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On Tree Automata and Partitioning Automata
東京女子大学 (文理) 守屋悦朗 (Etsuro MORIYA)

Abstract

木オートマトンが受理する labeled tree の集合は文脈自由文法の導出木によって特徴
付けられることはよく知られている [Thatcher,5] 。木オートマトンは string 上で動作す
る有限オートマトンを labeled tree の上に拡張したものであるから、プッシュダウンオー
トマトンのそのような拡張も当然考えられる。 この short note においては labeled tree
上で動作するプッシュダウン木オートマトンを導入し、プッシュダウン木オートマトンが
受理する labeled tree の集合はインデックス文法の導出木によって特徴づけられることを
示す $\circ$ 一方、ある種の並列計算のモデルとして導入された partitioning automaton[3] は
string 上で動作するオートマトンであるが、受理される input string はその compuation
tree 上を depth-first にたどったときのラベルの $P^{1J}$になる。 このことを使って、 インデッ
クス言語のもうひとっの特徴付けを得ることができる。

1 Introduction

A tree automaton is a finite automaton operating on labeled rooted trees. It is well-
known [5] that the sets of labeled trees recognizable by tree automata can be characterized
in terms of derivation trees for context-free grammars. In this note a generalization of tree
automaton, tree automaton with pushdown memory, is introduced. It is shown that each of
the sets of labeled trees recognizable by the automata is isomorphic to the set of derivation
trees for some indexed grammar such that there is a homomorphism which renames the
labels of the tree, and vice verse. It follows that an indexed language is a homomorphic
image of the set of frontiers of labeled trees recognizable by some pushdown tree automaton,
and conversely.

Partitioning automata were first introduced in [3] as a modified version of alternating au-
tomata, and subsequently considered by the author [4] to characterize classes of context-free
grammars with memory. The set of strings accepted by a partitioning automaton is essen-
tially the set of strings of labels associated with the depth-first traverses on the computation
trees of the automaton on input strings. Using the partitioning pushdown automaton, it is
shown that the set of strings of labels associated with the depth-first traverses on the labeled
trees recognizable by a pushdown tree automaton is an indexed language, and vice verse.

2 Tree automata

Let $\Sigma$ be an alphabet. A $\Sigma$-tree is a rooted ordered tree whose nodes each is labeled with
an element of $\Sigma\cup\{\lambda\}$ . Note that a node can be labeled with $\lambda$ , the empty string, which
means that nothing is labeled at the node. Figure 1 shows an $\{a, b\}$-tree. For a tree $t,$ $fr(t)$ ,
the frontier of $t$ , denotes the string of symbols labeling the leaves from left to right. For
example, the frontier of the tree in Figure 1 is bbaab. For a set $T$ of trees, $fr(T)$ is the set
$\{fr(t)|t\in T\}$ .
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Figure 1: $\{a, b\}$-tree.

Now we define tree automaton with a worktape as a generalization of ordinary tree
automaton. We use the ‘root-to-frontier’ model instead of the ‘frontier-to-root’ model [5].
A tree automaton with a Turing worktape is a sextuple $M=(K, \Sigma, \Gamma, \delta, s_{0}, F)$ , where $K$ is
the finite set of states, $\Sigma$ the finite set of labels for trees, $\Gamma$ the finite set of worktape symbols
including the blank $B,$ $s_{0}\in K$ the initial state, $F\subset K$ the set of accepting states, and 6
the transition function mapping the elements of $K\cross(\Sigma\cup\{\lambda\})\cross\Gamma$ into the finite subsets
of $\bigcup_{n}(K\cross\Gamma\cross\{-1,1\})^{n}$ , where the superscript $n$ means Cartesian product. An $ID$ for $M$

is an element of $K\cross\Gamma^{*}\{\lceil\}\Gamma^{*}$ , where $\lceil$ , the read/write head on the worktape, is a special
symbol not in $\Gamma$ .

Given a labeled tree as an input, the automaton starts the computation to assign IDs
to all nodes of the tree. To begin with, $M$ assigns the initial $ID(s_{0}, \lceil B)$ to the root. Then
generally, at a node which has exactly $n$ children, is assigned ID $(p, \alpha\lceil Z\beta)$ and has label
$a$ , if $\delta(p, a, Z)$ contains $(q_{1}, Y_{1}, d_{1}; \ldots ; q_{n}, Y_{n}, d_{n})$ , then $M$ assigns IDs $(q_{1}, \gamma_{1}),$

$\ldots,$
$(q_{n}, \gamma_{n})$ to

the children of the node from left to right, where $\gamma_{i}(1\leq i\leq n)$ is obtained from $\alpha\lceil Z\beta$ by
replacing $Z$ with $Y_{i}$ and moving the worktape head $\lceil$ one symbol right or left according as
$d_{i}$ is 1 or-l. At a leaf, $M$ computes IDs for the “hidden (unseen)” children of the leaf (the
number of children of a leaf is arbitrary.) The input tree is accepted or recognizable by $M$

if all IDs assigned to the hidden children are accepting, i.e., they all have accepting states.
The set of trees accepted (recognizable) by $M$ is denoted by $L(M)$ .

The tree obtained from a tree accepted by $M$ by relabeling each node with a pair of the
$\Sigma$-symbol (which originally labels the node of the input tree) and an ID (which is assigned
to the node according to the assignment procedure described above) is called a computation
tree. The set of computation trees of $M$ is denoted by $C(M)$ .

We can consider tree automata with restricted types of worktape such as tree automaton
with a pushdown store (TPDA), tree automaton with counter(s), or tree automaton with finite
memory $(TFA)$ . A TFA is nothing other than an ordinary root-to-frontier tree automaton.
According to the conventional formulation for pushdown automata [2], however, in what
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Figure 2: Tree not recognizable by any TFA.

follows we specify a TPDA as a 7-tuple $M=(K, \Sigma, \Gamma, \delta, s_{0}, Z_{0}, F)$ , where $Z_{0}$ is a distinguished
symbol of $\Gamma$ to denote the ‘bottom of stack’, and 6 is a mapping from $K\cross(\Sigma\cup\{\lambda\})$ into
the finite subsets of $\bigcup_{n}(K\cross\Gamma^{*})^{n}$ . An ID for $M$ is an element of $K\cross\Gamma^{*}$ and the initial ID
is $(s_{0}, Z_{0})$ , where for an ID $(p, \gamma)$ , the leftmost symbol of $\gamma$ serves as the topmost symbol of
the stack. Unless stated otherwise, all notations used in this paper follow [2].

Example 1 Let $M=(\{p, q, r, f\},\{a\},\{a, z\},\delta, p, z,\{f\})$ be a TPDA, where $\delta(p, a, z)=\{(q,$ $az$ ;
$r,$ $z$ )}

$,$

$\delta(q, a, a)=\{(q, aa;r, a), (r, a)\},$ $\delta(r, b, a)=\{(r, \lambda)\}$ , and $\delta(r, b, z)=\{(f, \lambda)\}$ . Then $M$ ac-
cepts all and only those trees as shown in Figure 2. Figure 3 represents the unique compu-
tation tree for the tree in Figure 2, where the “hidden” children of leaves are shown with
broken-line edges. $L(M)$ is not recognizable by any TFA, as we will see later.

Tree automata we defined so far are nondeterministic in the sense that the transition
function permits more than one possible next moves at each step of computation. As usual
we can define deterministic tree automata. For example, TPDA $M=(K, \Sigma, \Gamma, \delta, s_{0}, Z_{0}, F)$

is deterministic if
1) whenever $\delta(p, a, Z)\neq\emptyset$ for some $a$ in $\Sigma$ , then $\delta(p, \lambda, Z)=\emptyset$ , and
2) for each $p$ in $K,$ $a$ in $\Sigma\cup\{\lambda\}$ and $Z$ in $\Gamma,$ $\delta(p, a, Z)$ contains at most one element.
Let $\mathcal{L}_{X}$ denote the class of languages/sets of trees accepted by automata of type $X$ which
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Figure 3: Computation tree.

operate on strings/trees. Consider unary labeled trees only. Then tree automata on those
trees are essentially ordinary automata on strings. Thus we have

Theorem 2.1 For classes $X$ and $Y$ of automata on strings, let $X_{tree}$ and $Y_{tree}$ denote classes
of corresponding tree automata, respectively. If $\mathcal{L}_{X}\subsetneq \mathcal{L}_{Y}$ then $\mathcal{L}_{X_{tree}}\subsetneq \mathcal{L}_{Y_{\ell ree}}$ . In particular,
$\mathcal{L}_{TFA\subsetneq c_{TPDA}}$ .

A path from the root to a leaf in a labeled n-ary $\Sigma$-tree can be represented by a string
over the alphabet $\Sigma^{(n)}=(\Sigma\cup\{\lambda\})\cross\{0,1, \ldots, n\}$ . For example, the path to the fourth leaf
(from the left) of the tree in Figure 1 is represented by $(a, 1)(a, 2)(\lambda, 1)(b, 3)(a, 0)$ . We call
this string a path string. For a set of trees $T$ , let path$(T)$ be the set of path strings for trees
in $T$ . Conversely, for a subset $L$ of $(\Sigma^{(n)})^{*}$ , let path ’ $(L)$ be the set of $\Sigma$-trees with the
property that all path strings are in $L$ . Note that $path^{-1}(path(T))$ is not necessarily $T$ .

Magidor and Moran [5] showed that a set $U$ of n-ary $\Sigma$-trees is recognizable by a deter-
ministic TFA if and only if $U=path^{-1}(R)$ for a regular set $R$ over $\Sigma^{(n)}$ . To have a TPDA
counterpart of this result, we need the following modification of the definition of path strings.
Given an n-ary $\Sigma$-tree, consider a path string $(a_{1}, d_{1})\cdots(a_{l}, d_{l})(a_{l+1},0)$ as was defined above.
Instead of this single string, we associate with the path the set of strings
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$(a_{1}, d_{1})\cdots(a_{l}, d_{l})(a_{l+1}, i),$ $1\leq i\leq n$ .

Each of these strings is now called a path string. The following theorem holds under this
definition of path string. A tree is n-regular if each of its interior nodes has exactly $n$ children.

Theorem 2.2 A set $U$ of n-regular $\Sigma$ -trees is recognizable by a deterministic TPDA if and
only if $U=path^{-1}(L)$ for a deterministic context-free language $L$ over $\Sigma^{(n)}$ .

A TPDA $M$ is obedient if it has the following property: For any tree $t$ , if all hidden
children of a leaf, say $\pi$ , can be assigned accepting IDs for $M$ , then there is a supertree of $t$

(i.e., a tree which is obtained from $t$ by extending some leaf nodes, except for $\pi$ , into trees)
which is accepted by $M$ .

Theorem 2.3 For each $TFAM,$ $path(L(M))$ is a regular set. For each obedient TPDA $M_{f}$

$path(L(M))$ is a context-free language.

Consider the TPDA $M$ in Example 1. Since path$(L(M))=\{(a, 1)^{n-1}(a, 2)(b, 1)^{n-1}(b, 0)|$

$n\geq 1\}$ is not a regular set, $L(M)$ is not recognizable by any TFA.

3 Indexed grammars

For our convenience, we slightly modify the definition of indexed grammar and its deriva-
tion trees. An indexed grammar is a quintuple $G=(N, \Gamma, \Sigma, P, S, z_{0})$ , where $N$ is the finite
set of nonterminlas, $\Gamma$ the finite set of stack symbols such that $(N\cup\Sigma)\cap\Gamma=\emptyset,$ $\Sigma$ the finite
set of terminals such that $N\cap\Sigma=\emptyset,$ $S\subset N$ the set of start symbols, $z_{0}$ a distinguished
symbol of $\Gamma$ to denote the ‘bottom of stack’, and $P$ the finite set of productions of the form

$(*)$ A $farrow B_{1}\gamma_{1}B_{2}\gamma_{2}\cdots B_{n}\gamma_{n}$ ,

where $n\geq 0,$ $A$ is in $N,$ $f$ in $\Gamma,$ $B_{i}(1\leq i\leq n)$ in $N\cup\Sigma,$
$\gamma_{i}$ in I” if $B_{i}$ is in $N$ , and $\gamma_{i}=\lambda$

if $B_{i}$ is in $\Sigma$ .
Derivation trees for $G$ , which are rooted trees whose nodes are labeled with elements of

$(N\cup\Sigma\cup\{\lambda\})\cross\Gamma^{*}$ , are defined recursively as follows.
i) The tree with single node whose label is $(s, z_{0})$ is a derivation tree, where $s$ is an

element of $S$ .
ii) If $t$ is a derivation tree such that $t$ has a leaf $\pi$ whose label is $(A, f\gamma)$ , and if a

production of the form $(^{*})$ , where $n\geq 1$ , is in $P$ , then the tree $t’$ obtained from $t$ by adding
nodes $\pi_{1},$ $\pi_{2},$

$\ldots,$
$\pi_{n}$ in this order from left to right as the children of $\pi$ , is a derivation tree,

where $\prime r_{i}(1\leq i\leq n)$ is labeled with $(B_{i}, \gamma_{i}\gamma)$ .
iii) If $t$ is a derivation tree, one of whose leaves, say $\pi$ , has label $(A, f\gamma)$ , and if $Afarrow\lambda$

is a production in $P$ , then the tree obtained from $t$ by adding a node with label $(\lambda, \gamma)$ , as
the unique child of $\pi$ , is a derivation tree.
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An acceptable derivation tree is a derivation tree whose leaves each is labeled with an
element of $(\Sigma\cup\{\lambda\})\cross\Gamma^{*}$ . The set of acceptable derivation trees for $G$ is denoted by $T(G)$ . Let
$h$ be the homomorphism mapping $(a, \gamma)$ in $(\Sigma\cup\{\lambda\})\cross\Gamma^{*}$ into $a$ . Then $L(G)=h(fr(T(G)))$
is an indexed language. It is easily seen that the indexed languages thus defined are precisely
the indexed languages originally defined by Aho [1].

A renaming is a mapping from a (possibly infinite) alphabet to another. Let $\varphi$ be a
renaming from $\Sigma$ to $\triangle$ . If $t$ is a $\Sigma$-tree, then $\varphi(t)$ is a $\triangle$-tree obtained from $t$ by replacing
the label, say $a$ , of each node of $t$ by $\varphi(a)$ . In applying to strings over $\Sigma,$

$\varphi$ is considered to
be a homomorphism from $\Sigma^{*}$ to $\triangle^{*}$ .

Theorem 3.1 For each indexed grammar $G$ , there exists a TPDA $M$ and a renaming $\varphi$

such that $T(G)=\varphi(C(M))$ .

Theorem 3.2 For each TPDA $M$ , there exists an indexed grammar $G$ and a renaming $\varphi$

such that $C(M)=\varphi(T’(G))$ , where $T’(G)$ is the set of trees obtained from the trees in $T(G)$

by removing all the leaves.

Corollary 3.1 For each TPDA $M,$ $fr(L(M))$ is an indexed language.

Corollary 3.2 $L$ is an indexed language if and only if $L=h(fr(C(M)))$ for some TPDA
$M$ and a homomorphism $h$ .

4 Partitioning automata

A partitioning automaton is very similar to an alternating automaton with one-way input
tape. We begin with the definition of partitioning automaton having the most general type of
memory. A partitioning Turing machine is specified by a 7-tuple $M=(K, U, \Sigma, \Gamma, \delta, s_{0}, F)$ ,
where $K$ is the finite set of states, $U\subseteq K,$ $\Sigma$ the finite set of input symbols, $\Gamma$ the finite set
of worktape symbols, $s_{0}\in K$ the initial state, $F\subseteq K$ the set of accepting states, and 6 the
transition function, a mapping from $K\cross\Sigma\cross\Gamma$ into the subsets of $K\cross\Gamma\cross\{-1,1\}$ . An
element of $U$ is called a partitioning state, while an element of $K-U$ an existential state.

A configuration of $M$ is an element of $K\cross\Sigma^{*}\cross\Gamma^{*}\{\lceil\}\Gamma^{*}$ , where $\lceil$ is a symbol not in
F. A configuration is existential (resp. partitioning) if its associated state is existential
(resp. partitioning). An input word $w\in\Sigma^{*}$ is accepted by $M$ if there exists a finite rooted
tree $t$ , called an acceptable computation tree on $w$ , each of whose nodes is labeled with a
configuration of $M$ with the following properties:

(i) The root of $t$ is labeled with the initial configuration $(s_{0}, w, \lceil B)$ , where $B$ , a symbol
of $\Gamma$ , is the blank.

(ii) Each leaf of $t$ is labeled with an accepting configuration, a configuration of the form
$(f, \lambda, \alpha\lceil\beta)$ , where $f\in F$ , and $\alpha,$ $\beta\in\Gamma^{*}$ .

(iii) existential move If $\pi$ is an internal node whose label is $(p, ax, Z_{1}\cdots\lceil Z_{i}\cdots Z_{k})$ ,
where $p$ is in $K-U,$ $a$ in $\Sigma$ and each $Z$ in $\Gamma$ , then $\pi$ is called an existential node and has
exactly one child whose label is either
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(iii-l) $(q, x, Z_{1}\cdots Y\lceil Z_{i+1}\cdots Z_{k})$ if $6(p, a, Z_{i})$ contains $(q, Y, 1)$ , or
(iii-2) $(q, x, Z_{1}\cdots\lceil Z_{i-1}Y\cdots Z_{k})$ if $6(p, a, Z_{i})$ contains $(q, Y, -1)$ .
(iv) partitioning move If $\pi$ is an internal node whose label is $(p, ax, Z_{1}\cdots\lceil Z_{i}\cdots Z_{k})$

with $p\in U$ , and if $6(p, a, Z_{i})=\{(q_{1}, Y_{1}, d_{1}), \cdots, (q_{m}, Y_{m}, d_{m})\}$ , then $\pi$ is called a partitioning
node and has exactly $m$ children whose labels are $(q_{1}, x_{1}, \alpha_{1}),$

$\ldots,$
$(q_{m}, x_{m}, \alpha_{m})$ from left to

right, where $x=x_{1}\cdots x_{m}$ and each $\alpha_{j}$ is defined as in (iii).
In each of (iii) and (iv) above, $a$ is consumed in the transition from node $\pi$ to its chil-

dren. Let $t’$ and $t”$ be the trees obtained from $t$ by replacing the label (i.e., an ID for $M$),
say $(p, ax, \gamma)$ , of each node with label $(p, a, \gamma)$ and $a$ , respectively, where $a$ is an element of
$\Sigma\cup\{\lambda\}$ which is used in the transition from the node to its children. $t’$ is called a simplified
computation tree and $t^{u}$ is called an input tree of $t$ . The sets of acceptable simplified com-
putation trees, input trees of acceptable computation trees, and input strings accepted by
$M$ are denoted by $C(M),$ $I(M)$ , and $L(M)$ , respectively.

The notion of partitioning automata was first introduced in [3] for pushdown automata
and finite automata. A partitioning pushdown automaton (PPDA) is a partitioning Turing
machine in which the worktape serves as a pushdown store, and a partitioning finite au-
tomaton $(PFA)$ is a partitioning Turing machine in which no worktape symbols other than
the blank can be written on the worktape. However, as we did for TPDA, we specify a
PPDA by a 8-tuple $M=(K, U, \Sigma, \Gamma, \delta, s_{0}, Z_{0}, F)$ , where $Z_{0}$ , the bottom-of-stack symbol, is a
distinguished symbol in $\Gamma$ , and 6 is a function from $K\cross(\Sigma\cup\{\lambda\})\cross\Gamma$ into the finite subsets
of $K^{*}$ . A configuration for $M$ is an element of $K\cross\Sigma^{*}\cross\Gamma^{*}$ , and the initial configuration is
$(s_{0}, w, Z_{0})$ . A PFA is a PPDA such that if $(q, \gamma)$ is in $6(p, a, Z)$ then $\gamma=Z$ . Similarly we
can define a partitioning counter automaton, a partitionig stack automaton etc., see $[3][4]$ .

Theorem 4.1 [3] The class of languages accepted by PFAs is equal to the class of context-
free languages and the class of languages accepted by PPDs is equal to the class of indexed
languages.

More relationships between classes of partitioning automata and classes of context-free
grammars with memory are established in [4].

The tree in Figure 1 can be identified with the parenthesized expression

$a(a(b, \Lambda(b(b, a, a)))b)$ ,

where $\Lambda$ is a special symbol to denote $\lambda$ . Furthermore, note that if the left parentheses are
omitted from the expression and each of the right parentheses and the commas is replaced
by a special symbol $\#$ , then the resulting expression, $aab\#\Lambda bb\# a\# a\#\#\#\# b\#$ , corresponds to the
depth-first traverse of the tree, where $\#$ is used to indicate that a leaf is encountered in the
traverse so that a traceback of lenght of the number of successive $\#s$ is to be caused. We call
this string the traverse representation of the tree. Note that this correspondence between
$\Sigma$-trees and strings over the alphabet $\Sigma\cup\{\#, \Lambda\}$ is one-to-one. The traverse representation
of a tree $t$ is denoted by $tr\#(t)$ . The string over $\Sigma$ which is obtained from the traverse
representation of a tree, say $t$ , by deleting all occurrences of $\Lambda$ or $\#$ is called the traverse
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Figure 4: 2-regular $\{a, b\}$-tree.

string of the tree and denoted by $tr(t)$ . For a set $T$ of trees, let $tr\#(T)=\{tr\#(t)|t\in T\}$

and $tr(T)=\{tr(t)|t\in T\}$ . An important observation is the following.

Lemma 4.1 If $M$ is a partitioning automaton, then $L(M)=tr(I(M))$ ,

It can be shown that ifMisaTFA $(TPDA),entr(L(M))isacceptedbyapartitioning$
automaton with a counter (partitioning automaton with a pushdown store and a counter,
respectively). We do not know whether $tr\#(L(M))$ is a context-free/indexed language or not
when $M$ is a TFA/TPDA. As for $tr(L(M))$ , we have the following characterizations of the
context-free languages and the indexed languages.

Theorem 4.2 $L$ is a context-free language if and only if $L=tr(L(M))$ for a $TFA$ M. $L$ is
an indexed language if and only if $L=tr(L(M))$ for a TPDA $M$ .

In what follows we restrict ourselves to only n-regular trees. Given an n-regular $\Sigma$-tree
$t$ , a string over $\Sigma\cup\{\#, \Lambda\}$ is the n-regular traverse string of $t$ , denoted by $tr^{(n)}(t)$ , if it is
obtained from the parethesized expression of $t$ followed by a single comma, by replacing
each comma in it with $\#$ and by deleting all parentheses. For example, $aab\#\Lambda b\# a\# a\#$ is the
2-regular traverse string of the tree in Figure 4. Note that $tr^{(n)}(t)=tr(t’)$ , where $t’$ is the
tree obtained from $t$ by adding to each leaf a single child whose label is $\#$ . It is important to
note that the correspondence between n-regular $\Sigma$-trees and their n-regular traverse strings
is one to one. Namely any n-regular $\Sigma$-tree can be identified with its n-regular traverse
string. An n-regular TPDA(TFA) is a TPDA (TFA) which accepts only n-regular trees.

Theorem 4.3 If $M$ is an n-regular $TFA$ , then $tr^{(2)}(L(M))$ is accepted by a $PFA$ . If $M$ is
an n-regular TPDA, then $tr^{(2)}(L(M))$ is accepted by a PPDA.

More generally it can be shown that ifMisatree automaton of type X, then tr $(L(M))$

is accepted by a partitioning automaton of type $X$ . This theorem states that, under the
coding by $tr^{(n)}$ , any set of n-regular trees recognizable by a tree automaton of type $X$ can be
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defined by a partitioning automaton of type $X$ . Thus partitioning automata can be viewed
as a generalization of tree automata.
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