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Generalized Polygons and Extended Geometries

by Richard Weiss* (Tufts University)

Let $\triangle$ be an undirected graph. For each vertex $x$ of $\triangle$ , we will denote by $\triangle(x)$ the

set of vertices adjacent to $x$ . The girth of $\triangle$ is the minimal length of a circuit in $\Delta$ and

the diameter the maximum distance between two vertices of $\triangle$ . A generahzed polygon

is a bipartite graph with girth equal to twice the diameter. A generalized polygon of

diameter $n$ is also called a generalized n-gon or generalized triangle for $n=3$ , quadrangle

for $n=4$, etc. A generalized 2-gon is just a complete bipartite graph. Suppose $\triangle$ is any

connected bipartite graph and let $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$ be the two blocks of vertices; if we call the

elements of $B_{1}$ points and the elements of $\mathcal{B}_{2}$ lines and declare that a point lies on a line

whenever the corresponding vertices are adjacent in $\triangle$ , then the resulting geometry is a

projective plane if and only if $\triangle$ is a generalized triangle. A generalized n-gon $\Delta$ with
$|\triangle(u)|=2$ for every vertex $u$ is just the incidence graph (one vertex for each corner and

one vertex for each side) of an ordinary n-gon.

Let $\triangle$ be a generalized n-gon, let $\{x, y\}$ be an arbitrary edge of $\Delta$ and suppose

that $|\triangle(u)|\geq 3$ for both $u=x$ and $y$ . Then $|\triangle(u)|=|\triangle(v)|$ for any two vertices $u$ and
$v$ of $\triangle$ at even distance in $\triangle$ . The numbers $s=|\triangle(x)|-1$ and $t=|\triangle(y)|-1$ are called

the parameters of $\triangle$ .
There is a generalized n-gon $\triangle$ associated with each of the groups $G$ of Lie type

and Lie rank 2 (see [3]). This is a special case of the spherical building associated with

a group of Lie type having arbitrary finite rank. When $G$ is finite, we have the following

possibilities:

(i) $G=L_{3}(q),$ $n=3,$ $(s,t)=(q, q)$ ,

(ii) $G=PSp_{4}(q),$ $n=4,$ $(s, t)=(q, q)$ ,

(iii) $G=U_{4}(q),$ $n=4,$ $(s, t)=(q, q^{2})$ ,

(iv) $G=U_{5}(q),$ $n=4,$ $(s,t)=(q^{2}, q^{3})$ ,

(v) $G=G_{2}(q),$ $n=6,$ $(s,t)=(q, q)$ ,

(vi) $G=sD_{4}(q),$ $n=6,$ $(s, t)=(q, q^{3})$ and

(vii) $G=2F_{4}(q),$ $n=8,$ $(s, t)=(q, q^{2}),$ $q$ even.

In each case, the generalized n-gon $\triangle$ is Moufang with respect to $G$ . This means that
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$G\leq aut(\triangle)$ and that for each n-arc $(x_{0}, x_{1}, \ldots, x_{n})$ in $\Delta$ , the group $G_{x_{1}}^{[1]}\cap\cdots\cap G_{x_{n-1}}^{[1]}$ acts

transitively on $\triangle(x_{n})\backslash \{x_{n-1}\}$ , where $G_{u}^{[1]}$ denotes the largest subgroup of the stabilizer
$G_{u}$ of a vertex $u$ acting trivially on $\triangle(u)$ . In [12], Tits classified all the spherical

buildings of rank at least three. In [13] and [14] and several still unpublished papers

(see also [6] and [17]), Tits classified all the Moufang generalized polygons. In the finite

case, they are just the generalized polygons as in $(i)-(vii)$ above. Together, these results

provide a deep geometrical theory for the simple groups of Lie type.

With the classification of finite simple groups, much attention has been given to the

problem of extending the theory of buildings to a geometric theory which includes (and,

in some sense, “explains”) the sporadic simple groups. The pioneer in this direction

(along with Tits himself) is F. Buekenhout. A geometry $\Gamma=(B_{1}, \ldots, B_{r};*)$ in the

sense of Buekenhout (see, for instance, [1]) is an ordered sequence of $r$ pairwise disjoint

noilempty sets $\mathcal{B}_{i}$ together with a symmetric incidence relation $*on$ their union $B=$

$\mathcal{B}_{1}\cup\cdots\cup B_{r}$ such that if $F$ is any maximal set of pairwise incident elements (i.e. a

maximal flag) of $B$ , then $|F\cap B_{i}|=1$ for $i=1,2,$ $\ldots,$
$r$ . It is also assumed that the

graph $(B, *)$ is connected. The number $r$ is called the rank of $\Gamma$ . As observed above,

any connected bipartite graph (in particular, a generalized polygon) can be construed

as a geometry $(\mathcal{B}_{1}, B_{2} ; *)$ of rank 2; the two geometries $(\mathcal{B}_{1}, \mathcal{B}_{2}; *)$ and $(B_{2}, \mathcal{B}_{1} ; *)$ , called

duals, are not, in general, isomorphic. The example of a geometry to keep in mind

is the projective space associated with a vector space of dimension $r+1$ over $GF(q)$ ,

where $\mathcal{B}_{i}$ is the set of subspaces of dimension $i$ and $*is$ given by inclusion; this is

essentially the building associated with the group $L_{r+1}(q)$ . By analogy, for any geometry

$(B_{1}, \ldots , \mathcal{B}_{r};*)$ , we will in general call the elements of $\mathcal{B}_{1}$ points and the elements of $\mathcal{B}_{2}$

lines.

Let $F$ be a non-maximal flag of a geometry $\Gamma=(\mathcal{B}_{1}, \ldots, \mathcal{B}_{r};*)$ . The set

$J=\{i|B_{i}\cap F\neq\emptyset\}$

is called the type of $F$ . For each $m\not\in J$ , let $B_{m}^{F}=$ { $u\in \mathcal{B}_{m}|u*x$ for all $x\in F$ }.

The residue $\Gamma p$ is defined to be the rank $r-|J|$ subgeometry of $\Gamma$ on the the sets $B_{m}^{F}$ .
The geometry $\Gamma$ is called a diagram geometry if for any given type $J$ , the residue $\Gamma_{F}$

is independent, up to isomorphism, of the flag $F$ of type $J$ . In this case, we associate
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a diagram to $\Gamma$ with $r$ nodes, the links of which are labeled to indicate the structure

of the rank 2 residues of F. In particular, a link consisting of $n-2$ strokes (for $n\geq 2$ ,

including $n=2$) or a single stroke labeled $(n)$ indicates a generalized n-gon. With

this convention, the diagram of the projective space belonging to $L_{r+1}(q)$ is the Dynkin

diagram $A_{r}$ . In general, spherical buildings can be construed as diagram geometries

having as diagram the diagram of a finite Coxeter group (which is part of the actual

definition of a building); the corresponding group of Lie type acts flag-transitively on

this geometry (i.e. transitively on the set of ma.ximal flags). For rank greater than two,

the finite spherical buildings can be characterized as flag-transitive geometries having

such diagrams (see [11]). Subsequently, a complete classification of geometries with the

following two properties has been given by Timmesfeld, Stroth, Meixner and others:

(a) every rank 2 residue is the generalized polygon associated to a finite group of Lie

type and Lie rank 2 as in $(i)-(vii)$ above and

(b) there is a group $G\leq aut(\Gamma)$ acting flag-transitively on $\Gamma$ such that the stabilizer in
$G$ of a flag is finite;

see [8] for a summary of these results.

It was Buekenhout’s idea to consider geometries with an additional type of rank 2

residue called a circle geometry. A circle geometry is a geometry $(B_{1}, B_{2} ; *)$ of rank 2

such that $B_{1}$ is the vertex set of a complete graph, $B_{2}$ is the edge set of this graph and

$*is$ given by inclusion. The corresponding bipartite graph has girth 6 and the maximal

distance from an element of $B_{i}$ to any other vertex is three for $i=1$ but four for $=2$ ,

so this graph is not quite a generalized polygon. Note, too, that a circle geometry is a

geometry with only two points on a line. 1Ve use a link labeled $c$ to indicate a rank 2

residue isomorphic to a circle geometry.

Consider, for example, a geometry I’ $=(\mathcal{B}_{1}, B_{2}, B_{3} ; *)$ of rank 3 having diagram

$(*)$ $\underline{c(n)}$

fulfilling condition (b) above such that the residues $\Gamma_{P}$ for $P\in B_{1}$ (i.e. for points $P$ )

are isomorphic to the generalized n-gon $\Pi$ (construed as a rank 2 geometry in one of the

two dual ways) associated to a finite group of Lie type and Lie rank 2. It follows easily

that each element of $B_{2}$ (i.e. each line) is incident with exactly two points. Letting
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$\triangle$ be the collinearity graph on the set $B_{1}$ of points, we find that $B_{3}$ can be identified

with a certain set $C$ of cliques of the graph $\Delta$ ; for given $P\in B_{1}$ , the set $\triangle(P)$ and

the set of elements of $C$ containing $P$ can be identified with the set of points and the

set of lines of $\Pi$ . Thus, the problem of classifying these geometries is a kind of local

recognition problem in the sense of [4]. (Note, however, that the subgraph on $\Delta(P)$ of
$\triangle$ is not necessarily isomorphic to the collinearity graph on the points of $\Pi$ ; there could

very well be “extra” edges.) In the case $n=3$ , the subgraph on $\triangle(P)$ and hence $\triangle$

itself are both complete graphs; thus the classification of these geometries reduces to

the classification of one-point extensions of the groups $L_{3}(q)$ acting on the points of the

projective plane \ddagger I. This is a classical problem which leads, in the case $q=4$, to $M_{22}$ ,

one of the first sporadic groups discovered. The groups $M_{23}$ and $M_{24}$ arise as well if we

go on to consider geometries with diagrams of the form

$(**)$ $\underline{c}---\underline{cc(n)}$

with $n=3$ .
In [5], B. Fischer introduced the notion of a group generated by 3-transpositions.

A group $G$ is said to be generated by 3-transpositions if $G=(D\rangle$ for some conjugacy

class $D$ of involutions (i.e. elements of order two) such that for all $x,$ $y\in D$ , either

$[x, y]=1$ or $|xy|=3$ . The classic example is $G=S_{n}$ with $D$ the set of transpositions.

In the course of his investigations, which had an enormous influence on the course of

the classification of finite simple groups, Fischer discovered (and classified) the three

sporadic groups $Fi_{22},$ $Fi_{23}$ and $Fi_{24}$ . Let $\triangle$ be the graph on $D$ where two elements are

joined by an edge whenever they commute. In the case $G=Fi_{22}$ , let $B_{1}=D$ , let $B_{2}$ be

the edge set of $\triangle$ and let $B_{4}$ be the set of maximal cliques in $\triangle$ . There is a unique family

$B_{3}$ of cliques $C$ of $\triangle$ maximal with the property that if $x\in D$ commutes with at least

three elements of $C$ , then it commutes with all the elements of C. (We have $|C|=6$ for

$C\in B_{3}$ and $|C|=22$ for $C\in B_{4}.$ ) $If*is$ given by inclusion, then $\Gamma=(\mathcal{B}_{1}, \ldots, \mathcal{B}_{4};*)$

forms a geometry with diagram.

$=c$
on which $G$ acts flag-transitively; the residue $\Gamma_{P}$ of a point $P\in \mathcal{B}_{1}$ is the building

associated with the unitary group $U_{6}(2)$ . (The stabilizer of an element $C$ of $B_{4}$ induces
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$M_{22}$ on $C$ , which explains Fischer’s original name for this group, $M(22).)$ In a similar
way, the groups $Fi_{23}$ and $Fi_{24}$ can be construed as flag-transitive automorphism groups

of geometries with diagrams
$\mapsto^{c}$c

and $arrow^{ccc}$
I believe that the whole theory of diagram geometries grew out of efforts to unite the

geometrical setup discovered by Fischer with Tits’ theory of buildings.

In [2], Buekenhout and Hubaut were in fact able to classify the diagram geometry

associated with $Fi_{22}$ (that is, with no reference to 3-transpositions) as a special case

of what they called locally polar spaces. (Their classification of the $Fi_{22}$-geometry

was more recently extended to a classification of the $Fi_{m}$ -geometries for $m=23$ and

$m=24$ by Meixner; see also [16].) This work included a classification of $aU$ extended

generalized quadrangles (i.e. geometries of rank 3 with diagram $(*)$ above and $n=4$)

fulfilling property (b) above such that the point residues are generalized quadrangles as

in $(ii)-(iv)$ above. This turns out to be a particularly rich class of geometries. In the

the most interesting case, the point residues $\Gamma_{P}$ are $U_{4}(3)$-generalized quadrangles with

four points on a line and $G$ is isomorphic to the sporadic group $McL$ . The case when
$\Gamma p$ is the dual of this quadrangle was overlooked in [2]. In [23] it was later shown that

there are exactly two such geometries, one with $G\cong Suz$ and the other with $G‘\cong HS$ .
The second of these geometries (discovered by Yoshiara) is particularly interesting for

two reasons. First of all, $Gp$ for $P\in B_{1}$ induces only $L_{3}(4).2^{2}$ on $\Gamma p$ , not a permutation

group containing all of $U_{4}(3)$ . Secondly, the subgraph on $\triangle(P)$ is not isomorphic to the

collineation graph on the the points of the $U_{4}(3)$-generalized quadrangle (the one with

10 points on a line); in other words, there are triangIes in $\triangle$ which do not lie on any

element of $B_{3}$ .
Meixner (see [9]) essentially classified all towers of such extensions, by which we

mean $\circ\sigma P^{ometries}$ fulfilling property (b) above having a diagram of the form $(**)$ above

with $n=4$.
It is natural to try next to classify generalized hexagons and octagons fulfilling

property (b) above and having point residues as in $(v)-(vii)$ above. Unfortunately, it is

known that the universal cover of such a geometry is infinite [10], so some additional

property is required in order to pick out the “interesting” finite quotients of these
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geometries. One idea involves what might be called the geometric girth $g^{*}$ of the

collineation graph $\triangle$ of such a geometry, which we define to be the minimal length

of a circuit in $\triangle$ no three points of which lie on an element of $\mathcal{B}_{3}$ . (Thus $g^{*}=3$ for

the HS-extended generalized quadrangle discussed in the previous paragraph.) In [15],

[20] and [21], the case $g^{*}=3$ is solved. There are only finitely many of these extended

generalized polygons; they include geometries with $G\cong J_{2},$ $Suz$ and $Ru$ . Suppose
$\Pi$ is a generalized n-gon with $|\Pi(u)|\geq 3$ for each vertex $u$ ; then the incidence graph
$\Pi_{0}$ of $\Pi$ (one vertex for each vertex of $\Pi$ and one for each edge of $\Pi$) is a generalized
$2n$-gon with $|\Pi_{0}(u)|=2$ for those vertices $u$ corresponding to edges of $\Pi$ . If we apply

this observation to the generalized n-gons in case (i) above with $q$ arbitrary, in case (ii)

with $q$ even or in case (v) with $q$ a power of three, we obtain flag-transitive generalized
$2n$-gons (i.e. there is a group acting transitively on the l-arcs of these $2n$-gons) which

can be construed as geometries of rank 2 with $q+1$ points on a line but only two lines

through each point. Extended generalized $2n$-gons with $g^{*}=3$ having these geometries

as point residues (as well as towers of such extensions) were classified in [21] and [22].

Again, there are only finitely many; they include geometries with $G\cong McL,$ $Co_{3},$ $M_{12}$

and He.

It is an open problem to extend this work to larger values of $g^{*}$ . The idea of

considering a condition like this is related to earlier work on s-transitive graphs (i.e.

graphs with a group acting transitively on the set of paths, or arcs, of length s) of small

girth; for a survey of this work, which includes a characterization of $J_{3}$ , see [19]. It is also

related to work of A. A. Ivanov and S. V. Shpectorov on diagram geometries involving

a rank 2 residue consisting of the vertices and the edges of the Petersen graph (as an

alternative to the c-geometries). In the most important part of these investigations, they

were led to the classification of graphs $\triangle$ with a group $G\leq aut(\triangle)$ acting transitively

$onthevertexsetof\triangle suchthatthestabilizerofavertexxisfiniteandinduceson\triangle(x)$

a permutation group equivalent to $L_{k}(2)$ for some $k\geq 3$ acting on the points of the

corresponding projective space, under the additional assumption that the girth of $\triangle$ is

five. This work yielded characterizations of flag-transitive geometries with $G\cong M_{22}$ ,

$M_{23},$ $Co_{2}$ and, most impressively, $J_{4}$ and the Baby-Monster. Related work of Ivanov

on geometries with a rank 2 residue isomorphic to the 3-fold cover of the $PSp_{4}(2)-$
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generalized quadrangle has resulted in an even more remarkable characterization of the

Monster. See [7] for a survey of these developments.
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