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The Problem of Normal Form for
Unlabeled Boundary NLC Graph

Languages

Koichi Yamazaki * Takeo Yaku \dagger

Abstract
In the previous paper (Rozenberg and Welz11986 a), it is open that whether

there exists a positive integer $k_{0}$ such that there is a BNLC grammar $G$ with
maxr $(G)\leq k_{0}$ and $L=und(L(G))$ for every unlabeled BNLC language $L$ , where
maxr $(G)$ is the maximum number of nodes productions in $G$, and und$(L(G))$ is
the set of underlying unlabeled graphs which are obtained from graphs in $L(G)$ by
taking off the labels. In order to negatively solve this open problem, we first show a
pumping lemma for a BNLC languages. Then we will show that there is no integer
$k_{0}$ satisfying the above conditions, using the pumping lemma.

1 Introduction
NLC graph grammars are introduced by Janssens and Rozenberg as a basic

framework for the mathematical investigation of graph grammars. Since then this
model has been intensively investigated (see, e.g., Janssens and Rozenberg 1980,
Ehrenfeucht et al 1984 and Janssens et al 1984). BNLC graph grammars are
introduced and investigated by Rozenberg and Welzl in (Rozenberg and Welzl 1986
$a,b)$ . BNLC graph grammars are NLC graph grammars with the property whenever
-in a graph already generated- two nodes may be rewritten, then those nodes are
not adjacent. BNLC languages are an attractive subfamily of the family of NLC
languages (see 1986 b).

As is necessary in string grammars, in graph grammars it is important to inves-
tigate normal forms for grammars. Let $G$ be a context-free string grammar, and
let $maxr_{st}(G)$ be the maximum length of the right side of the productions in $G$ .
“Whether there is a positive integer $k_{0}$ , such that for every context-free string lan-
guage there is a context-free string grammar $G$ with $\max r_{st}(G)\leq k_{0}$ and $L=L(G)$
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?”. The answer of the above problem for $k_{0}=2$ is well known as the Chomsky
normal form. In this paper, we call the above problem the Chomsky normal form
for context-free string grammars. By Ehrenfeucht et al (1984), for BNLC graph
grammar the following problem was investigated : (Whether there is a positive
integer $k_{0}$ , such that for every NLC graph language $L$ there is a NLC graph gram-
mar $G$ with maxr$(G)\leq k_{0}$ and $L=L(G)$ ?”, where maxr $(G)$ is maximum of the
number of nodes of axiom and graphs of right hand side of productions in $G$. In
(Ehrenfeucht et al 1984), it was shown that there is no positive integer $k_{0}$ such
that $k_{0}$ satisfy the above condition. This problem is similar to the Chomsky normal
form for context-free string grammars. In this paper, we call the above problem the
Chomsky normal form problem for NLC graph grammars.

In (Rozenberg and Welzl 1986 a), the Chomsky normal form problem for
BNLC graph grammar was investigated : “Whether there is a positive integer $k_{0}$

such that for every BNLC graph language $L$ there is a BNLC graph grammar $G$

with maxr $(G)\leq k_{0}$ and $L=L(G)$ ?”. In (Rozenberg and Welzl 1986 a), it was
shown that for every BNLC graph grammar there is no positive integer $k_{0}$ such
that $k_{0}$ satisfies the above condition as was previously shown in the NLC case. In
(Rozenberg and Welzl 1986 a), however it is an open problem that whether there
is the Chomsky normal form for unlabeled BNLC languages, i.e., “ Whether there
is a positive integer $k_{0}$ , such that for every unlabeled BNLC language $L$ there is a
BNLC grammar $G$ with $\max r\cdot(G)\leq k_{0}$ and $L=und(L(G))$ ?”, where und$(L(G))$

is the set of underlying unlabeled graphs of $L(G)$ . It turns out that there exists
no positive integer $k_{0}$ of this problem. In this paper, by pumping lemma for NLC
languages, we will show that there exists no the Chomsky normal form for unlabeled
BNLC languages, i.e., there exists no positive integer $k_{0}$ that satisfy the following
condition: For every unlabeled BNLC language $L$ , there is a BNLC graph grammar
$G$ such that maxr $(G)\leq k_{0}$ and $L=und(L(G))$ .

This paper is organized as follows. In Section 2, definitions basic notions. In
Section 3, pumping lemma for BNLC languages are given. In Section 4, for every $k$ ,
we construct a u-BNLC language $L_{k}$ such that $L_{k}$ is never constructed by a BNLC
graph grammar with $\max r(G)\leq k$ , and give properties of $L_{k}$ . In Section 5, it is
shown, using the pumping lemma and $L_{k}$ , that there exists no the Chomsky normal
form for unlabeled BNLC languages.

2 Preliminaries
We start with basic notations concerning graphs, graph grammars and concrete

derivation which we need for this paper. For details, see (1986 a). We based on
the definition in (1986 a). We assume familiarity with elementary graph theory.
In particular, we use the following notions as defind in Harary (1969): adjacent,
neighbor, subgraphs, induced subgraphs.
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2.1 Graphs

We consider finite undirected node labeled graphs without loops and without
multiple edges. For a set of labels $\Sigma$ , a graph $X$ (over $\Sigma$) is specified by a finite set
$V_{X}$ of nodes, a set $E_{X}$ of two element subsets of $V_{X}$ (called the set of edges) and
a function $\varphi_{X}$ from $V_{X}$ into $\Sigma$ (called the labeling function). Notice that $E_{X}$ is a
set of sets of the elements of $V_{X}$ . Disregarding the labehng function one gets the
underlying unlabeled graph of $X$, denoted by und(X). The set of all graphs over $\Sigma$

is denoted by $G_{\Sigma}$ . The graph $X-x$ is the subgraph of $X$ induced by $V_{X}-\{x\}$ . The
neighborhood of $x$ in $X,$ $nbh_{X}(x)$ , is the set $\{\varphi_{X}(y)|\{x, y\}\in E_{X}\}$ . A graph $X$ ‘ is
isomorphic to $X$ , if there is a bijection from $V_{X’}$ to $V_{X}$ which preserves labels and
adjacencies. The set of all graphs isomorphic to $X$ is denoted by [X]. The size of
$X,$ $\# X$ is the number of nodes in $X$ . We also denote the cardinality of $V_{X}$ by $\# V_{X}$ ,
i.e., $\# X=\# V_{X}$ .

Let $\Phi$ be a set of labels. A graph $X$ is called a $\Phi-$ boundarygraph, if no two
nodes of $X$ that are labeled by elements of $\Phi$ are adjacent.

2.2 Graph Grammars
A node label controlled (NLC) grammar is a system $G=$ ( $\Sigma,$ $\triangle,$ $P$ , conn, $Z_{ax}$ ),

where $\Sigma$ is a finite nonempty set of labels, $\triangle$ is a nonempty subset of $\Sigma$ (the set
of terminals), $P$ is a finite set of pairs $(d, Y)$ where $d\in\Sigma$ and $Y\in G_{\Sigma}$ (the set
of productions), conn is a function from $\Sigma$ into $2^{\Sigma}$ (the connection function), and
$Z_{ax}\in G_{\Sigma}$ (the axiom).

By $[P]$ we denote the set { $(d,$ $Y’)|Y’\in[Y]$ for some $(d,$ $Y)\in P$}. By maxr$(G)$

we denote $\max$ ( $\{\# Z_{ax}\}\cup\{\# Y|(d,$ $Y)\in P$ for some $d\in\Sigma\}$). The set $\Sigma-\Delta$ is
refered to as the set of nonterminals. We define the set of nonterminal nodes by $\Gamma$ ,
i.e., $\Gamma=\Sigma$ –Delta. In the context of $G$ , given a graph $X\in G_{\Sigma}$ we refer to nodes
labeled by elements of $\Gamma$ ( $\Delta$ , respectively) as nonterminal nodes (terminal nodes,
respectively).

Let $X,$ $Y$ and $Z$ be graphs over $\Sigma$ with $V_{X}\cap V_{Y}=\emptyset$ and let $x\in V_{X}$ . Then $X$

concretely derives $Z$ (in $G$, replacing $x$ by Y), denoted by $X\Rightarrow_{G}(x,Y)Z$ or simply
by $X\Rightarrow_{(x,Y)}Z,if(\varphi_{X}(x), Y)\in[P],$ $V_{Z}=V_{X-x}\cup V_{Y},$ $E_{Z}=E_{X-x}\cup E_{Y}\cup\{\{x’, y\}|$

$x’\in nbh_{X}(x),$ $y\in V_{Y},$ $\varphi_{X}(x’)\in conn(\varphi_{Y}(y))$} $,$

$\varphi_{Z}$ equals to $\varphi_{X-x}$ on $V_{X-x}$ , and
$\varphi_{Z}$ equals to $\varphi_{Y}$ on $V_{Y}$ . Intuitively speaking, we replace $x$ in $X$ by the graph $Y$ and
connect a node $y$ of $Y$ to a neighbor $x’$ of $x$ if and only if $\varphi_{X}(x’)\in conn(\varphi_{Y}(y))$ .

A graph $X$ directly derives a graph $Z$ (in $G$), in symbols $X\Rightarrow_{G}Z$ , if there is a
graph $Z’\in[Z]$ , such that $X$ concretely derives $Z’$ in G. $\Rightarrow_{G}^{*}$ is the transitive and
reflexive closure $of\Rightarrow G$ If $X\Rightarrow_{G}^{*}$ $Z$ , then we say that $X$ derives $Z$ (in $G$). The
language of $G$ is the set $\{X\in G_{\Delta}|Z_{ax}\Rightarrow_{G}^{*}X\}$ . A set $L$ of graphs is an NLC
language if there is an NLC grammar $G$ such that $L=L(G)$ . A boundary NLC
(BNLC) grammar is an NLC grammar $G=$ ( $\Sigma,$ $\Delta,$ $P$, conn, $Z_{ax}$ ), where $Z_{ax}$ is a $\Gamma$

-boundary graph and for all $(d, Y)\in P,$ $d\in\Gamma$ and $Y$ is a I’ -boundary graph. A
graph language $L$ is an NLC (BNLC) language, if there is a NLC (BNLC) grammar



87

$G$ such that $L=L(G)$ . A language $L$ of unlabeled graphs is u-NLC (u-BNL $C$)
language, if there is an NLC (BNLC) language $L’$ such that $L=und(L’)$ . Let $G$

is NLC graph grammar. $G$ is chain-free, if for all $(d, Y)\in P$ with $V_{Y}=\{y\}$ (i.e.,
$\# Y=1),$ $y$ is a terminal node.

2.3 Concrete Derivation
Let $G=$ ( $\Sigma,$ $\Delta,$ $P$, conn, $Z_{ax}$ ) be an NLC grammar. If a graph $X$ concretely

derives a graph $Z$ in $G$ , replacing a node $x$ by a graph $Y$ , then we refer to the
construct $X\Rightarrow_{(x,Y)}Z$ as a concrete derivation step in $G$ (from $X$ to $Z$). A sequence
of successive concrete derivation steps in $G$

$D:X_{0}\Rightarrow_{(x_{0},Y_{1})}X_{1}\Rightarrow(x_{1},Y_{2})$ $...\Rightarrow_{(x_{n-1},Y_{n})}X_{n}$ ,
where $n\geq 0$ and the sets $V_{X_{0}},$ $V_{Y;},$ $1\leq i\leq n$ , are pairwise disjoint, is refered to as
a concrete derivation in $G$ (from $X_{0}$ to $X_{n}$ ).

The node set of $D$ is $V_{D}= \bigcup_{i=0}^{n}V_{X_{i}}$ . The edge set of $D$ is $E_{D}= \bigcup_{=0}^{n}E_{X;}$ . The

labeling function $\varphi_{D}$ of $D$ is defined by $\varphi_{D}(x)=\varphi_{X_{0}}(x)$ if $x\in V_{X_{0},n}$ and $\varphi_{D}(x)=$

$\varphi_{Y_{i}}(x)$ if $x\in V_{Y;}$ , for some $i,$ $1\leq i\leq n$ . Note that $V_{D}=V_{X_{0}} \cup\bigcup_{t=1}V_{Y:}$ , hence $\varphi_{D}$

is defined on the whole set $V_{D}$ . Moreover, if $x\in V_{X}.$ , for some $i,$ $1\leq i\leq n$ , then
$\varphi_{X;}(x)=\varphi_{D}(x)$ . Thus every concrete derivation $D$ defines naturally a graph with
set of nodes $V_{D}$ , set of edges $E_{D}$ and labeling function $\varphi_{D}$ . Note that this graph
$D$ is a $\Gamma$-boundary graph whenever $X_{0}$ is a F-boundary graph and $G$ is a BNLC
grammar.

Let $O_{D}$ be a distinguished element not in $V_{D}$ which is called the origin of the
derivation $D$ . The predecessor mapping $pred_{D}$ of $D$ is a function from $V_{D}$ into
$V_{D}\cup\{O_{D}\}$ such that for $x\in V_{D}$

$pred_{D}(x)=\{_{x}^{O_{D}}$
.

$ifx\in V_{Y:^{0_{+I}}}^{X}forifx\in Vand$

an $i,$ $0\leq i\leq n-1$

Hence $pred_{D}$ maps every node $x$ in $V_{D}$ to the node from which $x$ is directly
derived (or to $O_{D}$ if $x$ was already present in $X_{0}$ ).

The history $hist_{D}(x)$ of a node $x\in V_{D}$ in $D$ is the sequence $(y_{0}, y_{1}, \cdots, y_{m})$ ,
$m\geq 1,$ $y_{*}\in V_{D}$ for all $i,$ $1\leq i\leq m$ , such that $y_{0}=O_{D},$ $y_{m}=x$ , and $y;=pred_{D}(y_{i+1})$

for all $i,$ $0\leq i\leq m-1$ . Let $D$ be a derivation and let $x$ and $y$ be nodes in $V_{D}$ . A
node $x$ is an ancestor of $y$ in the derivation $D$ if $x\in hist_{D}(y)$ . Nodes $x$ and $y$ are
independent if $x\not\in hist_{D}(y)$ and $y\not\in hist_{D}(x)$ . Let $(y_{0}, y_{1}, \cdots, y_{m})$ be a sequence
such that $hist_{D}(x)=(y_{0}, y_{1}, \cdots, y_{m})$ , and let $0\leq i<j\leq m$ . Then we denote the
sequence $(y;, y_{i+1}, \cdots, y_{j})$ by $hist_{D}(y_{i}, y_{j})$ . (We can define $hist_{D}(x, y)$ only when $x$

is an ancestor of $y$ ). Let

$D:X_{0}\Rightarrow_{(x_{0)}Y_{1})}X_{1}\Rightarrow(x_{1},Y_{2})$ $...\Rightarrow_{(x_{n-1},Y_{n})}X_{n}$

be a derivation. We denote the set $\{x_{0}, x_{1}, \cdots, x_{n-1}\}$ of rewritten nonterminal nodes
in derivation $D$ by $C_{D}$ . We call the graph $X_{n}$ the result in the derivation $D$ .
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Let $D$‘ be derivation

$D’$ : $X_{0}’\Rightarrow(x_{0}’,Y_{1’})X_{1}’\Rightarrow(x_{1}’,Y_{2}’)$ $...\Rightarrow_{(x_{n-1},Y_{n’})}X_{n}’$ .

The derivation $D’$ is isomorphic to $D$ if there is a bijection $h$ from $V_{D’}$ to $V_{D}$

such that $h|_{V_{X}}$

:
is an isomorphism from $V_{X’}$. to $V_{X;}$ and for $x’\in V_{X_{i}’}(0\leq i\leq n-1)$ ,

$h(pred_{D’}(x’))=pred_{D}(h(x’))$ . The set of all derivations isomorphic to $D$ is denoted
by [D].

Let $D$ be a derivation.

$D$ : $X_{0}\Rightarrow_{(x_{0},Y_{1})}X_{1}\Rightarrow(x_{1},Y_{2})$ $...\Rightarrow_{(x_{n-1},Y_{n})}X_{n}$

We call the graph $X_{n}$ the result in the derivation $D$ .

3 A pumping lemma for BNLC languages

In this section, we introduce a pumping lemma for BNLC grammars. In this
paper we need the pumping lemma is the proof of the main theorem.

In order to state the pumping lemma, we need to develop some concepts. Let
$G=$ ( $\Sigma,$ $\Delta,$ $P$, conn, $Z_{ax}$ ) be a BNLC grammar. Let $D$ be a following concrete
derivation in $G$ :

$D:X_{0}\Rightarrow_{(x_{0},Y_{1})}X_{1}\Rightarrow(x_{1},Y_{2})$ $...\Rightarrow_{(x_{n-1},Y_{n})}X_{n}$ ,

such that there exist $x_{p},$ $x_{q}\in C_{D}(x_{p}\neq x_{q})$ satisfying $x_{p}\in hist_{D}(x_{q})$ and $\varphi_{D}(x_{p})=$

$\varphi_{D}(x_{q})$ . We call the above derivation rough derivation on $(x_{p}, x_{q})$ .

Let us consider the following derivation $\prime D$ ,

$\prime D$ : $X_{0}’\Rightarrow_{(xY)}X_{1}’:(0)’ i(0)+1\Rightarrow(x_{i(1)},Y_{(1)+1})$ $...\Rightarrow_{(Y_{i(e-1)+1})}x_{i(e-1)},X_{e}’$ ,

where the sequence $(i(0), i(1),$ $\cdots,$ $i(e-1))$ is a sequence ascending order of the
subscripts in the set {$x_{l}\in C_{D}|x_{p}\in hist_{D}(x_{l})$ and $x_{q}\not\in hist_{D}(x_{l})$ }.

In what follows, we win show that the derivation CP can be iterated in this section.
Let $m$ be a positive integer. Let $D_{1}’,$ $D_{2}’,$ $\cdots,$ $D_{m}’\in[D]$ be derivations, and $h_{j}$ be an
isomorophism from $D_{\dot{J}}’$ to $D$ for each $j,$ $1\leq j\leq m$ of the following forms:

$D_{j}’$ : $X_{0}^{j}$

$\Rightarrow_{(x_{\langle 0)}^{j},Y_{(0)+1}^{j})}X_{1}^{j}$

$\Rightarrow_{(x_{\langle 1)}^{j},Y_{i(1)+1}^{j})}X_{2}^{j}$

:

$\Rightarrow_{(x_{(e-1)}^{j},Y_{\iota(e-1)+1}^{j})}X_{e}^{j}$

$h_{j}$ : $V_{D_{j}’}arrow V_{lter(D,x_{p},x_{q})},$
$x_{l}^{j}rightarrow x_{l}$ , where $l\in\{i(0), i(1), \cdots, i(e-1)\}$ , which

satisfy the following four conditions:
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(1) $V_{1te\tau(D,x_{p},x_{q})}\cap V_{D_{1}’}=\{x_{q}\}$ and $x_{q}=x_{c(0)}^{i}$ ,
(2) For each $1\leq j\leq m-1,$ $V_{D_{j}’}\cap V_{D_{j+1}’}=\{x_{q}^{j}\}$ and $x_{q}^{j}=x_{*(0)}^{j}$ ,
(3) $V_{D_{m-1}’}\cap V_{D_{m}’}=\{x_{q}^{m-1}\}$ and $x_{q}^{m-1}=x_{i(0)}^{m}$ , and
(4) For every $i,j$ such that 1 $i-j|\geq 2,$ $V_{D’:}\cap V_{D_{j}’}=\emptyset$ .

Then we obtain the following derivation :

$X_{0}’’$ $\Rightarrow_{(x_{0},Y_{1})}X_{1}’’\cdots\Rightarrow_{(x_{q-1},Y_{q})}X_{q}^{n}$

.
$\Rightarrow_{(x_{i(0)}^{1},Y_{i(0)+1}^{1})}X_{q+1}^{n}\cdots\Rightarrow_{(x_{i(e-1)}^{1},Y_{\langle e-1)+1}^{1})}X_{q+e}^{n}$

:

$\Rightarrow_{(x^{2}:’ Y^{2})}X_{q+e+1}’’\cdots\Rightarrow_{(x^{2}(Y^{2})}X_{q+2e}’’$

:
$\Rightarrow(x^{m},Y^{m})*(0)\cdot(0)+1X_{q+(m-1)e+1}’’\cdots\Rightarrow(x_{\langle e-1)}^{m},Y_{|(e-1)+1}^{m})X_{q+me}^{u}$

:
$\Rightarrow_{(x_{q}^{m},Y_{q+1})}X_{q+me+1}’’\cdots\Rightarrow_{(x_{q+1},Y_{q+2})}X_{q+me+2}^{n}$

$...\Rightarrow_{(x_{n-1},Y_{n})}X_{n+me}’’$

$(^{*})$

We call the derivation $(^{*})m$ times pumped derivation and denote pump$(D, x_{p}, x_{q}, m)$ .
Now We can state the pumping lemma for BNLC languages.

Lemma 3.1 (A pumping lemma for BNLC languages) Let $D$ be a
rough derivation on $(x_{p}, x_{q})$ and pump$(D, x_{p}, x_{q}, m)$ be the $m$ times pumped deriva-
tion on $(x_{p}, x_{q})$ , where $m$ is an arbitrary positive integer. If the result of $D$ is in $G_{\Delta}$

then the result of pump$(D, x_{p}, x_{q}, m)$ is in $G_{\Delta}$ .

4 Properties of $L_{k}$

We treat Chomsky normal form problem for u-BNLC languages, i.e., “ Whether
there is a positive integer $k_{0}$ , such that for every u-BNLC language $L$ there is a BNLC
grammar $G$ with $\max r(G)\leq k_{0}$ and $L=und(L(G))$ ?”.

We will solve the above problem by proving the following Theorem 4.1:

Theorem 4.1 For each positive integer $k$ , there is a u-BNLC language $L_{k}$ such
that the following condition hold: For all BNLC grammar $G$ with maxr$(G)\leq k$ ,
und$(L(G))\neq L_{k}$ hold.

It is not difficult to see that if theorem 4.1 is true then there is no positive integer
of the problem. In this section we will construct $L_{k}$ of theorem 4.1, and we will deal
properties on $L_{k}$ .
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For each positive integer $k,$ $L_{k}$ of theorem 4.1 is construct by the following
method.

A construction method of $L_{k}$ : For each positive integer $k$ , we consider
a BNLC granmar $G_{k}=(\Sigma_{k}, \triangle_{k}, P_{k}, conn_{k}, Z_{axk})$ , where $\Sigma_{k}=\{a_{1}, a_{2,}a_{k}, s\}$ ,
$\Delta_{k}=\{a_{1}, a_{2}, \cdots, a_{k}\},$ $conn_{k}(a:)=a_{i}$ for all $1\leq i\leq k,$ $conn_{k}(s)=\Delta_{k},$ $Z_{axk}$ is
a single node with label $s,$ $P_{k}=\{(s, Y_{1k}), (s, Y_{2k})\}$ , where $Y_{1k}$ is complete graph
with set of nodes $\{u_{1}, u_{2}, \cdots , u_{k}, u_{k+1}\}$, where $\varphi_{Y_{1k}}(u;)=a_{i}$ for all 1 $\leq i\leq k$ ,
$\varphi_{Y_{1k}}(u_{k+1})=s,$ $Y_{2k}$ is complete graph with set of nodes $\{v_{1}, v_{2}, \cdots, v_{k}\}$ , where
$\varphi_{Y_{2k}}(v_{i})=a$ ; for all $1\leq i\leq k$ . We difine an unlabeled graph language $L_{k}$ by
$L_{k}=und(L(G_{k}))$ .

An underlying unlabeled $L_{k}$ has the following characteristic properties.

Proposition 4.2 Let $k\geq 2$ be an arbitrary integer, $e$ be a positive integer
and let $H$ be a graph in $L(G_{k})$ such that $\# V_{H}=k\cdot e$ . Then

(1) The graph $H$ has exactly $e$ disjoint complete subgraphs with $k$ nodes.
(2) The graph $H$ has exactly $k$ disjoint complete subgraphs with $e$ nodes.

We call the complete subgraphs of (1) in proposition 4.2 different label group,
and the complete subgraphs of (2) in proposition 4.2 same label group.

Same label groups and different label groups has characteristic properties. We
will show properties of same label groups and different label groups.

We consider an underlying unlabeled graph $H_{u}$ in $L_{k}$ . Let $H$ be a graph such
that und$(H)=H_{u}$ , and $D$ be a derivation of $H$ in $G_{k}$ :

$D:X_{0}\Rightarrow_{(x_{0},Y_{1})}X_{1}\Rightarrow(x_{1},Y_{2})$ $...\Rightarrow_{(x_{n-1},Y_{n})}X_{n}$

Let $x$ and $y$ be nodes in $H_{u}$ . We say that nodes $x$ and $y$ come under an identicaly
same label group in $H$ if $\varphi_{H}(x)=\varphi_{H}(y)$ , and that nodes $x$ and $y$ come under an
identicaly different label group in $H$ if $x\in V_{Y}$. and $y\in V_{Y;}$ for some $1\leq i\leq n-1$ .

Proposition 4.3 Let $H_{u}$ be an underlying unlabeled graph with $k\cdot e$ nodes
in $L_{k},$ $F_{1},$ $F_{2},$ $\cdots,$

$F_{e}$ be different label groups in $H_{u}$ , and let $E_{1},$ $E_{2},$ $\cdots,$
$E_{k}$ be same

label groups in $H_{u}$ . For any nodes $x$ and $y$ in $V_{H_{u}}$ , if $x$ and $y$ are adjacent then
(1) Nodes $x$ and $y$ come under an identicaly same label group and do not come

under an identicaly different label group. or
(2) Nodes $x$ and $y$ come under an identicaly different label group and do not

come under an identicaly same label group.

As a consequence of this proposition, we obtain the following Lemma 4.4.

Lemma 4.4 Let $H_{u}$ be an underlying unlabeled graph with more than
$k^{2}(k\geq 2)$ nodes in $L_{k}$ , and let $F$ be a complete subgraph with more than $k$ nodes
in $H_{u}$ . Then for all nodes $x$ and $y$ in $V_{F},$ $x$ and $y$ come under an identicaly same
label group.
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5 Proof of the theorem
In this section we will show that there is no BNLC grammar $G$ such that

maxr$(G)\leq k$ and $L_{k}=und(L(G))$ by leading contradition.
We assume that there exists a BNLC grammar $G$ such that maxr $(G)\leq k$ and

$L_{k}=und(L(G))$ . And we consider a graph $H^{1}\in L(G)$ using pumping lemma for a
graph $H\in L(G)$ . Then we show that und$(H^{1})\not\in L_{k}$ .

From now on assume that there exists BNLC grammar $G=$ ( $\Sigma,$ $\triangle,$ $P$, conn, $Z_{ax}$ )
such that $L_{k}=und(L(G))$ and maxr $(G)\leq k$ . Let $f$ be $\#\Sigma,$ $g$ be $\#\Delta,$ $H$ be a graph
in $L(G)$ with $k(k+2+f-g)(k-1)$ nodes, and let $D$ be a derivation of $H$ in $G$ .
By the supposition, und$(H)\in L_{k}$ . Hence by the (2) of proposition 4.2 und$(H)$ has
$k$ complete subgraphs with $(k+2+f-g)(k-1)$ nodes. We denote the $k$ complete
subgraphs in the graph $H$ by $E_{1},$ $E_{2},$ $\cdots,$

$E_{k}$ . (For all $1\leq j\leq k$ complete subgraph
in und$(H)$ that correspond with complete subgraph $E_{j}$ in $H$ is also denoted by $E_{j}.$ )
In the derivation $D$ we denote the nonterminal node that yield $jth$ created nodes
in $E_{1}$ by $y_{j^{1}}$ . For convenience we also denote the nonterminal node that yield last
created nodes in $E_{i}$ by $y_{e(i)}^{i}$ . Then for each $1\leq i\leq k$ , set of nonteminal nodes
$\{y_{1}^{t}, y_{2}^{i}, \cdots, y_{e(i)}\}$ is denoted by $N_{i}$ .

Remarks.
(1) If a nonterminal node $y$ yield terminal nodes $u\in E_{i}$ and $v\in E_{j}$ , then

$y\in N_{i}\cap N_{j}$ .
(2) For $1\leq i\leq k,$ $e(i)\geq k+f-g+2$ .

For each $1\leq i\leq k$ , we denote by $N_{i}’$ set $\{y_{n}^{i}|y_{n}^{i}\in N_{i}, k+1<n\leq e(i)\}$ . If
a graph $X$ in the derivation $D$ has a node $x\in N_{1}’$ then $X$ has at least $k+1$ nodes
of $E_{1}$ . Because at least $k+1$ nonterminal nodes in $N \int$ must be rewriten to rewrite
nonterminal node $y_{k+2}^{i}$ . For $1\leq i\leq k$ by $\# N_{i}’\geq f-g+1$ there exists at least a pair
of nodes with identicaly nonterminal label, i.e., there exist a pair of nodes $y_{h(i)}^{i},$ $y_{t(i)}^{i}$

such that $\varphi_{D}(y_{h(i)}^{*})=\varphi_{D}(y_{t^{*}(i)})\in\Sigma-\triangle$ , where $k+1<h(i)<t(i)\leq e(i)$ . Then for all
positive integer $m$ and each $1\leq i\leq k$ we consider a derivation pump$(D, y_{h(i)}^{1}, y_{t(i)}^{i}, m)$

that is constructed by $D_{icopy1},$ $D_{icopy2},$ $\cdots,$ $D_{i\infty pym}\in[orig(D, y_{h(i)}^{t}, y_{t(i)}^{i})]$ . Let $h_{ij}$

is isomorophism from $V_{D_{icopyj}}$ to
$V_{D_{(y_{h(i)}^{j},y_{2(i)}^{i})}}$

for each $1\leq j\leq m$ .
We denote by $E_{i}(orig(D, y_{h(*)}^{i}, y_{t(i)}^{i}))$ set of nodes $\{y\in V_{or}:_{9(D,y_{h(:)}^{i},y_{t()}^{*})}|y\in E_{i}\}$ ,

and by $E_{1}(D_{icopyj})$ set of nodes $\{y\in V_{D_{*copyj}}|h_{ij}(y)\in E_{i}(orig(D, y_{h(i)}^{i}, y_{t(l)}^{i}))\}$. For
convenience we denote by $x_{|_{j},ih(i)]},$ $x_{[,1t(i)]}$ respectively node $u,$ $v$ such that $h_{ij}(u)=$

$y_{h(i)}^{*},$ $h_{ij}(v)=y_{t(i)}^{*}$ . For the above $y_{h(i)}^{i},$ $y_{t(i)}^{i}(1\leq i\leq k)$ , the following lemma is
satisfied.

Lemma 5.1 There exists sequence $hist_{D}(y_{h(i)}^{i}, y_{t(i)}^{1})$ that hold the following
condition:

Condition : For node $y\in hist_{D}(y_{h(i)}^{i}, y_{t(i)}^{2})$ , If in the derivation $D$ a graph $X$ has
$y$ , then $y$ and all terminal nodes of graph $X$ are adjacent.
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We construct graph $H^{1}$ as following: Let $hist_{D}(x_{h}, x_{t})$ be sequence that be ob-
tained by Algorithm A of Lemma 5.1, and pump$(D, x_{h}, x_{t}, 1)$ be a derivation that
be constructed by the derivation $D$ and $D_{\omega py1}\in[iter(D, x_{h}, x_{t})]$ , and let $H^{1}$ be a
result of the derivation pump$(D, x_{h}, x_{t}, 1)$ . Then the following lemma hold.

Lemma 5.2 und$(H^{1})\not\in L_{k}$ .
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