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Robinson-Schensted Correspondences for Differential Posets
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1 Introduction

The Robinson-Schensted (R-S) correspondence and its many variations lie at the combi-
natorial heart of many facts from representation theory and symmetric function theory.
They provide concrete bijective proofs of results that were often originally obtained in
much more algebraic or abstract ways. Most of these results can be viewed as counting
Hasse walks in certain partially ordered sets. Stanley was able to derive many enumera-
tive results on the class of differential posets (of which Young’s lattice is a member) using
a highly algebraic approach which converted certain enumerative problems to (solvable)
partial differential equations. Fomin (independently) defined essentially the same class of
graphs an-&-constructed a generalization of the R-S correspondence to differential posets.
In this note we begin to show how Fomin’s construction can be used to unify many of
the R-S variants, including Knuth’s generalization to semi-standard tableaux, the skew
algorithms of Sagan and Stanley, the oscillating algorithms of Sundaram, and the os-
cillating Knuth algorithm of Gessel. It allows one to view all these variants as natural
constructions. Full details and many more applications are given $in_{/}^{-}the$ author’s thesis
[Rob].

2 Background

We assume some familiarity with the notion of a partition of an integer; for precise
definitions and notation we refer the reader to [Mac]. We adopt the English convention of
writing our Young diagrams as left justified arrays with the length of the rows (weakly)

decreasing from top to bottom. The example below should help make things clear.
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Definition 2.1 We may define a partial order $\subseteq$ on partitions by $\mu\subseteq\lambda$ if and only if
the Young diagrams $D_{\mu}\subseteq D_{\lambda}$ . Equivalently,

$\mu\subset\lambda\Leftrightarrow\mu_{i}\leq\lambda_{i}$ V $i\geq 1$ .

This partial order is easily seen to be a distributive lattice, $Y$ , which we will call Young’s
Lattice and which will play a significant role in what follows. Our point of view on
tableaux is that they represent chains in Young’s lattice, as in the following example.

Definition 2.2 Let $\lambda/\mu$ be a skew shape. A tableau $T$ of shape $\lambda/\mu$ is an order
preserving map

$T$ : $D_{\lambda/\mu}\mapsto Z^{+}$

i.e., an assignment of positive integers to the cells of A which is weakly increasing along
the columns (from left to right) and down the rows. We define the weight or type of a
tableau to be the sequence

$w(T)=(n_{1}, n_{2}, n_{3}, \ldots)$

where $n_{i}$ is the number of cells of $\lambda/\mu$ assigned to the integer $i$ by $T$ . Equivalently, we
may consider $T$ to be a multichain in Young’s lattice, i.e., a weakly increasing sequence
of shapes

$\mu=\lambda^{0}\subseteq\lambda^{1}\subseteq\ldots\subseteq\lambda^{k}=\lambda$

by simply filling each skew shape $\lambda^{i}/\lambda^{i-1}$ with the integer $i$ . We write $sh(T)=\lambda/\mu$ .

Example 2.3 The tableaux

$T=$

corresponds to the sequence of shapes

$\square$
$\subset$ $F$ $\subset$ $\subset$ $\subset$

We shall be particularly interested in some special kinds of tableaux.

Definition 2.4 A tableaux $T$ is said to be column-strict or semi-standard or gen-
eralized if it is strictly increasing along the columns. When the tableaux is viewed as a
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multichain, this says exactly that each $\lambda^{i}/\lambda^{i-1}$ is a horizontal strip. $T$ is called standard
if it has type $(1, 1, \ldots, 1)$ , i.e., if all the entries are distinct (so we may take them to be the
numbers 1, 2, . . . , $|T|$ ). When viewed as a multichain, this says exactly that each $\lambda^{i}/\lambda^{i-1}$

is a single cell; hence, it represents a saturated chain in Y. The sets of generalized and
standard tableaux will be denoted $ST(\lambda/\mu)$ and $GT(\lambda/\mu)$ , respectively.

Example 2.5 The standard tableau

corresponds to the saturated chain

$F$

We will be interested in counting the number of chains in Young’s lattice which satisfy
certain conditions. Hence, we define

Definition 2.6 $f^{\lambda/\mu}$ :=#{standard tableaux $T$ of shape $\lambda/\mu$ }

The basic Robinson-Schensted algorithm is a bijection between permutations and pairs
of standard tableaux of the same shape. More precisely, we have the following

Theorem 2.7 Fix an integer $n$ . There is a bijection between $per\acute{m}utations$ in $S_{n}$ and
pairs of standard Young tableaux $(P, Q)$ of the same shape $\lambda$ , where $\lambda$ runs over all
partitions of $n$ :

$\pi$
$\underline{R-S}$

$(P, Q)$

The usual approach to the R-S algorithin is through repeated use of a process called
insertion, which the interested reader may find discussed in many of the references, espe-
cially [Knu] and [Sag].

The Robinson-Schensted correspondence has many important properties which are not
immediately obvious from the above description. Some of these become much easier to

prove using Fomin’s approach. For example, Sch\"utzenberger’s well-known theorem that

interchanging the $P$ and $Q$ tableaux is equivalent to taking the inverse of the permutation.
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3 Growths

In any graded poset, if $y$ covers $x$ (i.e., $x\leq y$ and $\rho(y)=\rho(x)+1$ ) we will sometimes
write $x<y’$ .

Definition 3.1 Let $P$ and $Q$ be graded posets. A map $g$ : $P\mapsto Q$ is called a growth if it
preserves the relation $\leq:$

$x\leq yarrow g(x)\leq g(y)$

Not every order preserving map is a growth, and not every growth is one-to-one.

Example 3.2 (1) The rank function $\rho:P\mapsto Z$ is a growth.

(2) A multichain in $P$ is a growth from $Z$ to $P$ .

(3) The composition of two growths is a growth.

We will be concerned primarily with growths on skew diagrams.

Definition 3.3 If $S$ is a skew diagram (i.e., a finite convex subset of $Z^{2}$ ), then a growth
on $S$ is called two-dimensional. For a skew diagram $S$ we define the upper and lower
boundaries of $S$ by

$\partial^{+}(S)=\{(x, y)\in S : (x+1, y+1)\not\in S\}$

$\partial^{-}(S)=\{(x,y)\in S : (x-1, y-1)\not\in S\}$

There are two important caveats associated with this seemingly innocuous definition.
First, although a skew diagram is the same thing as a skew shape, we will view our skew
diagrams with the usual coordinate geometry orientation rather than the matrix one, i.e.,
upside down. Second, we view the preimage of the growth as the vertices of the diagram,
rather than the cells. We will reserve the cells for other (related) uses. Since we will be
using skew shapes and skew diagrams in completely different ways, no confusion should
result.

Example 3.4 In the skew diagram below, the growth $g:S\mapsto Z$ is given by

$g(x)=\#cells$ marked with an X which are below and to the left of $v$ .
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The image of $g$ on a vertex $v$ of $S$ is given just slightly below and to the left of $v$ .

The above example reflects a general class of two-dimensional growths; the cells marked
with an X cannot share a row or column of $S$ since then we could find a pair of adjacent
vertices whose $g$ values differed by at least two. A prototypical example is

where the right edge of the diagram is disallowed in the definition of “growth”.

Definition 3.5 A generalized permutation is a finite set of cells in the skew diagram $S$

which do not share any row or column. Other commonly used terms include nontaking
rook placement or permutation with restricted positions.

We can turn any generalized permutation $\sigma$ on the cells of a skew diagram $S$ into a
poset in a natural way as follows. If the coordinates of the cells are $gi_{V}’en$ by $(i_{1},j_{1})$ and
$(i_{2},j_{2})$ , then

$(i_{1},j_{1})\leq(i_{2},j_{2})\Leftrightarrow i_{1}\leq i_{2}$ and $j_{1}\leq j_{2}$ .

In other words, a cell is bigger if it is above and to the right of another in $S$ . Next, we turn
a poset into a partition via the following theorem, due independently to C. Greene [Grel]

and Fomin [Foml].

Theorem 3.6 Let $P$ be any finite poset. For $k$ a positive integer, set $c_{k}(P)$ (resp. $a_{k}(P)$ )

to be the size of the largest number of elements which is the union of $k$ chains (resp.

antichains) of $P$ . Now, let $\lambda_{k}(P)=c_{k}(P)-c_{k-1}(P)$ and $\mu_{k}(P)=a_{k}(P)-a_{k-1}(P)$ . Then
$\lambda(P)=(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots)$ and $\mu=(\mu_{1}, \mu_{2}, \mu_{3}, \ldots)$ are partitions, and $\mu$ is the conjugate of $\lambda$ .

The interested reader may find a proof of this in either of the references cited above. Two

examples of posets with eight elements and their corresponding partitions are given in

Figure 1.
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$o_{\searrow^{o_{/^{O}}^{\nearrow\rangle_{\backslash _{O}/^{O}}}}}^{/\backslash }$

431 422

Figure 1: Two posets and their partitions

Definition 3.7 If $\sigma$ is a generalized permutation of the cells of a skew diagram $S$ , then
we let $\lambda(\sigma)$ be the partition given by the above theorem applied to $\sigma$ (regarded as a poset
in the way described above).

We can extend the above example in a natural way to obtain a two-dimensional growth
on $Sq_{n}$ .

Example 3.8 In the above example we take define a growth $g$ as follows. For each vertex
of $v$ of $S$ , let $C(v)$ denote the set of cells of $S$ below and to the left of $v$ . If we restrict out
attention to those cells which are in $\pi$ and take the poset corresponding to this generalized
permutation, then we get a map

$v\mapsto\lambda(C(v)\cap\pi)$

which is a two dimensional growth $g:Sarrow Y$ :
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$g_{01}$
$g_{11}$

$g_{O0}$ $g_{10}$

Figure 2: Close up of the growth around one cell

What is particularly interesting about this growth is to consider its restriction to the
upper boundary $\partial^{+}(Sq_{n})$ . The top edge $T$ and the right edge $R$ can each be interpreted
as a saturated chain in $Y$ from $\emptyset$ to (3, 2, 1, 1), i.e., as a standard tableau. We have

Thi$s$ is the same pair of tableaux we would have obtained by applying the usual insertion
algorithm to $\pi$ .

4 Differential Posets

So far we have had no indication that the preceding map might be a bijection, just that
we can obtain a growth on the upper boundary (equivalently a pair of Young tableaux)
from a permutation. But now we notice that if we know the value of the growth at all
but the lower left vertex, then it is determined by the value at the other three vertices.
Precisely, $g_{00}$ is determined by $g_{11},$ $g_{10}$ , and $g_{01}$ ; see Figure 2. For Young’s lattice this
works as follows. If $g_{01}\neq g_{10}$ , then because Young’s lattice is modular, we must have
$g_{00}=g_{01}\cap g_{10}$ (and also $g_{11}=g_{01}\cup g_{10}$ ). Otherwise, if $g_{11}\backslash g_{01}$ is a box in row $i$ , then set
$g_{00}$ so that $g_{01}\backslash g_{00}$ is a box in row $i-1$ . When $i=1$ , we let $g_{01}=g_{00}$ and we mark an X
in the cell defined by the four vertices.

In fact, the above way of viewing the usual Robinson-Schensted correspondence, leads
one to wonder what properties of Young’s lattice were essential. It turns out that the
following axioms on a partially ordered set allow one to define nice analogues of R-S.
In Fomin’s original paper ”differential posets” are called $Y$ graphs”, but here we follow
Stanley’s terminology.

In general if $P$ is any graded poset, then we let $\rho$ denote its rank function, i.e., if
$x\in P$ then $p(x)$ is the length $l$ of the longest chain $x_{0}<x_{1}<\cdots<x_{l}=x$ in $P$ with top
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element $x$ . Write
$P_{i}=\{x\in P : p(x)=i\}$

So $P=P_{0}\cup P_{1}UP_{2}U\cdots$ (disjoint union).

Definition 4.1 Let $r$ be a positive integer. A poset $P$ is called r-differential if it $s$atisfies
the following three conditions:

(D1) $P$ is locally finite, graded, and has a $\hat{0}$ element.

(D2) If $x\neq y$ in $P$ and there are exactly $k$ elements of $P$ which are covered by both $x$

and $y$ , then there are exactly $k$ elements of $P$ which cover both $x$ and $y$ .

(D3) If $x\in P$ and $x$ covers exactly $k$ elements of $P$ , then $x$ is covered by exactly $k+r$

elements of $P$ .

When $r=1$ , we will sometimes omit the $r$ in r-differential.

Property (D2) is essentially a modularity condition. For a lattice $L$ satisfying (D1),
condition (D2) is equivalent to $L$ being modular. Young’s lattice is the prototypical
example, but there is also a clas$s$ of Fibonacci Poset $s$ , and a few less interesting examples.
But much of the theory can also be carried out for so called “r-differential posets”, where
the value of $r$ is allowed to vary at each level of the poset. This allows one to expand
considerably the class of exmaples. See [Rob] and the references for more information.

It turns out that differential posets have exactly the right structure to extend growths
nicely from either boundary of a skew diagram. In order to do this we first look at what
can happen locally as we attempt to extend a growth up or down.

Definition 4.2 A two-dimensional growth $g:S\mapsto Z$ is called semimodular if the values
of $g$ on the vertices of any cell, say $g_{00},$ $g_{01},$ $g_{10},$ $g_{11}$ (see Figure 2) satisfy the following
inequality:

$goo+g_{11}\geq g_{01}+g_{10}$ (1)

When the inequality is strict, we call the cell in question an atom of $g$ .

Let $g:Sarrow P$ be a growth in any differential poset $P$ . Consider the value of $g$ at the
four vertices of a cell as in Figure 2. If we attempt to compute the value of $g_{00}$ given the
other three vertices, we have several cases:

Case 1: $|g_{01}|<|g_{10}|$ . This forces $g_{00}=g_{01}$ and $g_{11}=g_{10}$ by the definition of growth.

Case 2: $|g_{10}|<|g_{01}|$ . This forces $g_{00}=g_{10}$ and $g_{11}=g_{01}$ as in case 1.
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Case 3: $|g_{01}|=|g_{10}|$ but $g_{01}\neq g_{10}$ . By modularity (D2) of $P,$ $g_{11}$ determines $g_{00}$ and
vice-versa.

Case 4: $g_{01}=g_{10}$ $:=x\in P$ . This is the interesting case. Set $C^{+}(x)=\{y\in P:x<y\}$

and $C^{-}(x)=\{y\in P:y<x\}$ . By axiom (D3) $C^{+}(x)$ has one more element than
$C^{-}(x)$ , so there is not a bijection between these sets. But there almost is. In fact, we
can construct a bijection $\Phi_{x}$ between $C^{+}(x)$ and $C^{-}(x)\cup\{x\}$ . Now set $\Phi_{x}(x)=x$ .
If we are extending down from $g_{11}$ we set $g_{00}=\Phi_{x}(g_{11})$ . This is well-defined since
$g_{11}$ must be something which covers or equals $x$ . In fact, the growth will be semi-
modular at this cell; for in the generic case, $|g_{00}|+1=|g_{01}|=|g_{11}|-1$ . If $g_{11}=x$ ,

then all four vertices will have the same value. Finally, if $x<g_{11}$ and $\Phi_{x}(g_{11})=x$ ,
then we have

$|g_{00}|+|g_{11}|>|g_{01}|+|g_{10}|$

and the cell is an atom of the semimodular growth $|g|$ .

To extend a growth upwards we will examine the same four cases. The first three are
the same. In case 4 we find that our correspondence $\Phi$ gives a well-defined answer as long
as $g_{00}\neq x$ . If $g_{00}=x$ , then $\Phi_{x}^{-1}(g_{00})$ could be either $x$ or a certain element of $C^{+}(x)$ .
To decide between these we need an extra piece of information, which is whether or not
the cell in question contains an X, i.e., whether it should be an atom of the semimodular
growth $|g|$ .

Definition 4.3 Let $P$ be a differential poset. At each $x\in P$ define a correspondence $\Phi$

as in case 4 above. We call the collection $\Phi$ $:=\{\Phi_{x} : x\in P\}$ an R-correspondence. A
growth $g:Sarrow P$ is said to be compatible with the R-correspondence if at each cell such
that $g_{01}=g_{10}$ , we have $g_{00}=\Phi_{901}(g_{11})$ . We call such a $g$ a $\Phi$ -growth.

An R-correspondence is defined in a purely local way, and a differential poset will have
many different ones.

The main result of Fomin is proved using the algorithmic method above:

Theorem 4.4 (Fomin) Let $P$ be a differential poset and $S$ any skew diagram. Fix an

R-correspondence $\Phi$ on $S$ . We have a bijection between growths $g^{+}$ : $\partial^{+}(S)\mapsto P$ and

pairs $(g^{-}, \sigma)$ where $g^{-}$ : $\partial^{-}(S)\mapsto P$ , and $\sigma$ is a generalized permutation on $S$ . Each of

these is also associated with a uniquely defined two-dimensional $\Phi$ -growth $g$ : $S\mapsto P$ ,

whose restriction to $\partial^{+}(S)$ and $\partial^{-}(S)$ is $g^{+}$ and $g^{-}$ , respectively, and whose modulus $|g|$

is the semimodular growth whose atoms are $\sigma$ .
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5 Skew tableaux

Definition 5.1 A biword, $\pi$ , is a sequence of vertical pairs of positive integers

$i_{1}$ $i_{2}$ $i_{k}$

$\pi=j_{1}$ $j_{2}$ $j_{k}$

with $i_{1}\leq i_{2}\leq\ldots\leq i_{k}$ . We denote the top and bottom lines of $\pi$ by $\hat{\pi}=i_{1}i_{2}\ldots i_{k}$ and
$\check{\pi}=j_{1}j_{2}\ldots j_{k}$ . Partial permutations of $n$ have no entries greater than $n$ , and within
each line the entries are distinct. A tableaux of shape $\lambda/\mu$ is called partial if its elements
are distinct (but not necessarily the number$s1,2,$ $\ldots,$

$n$ ). Let $PT(\lambda/\mu)$ denote the set of
all partial tableaux of shape $\lambda/\mu$ .

The basic result of [SS] follows. In the following, $\cup$ denotes “disjoint union”.

Theorem 5.2 Let $n$ be a fixed positive integer and $\alpha$ a fixed partition (not necessarily
of $n$ ). Then there is a map

$(\pi, T, U)(P, Q)$

defined below which is a bijection between $\pi\in PS_{n}$ with $T,$ $U\in PT(\alpha/\mu)$ such that
$\check{\pi}\cup T=\hat{\pi}\cup U=\{1,2, \ldots, n\}$ , on the one hand, and $P,$ $Q\in ST(\lambda/\alpha)$ such that $\lambda/\alpha\vdash n$ ,
on the other.

Example 5.3 Thi $s$ is the same example Sagan and Stanley give in their paper [SS, p. 165],
1 2 4but we reinterpret it using Fomin’s approach. Let $n=5,$ $\alpha=(2,2,1),$ $\pi=$
4 2 3

and

Then we get

and

In the picture below, $P$ is the right edge $O$ the upper edge, $T$ the left edge, and $U$ the
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lower edge. The partial permutation is represented by $X’ s$ , as usual.

Proof: All the hard work has already been done, and this is just a simple application of
Theorem 4.4. The skew tableaux $P$ and $Q$ represent the growth on the upper boundary,
while $T$ and $U$ represent the lower boundary and $\pi$ represent$s$ the atoms of the semi-
modular growth $|g|$ . The condition that $\check{\pi}\cup T=\hat{\pi}\cup U=\{1,2, \ldots, n\}$ insures that the
tableaux on the upper boundary are standard, and vice-versa. $\square$

The enumerative corollary of the above is

Corollary 5.4 Let $n$ be a fixed positive integer and $\alpha$ be a fixed partition. Then

$\sum_{\lambda/\alpha\vdash n}f_{\lambda/\alpha}^{2}=\sum_{k=0}^{n}(\begin{array}{l}nk\end{array})k!\sum_{\alpha/\mu\vdash n-k}f_{\alpha/\mu}^{2}$ .

These results reduce to the original Robinson-Schensted results when $\alpha=\emptyset$ . It turns
out that this algorithm also enjoys the property that inverting the permutation (and

interchanging $T$ and U) is equivalent to interchanging $P$ and $Q$ . The original proof was
somewhat lengthy, but from our point of view it’s almost $obviousarrow ust$ transpose the
entire diagram.
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