})=\sum_{j=1}b_{j}(\phi_{j}’,\phi_{k}’)\end{array}$

$k=1,$
$\ldots,$

$M$

is uniqueIy solvable for any $(b_{1}, \ldots, b_{M}, \mu)$ . Therefore, we can verify on computer whether

or not Assumption 3.2 holds.

4. Rounding and Rounding Error.

Let $\epsilon,$ $(0<\epsilon<1)$ be a parameter. We first define the operator $T_{\epsilon}$ : $\Lambda\cross H_{0^{1}}arrow R\cross H_{0^{1}}$

by

(4.1) $T$ $:=I-([I-DG^{h}]_{h}^{-1}P_{h}+\epsilon I)(I-G)$ .

Note that if $[I-DG^{h}]_{h}^{-1}P_{h}+\epsilon I$ has an inverse operator, the two fixed point equations

$(\lambda, u)=G(\lambda, u)$ and $(\lambda, u)=T_{\epsilon}(\lambda, u)$ are equivalent. Our main tool of numerical verifi-

cation has been the following fixed point theorem (for instance, see [Z]):

Theorem 4.1 (Sadovskii’s Fixed Point Theorem). Let $X$ be a Banach space

and $U\subset X$ a nonempty, $bo$un$ded$, convex, closed subset. Suppose that the nonlinear

operator $T:Uarrow U$ is a $con$den$sing$ map. Then, ther$e$ exists a fixed poin$tu\in U$ ofT:

$\exists u\in U$ $such$ that $u=Tu$ . $\triangleleft$

Since $T_{\epsilon}$ can be rewritten as

$T_{\epsilon}=(1-\epsilon)I+[I-DG^{h}]_{h}^{-1}P_{h}(I-G)+\epsilon G$ ,

$T_{\epsilon}$ is a condensing map from $\Lambda\cross H_{0^{1}}$ to $R\cross H_{0^{1}}$ . Hence, if we have a nonempty, bounded,

convex, closed subset $U\subset\Lambda\cross H_{0^{1}}$ such that $T_{\epsilon}U\subseteq U$ , we can conclude that there exists

a fixed point of $T_{\epsilon}$ . Moreover, if $[I-DG^{h}]_{h}^{-1}+\epsilon I$ is invertible, the fixed point of $T_{\epsilon}$ is a

solutuon of (2.2). Hence, our verification is reduced to the construction of such $U$ on the

memory of computer.

The approximations of an element $u\in H_{0}^{1}$ , a sebset $U\subset H_{0^{1}}$ , and operators defined

on $H_{0}^{1}$ in a certain finite element space $S_{h}$ are called their rounding. The error of the

rounding is called rounding error. These notions are defined by projection.
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The rounding $\tilde{T}_{\epsilon}$ of $T_{\epsilon}$ is defined by $\tilde{T}_{\epsilon}$ $:=P_{h}oT_{\epsilon}$ , where $P_{h}$ is the projection defined

by (3.2). Then, we see that

(4.2) $\tilde{T}_{\epsilon}=\tilde{I}-([I-DG^{h}]_{h}^{-1}+\epsilon\tilde{I})(\tilde{I}-\tilde{G})$ ,

where $\tilde{I}:=P_{h}oI_{R\cross H_{0^{1}}}$ and $\tilde{G}$ $:=P_{h}oG$ . Let $U\subset H_{0}^{1}$ . The rounding $R(T_{\epsilon}U)$ is defined as

the image.of $\tilde{T}_{\epsilon}$ :

(4.3) $R(T_{\epsilon}U)$ $:=\{(\mu, v)\in R\cross S_{h}|(\mu, v)=\tilde{T}_{\epsilon}(\lambda, u),$ $(\lambda, u)\in U\}$ .

We define the rounding error $RE(T_{\epsilon}U)$ of $T_{\epsilon}$ by

(4.4) $\alpha$

$:= \sup_{(\mu,u)\in U}||T_{\epsilon}(\mu, u)-\tilde{T}_{\epsilon}(\mu, u)||_{RxH_{0^{1}}}$ ,

(4.5) $C$ $:=C_{1}C_{2}$ , ( $C_{1},$ $C_{2}$ are defined by (2.6), (3.1), respectively.),

(4.6) $RE(T_{\epsilon}U)$ $:=\{0\}\cross\{\psi\in S_{h}^{\perp}|\Vert\psi||_{H_{0}^{1}}\leq\alpha,$ $||\psi||_{L^{2}}\leq Ch\alpha\}C\{0\}\cross H_{0}^{1}$ .

Then, we have

Theorem 4.2. Let $U\subset\Lambda\cross H_{0^{1}}$ be a $n$onempty, $bo$unded, convex, closed subset. If

(4.7) $R(T_{\epsilon}U)\oplus RE(T_{\epsilon}U)\mathring{\subset}U$,

for some $\epsilon,$
$0<\epsilon<1$ , then, there exists a solution $(\lambda, u)\in U$ of the fixed poin $t$ problem

$(\lambda, u)=G(\lambda, u)$ . Here, A C $B$ means closure(A) $C$ interior(B).

Proof. First, we claim that $T_{\epsilon}U\subseteq R(T_{\epsilon}U)\oplus RE(T_{\epsilon}U)$ . For any $(\mu, u)\in U$ , we have
$T_{\epsilon}(\mu, u)=\tilde{T}_{\epsilon}(\mu, u)+(T_{\epsilon}(\mu, u)-\tilde{T}_{\epsilon}(\mu, u))$ . Thus, we just need to show that $T_{\epsilon}(\mu, u)-$

$\tilde{T}_{\epsilon}(\mu, u)\in RE(T_{\epsilon}U)$ to prove our claim.

Define the projection $\pi$ : $R\cross H_{0^{1}}arrow \mathbb{R}$ by $\pi(\mu, u)=u$ for $(\mu, u)\in R\cross H_{0^{1}}$ . Let

arbitrary $\psi\in L^{2}$ be taken. Let $\phi$ $:=\Phi\psi$ , where $\Phi$ $:=(L|_{H_{0}^{1}})^{-1}$ . Then, from (4.4), (4.5),

we find that

(4.8) $(\pi(T_{\epsilon}(\mu, u)-\tilde{T}_{\epsilon}(\mu, u)),$ $\psi$) $=(\pi(T_{\epsilon}(\mu, u)-\tilde{T}_{\epsilon}(\mu, u)),$ $-\phi^{n}$ )

$=((\pi(T_{\epsilon}(\mu, u)-\tilde{T}_{\epsilon}(\mu, u)))’,$ $(\phi-P_{0h}\phi)’)$

$\leq||T_{\epsilon}(\mu, u)-\tilde{T}_{\epsilon}(\mu, u)||_{R\cross H_{0^{1}}}||\phi-P_{0h}\phi||_{H_{0}^{1}}$

$\leq C\alpha h||\psi||_{L^{2}}$ .
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In (4.8), we use the fact that

$||\pi(T_{\epsilon}(\mu, u)-\tilde{T}_{\epsilon}(\mu, u))\Vert_{H_{0^{1}}}=||T_{\epsilon}(\mu, u)-\tilde{T}_{\epsilon}(\mu, u)||_{RxH_{0}^{1}}$ ,

since the restricted operator $P_{h}|_{R}$ is the identity of $R$ , and there is no “error” of $\tilde{T}_{\epsilon}$ with

respect to the entry of R. By (4.8), we obtain

$|| \pi(T_{\epsilon}(\mu, u)-\tilde{T}_{\epsilon}(\mu, u))||_{L^{2}}=\sup_{\psi\in L^{2}}\frac{|\pi(T_{\epsilon}(\mu)u)-\tilde{T}_{\epsilon}(\mu,u))|}{||\psi||_{L^{2}}}\leq Ch\alpha$ ,

and conclude that $T_{\epsilon}U\subseteq R(T_{\epsilon}U)\oplus RE(T_{\epsilon}U)$. Therefore, by Theorem 4.1, there exists
$(\lambda, u)\in U$ such that $(\lambda, u)=T_{\epsilon}(\lambda, u)$ .

The equation $(\lambda, u)=T_{\epsilon}(\lambda, u)$ is written as

(4.9) $([I-DG^{h}]_{h}^{-1}P_{h}+\epsilon I)(I-G)(\lambda, u)=0$ .

The operator $[I-DG^{h}]_{h}^{-1}P_{h}+\epsilon I$ is invertible if and only $if-\epsilon$ is not an eigenvalue of the

operator $[I-DG^{h}]_{h}^{-1}P_{h}$ . Since $[I-DG^{h}]_{h}^{-1}P_{h}$ is compact, all its eigenvalues are isolated.

If (4.7) holds for some $\epsilon$ , it also holds for $\epsilon_{0}$ such that $|\epsilon-\epsilon_{0}|$ is sufficiently small. Hence,

we may assume without loss of generality that $-\epsilon$ is not an eigenvalue of $[I-DG^{h}]_{h}^{-1}P_{h}$ .
Therefore, from (4.9), we conclude that there esists $(\lambda, u)\in U$ such that $(\lambda, u)=G(\lambda, u)$ .
$\triangleleft$

5. Numerical Verification.

By Theorem 4.2, in the set $U\subseteq$ A $\cross H_{0}^{1}$ which satisfies (4.7), there exists at least one

solution of the fixed point problem $(\lambda, u)=G(\lambda, u)$ . Therefore, if we construct such $U$

on the memory of computer, the solution of the fixed point problem is said to verified

numerically. This is what we shall do in this section.

Let $\{\phi_{j}\}_{j=1}^{M}$ be the basis of $S_{h}$ . Let $\Theta_{h}$ be the set of linear combinations of intervals

and $\phi_{j}$ :

(5.1) $\Theta_{h}$ $:= \{(A_{0},\sum_{j=I}^{M}A_{j}\phi_{h})|A_{j}\subset \mathbb{R}$ are $interval\}$ .

That is, an element $\omega\in\Theta_{h}$ is the set

$\omega=(A_{0},\sum_{j=1}^{M}A_{j}\phi_{h})$ $:= \{(a_{0},\sum_{j=1}^{M}a_{j}\phi_{h})|a_{j}\in A_{j}\}$ .
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Let $\mathbb{R}^{+}$ be the set of nonnegative reals. For $\alpha\in \mathbb{R}^{+}$ , we define the set $[\alpha]\subset\{0\}\cross S_{h}^{\perp}\subset$

$\{0\}\cross H_{0}^{1}$ by

(5.2) $[\alpha]:=\{0\}\cross\{\phi\in S_{h}^{\perp}|||\phi||_{H_{0}^{1}}\leq\alpha,$ $||\phi||_{L^{2}}\leq Ch\alpha\}$ .

We define the following iteration:

Definition 5.1. Let $(\lambda_{h}, u_{h})\in\Lambda\cross S_{h}$ be the fini$te$ elemen $t$ solution defined by (3.3).

(1) We set $\triangle(\lambda_{h}^{0}, u_{h}^{0})$ $:=\{(\lambda_{h}, u_{h})\}$ and $\alpha_{0}$ $:=0$ as the $i$niti$alvalues$ .
(2) For $n\geq 1$ , we define $U^{n-1}CR\cross H_{0^{1}},$ $\triangle(\lambda_{h}^{n}, u_{h}^{n})\subset \mathbb{R}\cross S_{h}$ , and $\alpha_{n}\in \mathbb{R}^{+}$ inductively

$by$

(5.3) $\{\begin{array}{l}U^{n-1}\cdot.=\triangle(\lambda_{h}^{n-1},u_{h}^{n-1})+[\alpha_{n-1}]\triangle(\lambda_{h}^{n},u_{h}^{n})\cdot.=\tilde{T}_{\epsilon}U^{n-1}\alpha_{n}\cdot.=Ch\sup_{(\mu,v)\in U^{n-1}}||f(\mu,x,v)||_{L^{2}}\end{array}$

$\triangleleft$

Note that it is very difficult or impossible to estimate $\triangle(\lambda_{h}^{n}, u_{h}^{n})$ and $\alpha_{n}$ in (5.3)

exactly. It is, however, possible and easy to enclose each coefficient interval by a slightly

bigger interval, that is, overestimate them (cf. [WN]).

Now, let $\delta>0$ be a small real. We define

(5.4) $\{$
$\tilde{\alpha}.\cdot=\alpha_{n}^{h}+\delta\triangle_{n}(\tilde{\lambda}_{h}^{n},\tilde{u}^{n}).\cdot=.\triangle(\lambda_{h}^{n}, u_{h}^{n})+([-1,1]\delta,\sum_{j=1}^{M}[-1,1]\delta\phi_{h})$

,

The definition of $(^{\zeta}\backslash 4)$ is called $\delta$-extension. Let $\tilde{U}$
$:=\triangle(\tilde{\lambda}_{h}^{n},\tilde{u}_{h}^{n})+[\tilde{\alpha}_{n}]$ . Let $\triangle(\overline{\lambda}_{h},\overline{u}_{h})\subset$

$\mathbb{R}\cross S_{h}$ and $\overline{\alpha}_{n}\in \mathbb{R}^{+}$ be obtained by the iteration (5.3) from $\tilde{U}$ :

(5.5) $\{\begin{array}{l}\triangle(\lambda_{h},\overline{u}_{h})\cdot.=T_{\epsilon}U\overline{\alpha}_{n}\cdot=Ch\sup_{(\mu,v)\in\tilde{U}}||f(\mu,x,v)||_{L^{2}}\end{array}-$

For these sets, the inclusion $\triangle(\overline{\lambda}_{h},\overline{u}_{h})\subset^{o}\triangle(\tilde{\lambda}_{h}^{n},\tilde{u}_{h}^{n})$ is defined by $B_{j}\subset oA_{j}(j=$

$0,1,$
$\ldots,$

$M$ ), where $\triangle(\tilde{\lambda}_{h}^{n},\tilde{u}_{h}^{n})=(A_{0},\sum_{j=1}^{m}A_{j}\phi_{j})$ and $\triangle(\overline{\lambda}_{h},\overline{u}_{h})=(B_{0},\sum_{j=1}^{m}B_{j}\phi_{j})$ .

To judge whether or not $\tilde{U}$ is what we want, we have the following theorem:

Theorem 5.2. If we find

(5.6) $\{\begin{array}{l}\triangle(\overline{\lambda}_{h},\overline{u}_{h})\subset\triangle(\tilde{\lambda}_{h}^{n},\tilde{u}_{h}^{n})Q\overline{\alpha}_{n}<\tilde{\alpha}_{n}\end{array}$

we conclude that there exists a solution $(\lambda, u)\in\tilde{U}$ of the fixed point problem $(\lambda, u)=$

$G(\lambda, u)$ .
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Proof. By Theorem 4.2, we only have to show that $R(T_{\epsilon}\tilde{U})\oplus RE(T_{\epsilon}\tilde{U})\subset 0\tilde{U}$ .
For any $(\mu, v)\Gamma--R(T_{\epsilon}\tilde{U})$ , there exists $(\lambda, u)\in\tilde{U}$ such that $(\mu, v)=\tilde{T}_{\epsilon}(\lambda, u)$ because

of the definition (4.3). Since $T_{\epsilon}\tilde{U}=\triangle(\overline{\lambda}_{h},\overline{u}_{h})$ and (5.6), we have

(5.7) $R(T_{\epsilon}\tilde{U})\subset\triangle(\overline{\lambda}_{h},\overline{u}_{h})\subset 0\triangle(\tilde{\lambda}_{h}^{n},\tilde{u}_{h}^{n})\subseteq\tilde{U}$ .

By (4.1) and (4.2), we have

$T_{\epsilon}(\lambda, u)-\tilde{T}_{\epsilon}(\lambda, u)=(1-\epsilon)(I-\tilde{I})(\lambda, u)+\epsilon(G-\tilde{G})(\lambda, u)$ .

Since $\tilde{U}=\triangle(\tilde{\lambda}_{h}^{n},\tilde{u}_{h}^{n})+[\tilde{\alpha}_{n}]$ , there exist $(\lambda_{h}, u_{h})+(\mu, \omega)\in\triangle(\tilde{\lambda}_{h}^{n},\tilde{u}_{h}^{n})$ and $\beta\in[\tilde{\alpha}_{n}]$ so that
$(\lambda, u)=(\lambda_{h}+\mu, u_{h}+\omega+\beta)$ . Thus, we obtain $(I-\tilde{I})(\lambda, u)=(0, \beta)\in[\tilde{\alpha}_{n}]$.

By Assumption3.1 and (5.6), we have

$||G(\lambda, u)-\tilde{G}(\lambda, u)||_{RxH_{0^{1}}}\leq C_{2}h|\Phi\circ F(\lambda, u)|_{H^{2}}\leq Ch||f(\lambda, x, u)||_{L^{2}}$

$\leq\sup_{(\mu,v)\in\tilde{U}}||f(\mu, x, v)||_{L^{2}}=\overline{\alpha}_{n}<\tilde{\alpha}_{n}$
.

Therefore, we conclude that $||T_{\epsilon}(\lambda, u)-\tilde{T}_{\epsilon}(\lambda, u)||_{RxH_{0^{1}}}\leq(1-\epsilon)\tilde{\alpha}_{n}+\epsilon\overline{\alpha}_{n}<\tilde{\alpha}_{n)}$ and

(5.8) $RE(T_{\epsilon}\tilde{U})\subset Q[\tilde{\alpha}_{n}]\subseteq\tilde{U}$ .

By (5.7) and (5.8), the proof is completed. $\triangleleft$

6. The Linearized Equation and Un\’iqueness.

We iterate the procedure (5.3) until (5.6) is satisfied. Once we obtain $\tilde{U}$ which satisfies

(5.6), we are now sure that there exists at least one solution of the equation $(\lambda, u)=$

$G(\lambda, u)$ . We, however, cannot say anything about uniqueness of the solution. Moreover,

as mentioned in Remark 2.4, we still have some uncertainty about the choice of the nodal
point $x_{0}\in J$ . This is the motivation of this section.

We suppose that the set $\tilde{U}\subset\Lambda\cross H_{0^{1}}$ which satisfies (5.6) has been constructed by

computer. Then, we consider the following linearized equation of $I-G$:

(6.1) $(I-DG(\tilde{U}))(\mu, \psi)=(1,0)\in R\cross H_{0}^{1}$ .

The equation (6.1) is equivalent to

(6.2) $\{\begin{array}{l}\psi(x_{0})=1(L-DF(\tilde{U}))(\mu,\psi)=0\end{array}$
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Note that the equation (6.1) and (6.2) have in terval coefficients, and thus their solutions

are sets.

We try to verify the solution of (6.1) and (6.2) in the exactly same way as before:

(1) Define the operators $T_{\epsilon},\tilde{T}_{\epsilon}$ : $\Lambda\cross H_{0}^{1}arrow R\cross H_{0^{1}}$ by

$T_{\epsilon}$ $:=I-([I-DG^{h}]_{h}^{-1}P_{h}+\epsilon I)(I-DG(\tilde{U}))$ ,

and $\tilde{T}_{\epsilon}$

$:=P_{h}T_{\epsilon}$ .
(2) Let $(\mu_{h}, \psi_{h})\in R\cross S_{h}$ be the finite element solution defined by

$(\psi_{h}’, v_{h}’)=(f_{y}(\lambda_{h}, x, u_{h})\psi_{h}+\mu_{h}f_{\lambda}(\lambda_{h}, x, u_{h}), v_{h})$ , $\forall v_{h}\in S_{h}$ , and $\psi_{h}(x_{0})=1$ .

(3) Set $\triangle(\mu_{h}^{0}, \psi_{h}^{0});=\{(\mu_{h}, \psi_{h})\},$ $\alpha$ $:=0$ , and $n:=1$ .
(4) Compute $V^{n-1}CR^{\cdot}\cross H_{0^{1}},$ $\triangle(\mu_{h}^{n}, \psi_{h}^{n})\subset R\cross H_{0^{1}}$ , and $\alpha_{n}\in \mathbb{R}^{+}$ by (5.3). Set $n$ $:=n+1$ .
(5) Compute the 6-extension $\triangle(\tilde{\mu}_{h}^{n},\tilde{\psi}_{h}^{n})$ and $\tilde{\alpha}_{n}$ by (5.4) from $\triangle(\mu_{h}^{n}, \psi_{h}^{n})$ and $\alpha_{n}$ . Also,

compute $\triangle(\overline{\mu}_{h}^{n},\overline{\psi}_{h}^{n})$ and $\overline{\alpha}_{n}$ by (5.5). Check whether or not they satisfy the condition

(5.6). If so, the solution of (6.1) (or (6.2)) is verified. If not, go to (4) . $\triangleleft$

Now, suppose that we have constructed $\tilde{V}$
$:=\triangle(\tilde{\mu}_{h}^{n},\tilde{\psi}_{h}^{n})+[\tilde{\alpha}_{n}]w$ hich satisfies (5.6).

Then, we conclude that there exists at least one solution of (6.1) in $\tilde{V}$ . Moreover, since

the inclusion of (5.6) is strict, the union of solutions is bounded in $\mathbb{R}\cross H_{0^{1}}$ . This means

that the kernal of $I-DG(\tilde{U})$ is trivial: For each $(\eta, w)\in\tilde{U}$ , the kernal of $I-DG(\eta, w)$

is trivial. Therefore, the solution $(\lambda, u)\in\tilde{U}$ of $(\lambda, u)=G(\lambda, u)$ is unique, at least, locally.

Also, in the set $\tilde{V}$ , there should be some $(\mu, \psi)$ which satisfies $(I-DG(\lambda, u))=(\mu, \psi)$ ,

that is, $\psi(x_{0})=1$ and $(L-DF(\lambda, u))(\mu, \psi)=0$ . This means that for the basis $(\mu, \psi)$ of

the kernel of $L-DF(\lambda, u)$ , we have $\psi(x_{0})\neq 0$ , and the choice of $x_{0}\in J$ is correct.

7. A Numerical Example.

In this section we present an example of numerical verification for the following equation:
$J$ $:=(0,1)$ and

(7.1) $\{$ $u(0)=u(1)=0-u”=\lambda u(u-a)(1-u)$
, in $J$,

where $a=0.25$ .
Let $N$ $:=100$ . We divide $J$ equally into $N$ small intervals. Let $x_{i}$ $:=i/N$ and $S_{h}$

the finite element space of piecewise linear funtions. As mentioned in Remark 2.4, we

use PITCON to follow the solution branch. It is known that this equation has a turning
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point. According to output of PITCON, the turning point occurs at $\lambda_{h}=79.860\ldots$ , and

PITCON picks up $x_{0}=x_{46}$ as the continuation point. We tried to verify the solution
$(\lambda_{h)}u_{h})$ at the point. In the verification we use the values $\epsilon:=1.0D- 6$ and $\delta:=1.0D- 4$ .

The following are the result of verification. We show $\tilde{\alpha}_{n}$ and the constructed set
$\tilde{U}=(A_{0)}\Sigma_{j=1}^{99}A_{j}\phi_{j})$ , where $A_{j}$ $:=[a_{j}, b_{j}]$ .
The iteration number $=6$ ,
$\tilde{\alpha}_{n}=1.64497D-2$ ,
$\lambda_{h}=79.8606\in A_{0}=$ (79.7810, 79.9398) and the width of $|A_{0}|=0.15878$ .

Table 7.1: The result of verification.

After the verification of the solution $(\lambda, u)\in\tilde{U}$ , we verified the local uniqueness of

the solution and the correctness of the choice of $x_{0}=0.46$ . It was done using the same

parameters. After only one iteration, the verification was completed.
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