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ON AN ADAPTIVE ALGORITHM FOR SOLVING INITIAL
VALUE PROBLEMS OF O. D. E. AND ITS EFFECTIVENESS

Li Wang-yao
(Computing Center, Academia Sinica, Beijing)

Abstract

In this paper, we introduce an adaptive algorithm for solving initial value prob-
lems of O. D. E. and the numerical tests show that it is dominant in comparison
with Gear’s automatic code.

1 Introduction
Algorithms with fixed order and fixed stepsize have long been used to solve initial value
problems of ordinary differential equations, but when an answer with definite accuracy and
smaUest amount at work is required, as is often the case, those algorithms cannot work very
effectively and $Satis\mathfrak{b}^{r}$ the demand. Generally, the change rate of functions to be solved varies
during the whole process. A desirable accuracy can be obtained with a small stepsize in a
fast variation region, but it will be more expensive and useless to take the same stepsize in
a slow variation region because locally higher accuracy is unprofitable to the user. Theory
and practical experiences have indicated that methods with high order are suitable for high
accuracy problems and those with low order are economical for low accuracy problems.
Therefore, algorithms with automatic control of stepsize and order are desired, and to this
end, we need to estimate the local truncation error for one-step methods in a convenient
and economical manner. For multistep methods, convenient and economical transformation
among three methods with neighbouring orders, besides their local truncation errors, is also
demanded. Of course, we also hope that the stepsize can be changed easily.

In late $1960s$ , C. W. Gear successfully solved this problem by use ofthe Nordsieck notation
and presented a general-purpose automatic program for the Adams-Moulton method and
the BDF formula. T.E. $Hull([1,2])$ highly praised this program: “If a program library was
to contain only one program for solving ordinary differential equations, we would strongly
recommend Gear’s.”

Soon, various programs with automatically changing stepsize were presented for Runge-
Kutta methods. Because no techniques are currently available for selecting the order in
Runge-Kutta methods, those programs are of fixed order.

In early $1960s$ , new problems– stiff equations–arose in various fields such as chemi-
cal kinetics, automatic control, and network analysis, various methods were proposed, such
as Gear’s methods, Enright’s method, the method based on the trapezoidal rule with ex-
trapolation, implicit Runge-Kutta methods for stiff problems. Up to now, however some of
problems are still not solved.

For a stiff problem, we must choose a small stepsize to gain a definite accuracy due to error
tolerance in a fast variation region (i.e. transiency). Here the Adams methods are probably
more advantageous than the BDF methods. Although we need to choose a smaller stepsize to
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ensure the stability and convergence of the simple iteration for the Adams methods, the total
cost probably is less than that of the BDF methods as the latter Newton iteration inflicts a
huge cost. This situation is called the nonstiff stage of stiff problems. Obviously, the Adams-
Moulton method is more economical in the nonstiff stage. Moreover since the eigenvalues of
the system vary in size for nonlinear stiff problems, the solution of the problems sometimes
is stiff and sometimes is nonstiff. In this case it is not economical to use the Adams or
the BDF method alone. The best treatment is automatic change of numerical integration
methods according to the properties of the solution.

The problems with discontinuity of right function often appear in some practical problems
such as transitional input in control systems. When integrating these problems in automatic
code, the mistakes of alternate judgment in the neighbourhood of discontinuity arise so often
that the amount of computation increases greatly. Therefore, an automatic program which
can pass a discontinuous point automatically and efficiently is also desired.

The automatic program that automatically changes stepsize, order and integration meth-
ods and passes discontinuity arose in early $1980’ s$ ([3]). It is a great progress in applying
adaptive algorithms to solving initial value problems of ordinary differential equations.

Even if the users do not know any information about the problems to be solved, such as
whether the problem is stiff or not or whether the right functions have discontinuity or not,
this program can still provide a good answer reasonably and efficiently. It can also solve stiff
problems more efficiently.

Now we introduce the principle, the criterion and the main points for implementing the
Adams-BDF automatic program as follows.

2 Automatic Control of Stepsize and Order
In automatic control of stepsize and order, after finishing each integration step we should
check, as a principle, if the local truncation error is smaller than the error tolerance required
by the user.

For the Adams-Moulton method (or the BDF method) we require

$c_{k+1}y^{(k+1)}h^{(k+1)}\leq\epsilon$ (1)

where $c_{k+1}$ is the error constant, $h$ is the integration stepsize and $\epsilon$ is error tolerance. If the
relationship (1) is satisfied, we accept this integration step (it is called a successful step). At
the same time we estimate such an $H$ , that satisfies (1) for the methods with order $k-1,$ $k$ ,
and $k+1$ respectively, select the largest $H$ from them as the stepsize in the next step, and
change the current order of the method corresponding to this $H$ .

For a faulty step, an analogous judgment is made to define a new stepsize, which is used
for recalculation of this step. The detail of the control strategy is described in [4].

We notice that only $y^{(k+1)}$ is unknown in (1). Of course, $y^{(k)}$ and $y^{(k+2)}$ are also required
in order to change the order. The approximate values of these unknowns may be obtained by
interpolation. For example, for the BDF method with order $k,$ $y_{n}^{(k)}$ may be obtained through
$k+1$ known values of the function and derivative $y_{n},$ $hy_{n}’,$ $y_{n-1},$ $\cdots$ , $y_{n-k+1}$ , by interpolation.
Meanwhile $y_{n}^{(k+1)}$ and $y_{n}^{(k+2)}$ can be obtained through V$y_{n}^{(k)}$ and $\nabla^{2}y^{(k)}$ .
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When the stepsize is changed, the values at each network point relative to the new stepsize
may be calculated in terms of the obtained values of the functions and derivatives.

There is no difficulty in principle, but the numerical work is huge and cannot be borne
due to repeated interpolation.

C. W. Gear successfully solved this difficult problem using the Nordsieck notation. The

BDF formula with order $k,$ $y_{n}= \sum_{1}^{k}\alpha_{i}y_{n-i}+h\beta_{0}f_{n}$, can be transferred into an equivalent

predictor-corrector formula
$\{a_{n}^{(\cdot+l)}=a_{n}^{n.-1}+LF(a_{n}^{(i)})a_{n}^{(0)}=Ba_{(|)}$ (2)

Where

$a_{n}$ $=$ $(a_{on}, a_{1n} \cdots a_{kn})^{T}=(y_{n}, hy_{n}’, \frac{h^{2}}{2!}y_{n}^{(2)}\cdots\frac{h^{k}}{k!}y_{n}^{(k)})^{T}$

$=$ $A(y_{n}, hy_{n}’, y_{n-1}\cdots y_{n-k+1})^{T}$

$B$ is the Pascal triangular matrix with order $k+1,$ $L=(L_{0}\cdots L_{k})^{-1}$ is a constant vector,
$F(a_{n})=hf(a_{0n})-a_{1n}$ and $A$ is the matrix constituted by the coefficients of the interpolation
polynomial. In this way, it is very easy to obtain the derivatives $y_{n}^{(k)},$ $y_{n}^{(k+1)}$ and $y_{n}^{(k+2)}$ using
(2). Furthermore, changing stepsize vecomes very easy, like one-step methods, and so does
the order change. It is obvious that the BDF and the Adams-Moulton formula have the
same form of predictor-corrector formula except that the vector $L$ is different. It makes the
changing integration methods easy to implement.

3 Automatical Change of Integration Methods
The main principles of changing stepsize, order and integration methods are as follows;
when the order of the methods, the stepsize and the integration methods need changing, we
separately estimate the stepsize $H$ for the BDF and the Adams-moulton methods with order
$k-1,$ $k$ and $k+1$ according to the criterion $c_{K+1}h^{k+1}y^{(k+1)}<Eqs$ , and obtain two groups
of $H,$ $h_{B,k-1},$ $h_{B,k},$ $h_{B,k+1}$ (for BDF) and $h_{A,k-1},$ $h_{A,k},$ $h_{A,k+1}$ (for Adams). It is impossible
to ensure the stability and effectiveness of the calculation for the Adams-Moulton methods
using such an $H$ determined by the tolerance. Therefore, the restrictions on the stability
and convergence of the simple iteration must be considered.

According to the restriction of stability

$h_{A,k}^{*} \leq\frac{Disks(k)}{ESTL}$ (3)
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denotes the radius of the maximal semidisk, which is almost covered by the stability region
of the method with order $k$ . The Disks $(k)$ of the Adams-Moulton methods are listed in
Table 1.

When the functional equation $y=h\beta_{0}f(y)+C$ is solved by means of simple iteration,

the iterative formula $is_{1}\frac{y^{n+1}-y^{n}}{y^{n}-y^{n-1}}=h\beta_{0}\frac{\partial f}{\partial y}$ . If we expect the iterative rate to be larger than

2, then $h*ESTL<\overline{2\beta_{k0}}$ ’ where $\beta_{k,0}$ is the coefficient of the Adams-Moulton formula. We

let $\frac{1}{2\beta_{k,0}}=Disks(k)$ and call this Disks$(k)$ the radius of the convergence disk and list them

Table 2. If fewer values of Disks $(k)$ in Table 1 and Table 2 are chosen (as listed in Table
3) and used in relationship (3), when $H$ satisfied relationship (3), the restrictions on the
stability and convergence of the simple iteration are satisfied simultaneously.

Choosing $\overline{h}_{A,k}=\min(h_{A,k}, h_{A,k}^{*})$ we obtain $\overline{h}_{A,k-1},\overline{h}_{A,k}$ and $\overline{h}_{A,k+1}$ . Such a group of $\overline{h}_{A}$

satisfies the restriction on accuracy, stability, and convergenoe of the simple iteration at
the same time, At last, we choose $h= \max(h_{B,k-1}, h_{B,k}, h_{B,k+1},\overline{h}_{A,k-1},\overline{h}_{A,k},\overline{h}_{A,k+1}, )$ as the
predictive value of the next stepsize and at the same time, a new order and new integration
methods are determined.

Due to the different costs between the Adams-Moulton method and the BDF method
in one step integration, when we judge whether the Adams or the BDF method should be
adopted, a weighting factor must be added. If $\overline{h}_{A,k}\geq\frac{SADM}{SBDF}h_{B,k}$ , then we choose $\overline{h}_{A,k}$

otherwise we choose $h_{B,k}$ . Here, $\frac{SADM}{SBDF}$ , the weighting factor, is the ratio of the calculation
work of the Adams method to that of BDF method in one step integration.

Automatical passing of the discontinuous point of right functions is described in [5].
As stated above, all criteria for changing order, stepsize and integration methods are

obtained during the numerical process. Therefore, a large amount of additional work is
avoided. Using the Nordsieck notation makes the process of changing order, stepsize and
integration methods very simple, giving the automatic program great vitality.

4 Numerical Tests
In order to $identi6^{r}$ the effectiveness of the”AS” for solving stiff problems in O.D.Es, seventy-
two stiff problems adopted by Enright, etc., were solved. The numerical tests show that “ AS”
is dominant in comparison with Gear’s automatic code.

(1) SOME EXPLANATION
The calculations were implemented in IBM-AT using double precision.

CODE: “ AS” present adaptive solver INNERI in ODE package [6]. “ GS” present Gear’s
automatic code DIFSUB [4].

PROBLEMS: Five classes of stiff problems (note A,B,$C,D$ and $E$ class respectively,
except E4) adopted by Enright, etc. [2], were solved.

A class contains four linear stiff problems with real eigenvalues.
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$B$ class contains five linear stiff problems with non real eigenvalues.
$C$ class contains five non linear stiff problems coupling.
$D$ class contains five non linear stiff problems with real eigenvalues.
$E$ class contains four non linear stiff problems with non real eigenvalues.
Each problem was calculated using three kinds of error tolerance $(10^{-2},10^{-4},10^{-6})$

respectively, so all of test problems total seventy-two.
Above stiff problems appear in wide field of science and technology such as physics,

chemistry, insulator physics, control theory, nuclear reactor theory, reactor kinetics, circuit
theory etc.

ERROR CONTROL: Relative error control
INITIAL STEPSIZE: The initial stepsize are given by the code automatically for “ AS,”

but reasonable initial stepsizes are predetermined for “ GS.”
STATISTICS: The following statistics were chosen to reflect cost.
$T$ : The total time required to solve a problem. It mainly reflects auxiliary calculation

times because all of the test problems are of snall size (the orders of differential equations
are smaller then ten and evaluation of functions and Jacobian are vary simple).

FN: The number of function evaluations
JN: The number of Jacobian evaluations
IN: The number of matrix inversions
SN: The number of integration steps

(2) COMPUTATION RESULT
It is listed in the following statistic table 4.

(3) Conclusion
(1) “AS” is overall dominant in comparison with “ GS” when calculations proceed with

low precision (error tolerance $10^{-2}$).
(2) “AS” is almost overall dominant in comparison with “ GS” for non linear stiff prob-

lems C,D and $E$ classes
(3) “ GS” failed for problems B5 and E5, but “AS” was successful.
(4) “ GS” is slightly better then “ AS,” when calculations proceed with middle precision

(error tolerance $10^{-4}$ ) for A class problems.
(5) The auxiliary calculation time of “AS” is great then “GS” due to judgment and

comparisons increase in code of AS, but it will be less important with increase of size of
problems to be solved

Table 1
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Table 2

Table 3
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