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Abstract

This paper discusses arbitration procedures assuming that the two disputants are igno-
rant of their opponents’ estimates about the arbitrator’s fair point. A measure $IG$ , called
intrinsic gap is introduced to describe the difference of the two estimates. Disputants give
their arbitration offers only basing on their own estimates. It is assumed that they give
prudent offers. We then derive the prudent offers for three typical arbitration procedures
Final-Offer Arbitration (FOA), Binding Arbitration (BA) and Combined Arbitration (CA).
The result indicate that these arbitration procedures are not powerful enough, in the sense
that their contract zones are all empty when $IG$ is positive. Then we propose a new proce-
dure $Final-Double-Offer$ Arbitration (FDOA) and show that it sometimes has nonempty
contract zone even if $IG$ is positive.

Key words: binding arbitration (BA), combined arbitration (CA), $final-double-0ffer$

arbitration (FDOA), final-offer arbitration (FOA), intrinsic gap (IG), prudent offer.

1 Introduction

Arbitration is effective in resolving disputes that appear in politics, economics, psychology,

and sociology, particularly in the labor disputes, where arbitration has been adopted as an
acceptable alternative to strike or lockout. Three principal arbitration procedures have been

extensively studied in the literature (Brams and Merrill III (1986)): Conventional or Binding
Arbitration (BA), Final-Offer Arbitration (FOA) and Combined Arbitration (CA).

In BA, the arbitrator is free to choose any settlement that then becomes binding on the

two sides. In FOA, which was proposed in 1966 (Stevens (1966)), the arbitrator is restricted to

choosing one of the two “final offers” proposed by the two sides. Procedure CA is a combination

of FOA and BA. It can be described as follows:

1. If the offers converge or crisscross, the mean of the two offers will be the final result.
2. FOA applies if the arbitrator’s fair point falls between the two final offers.

3. BA applies if the arbitrator’s fair point falls outside the two final offers, unless they

converge.
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The fact that a dispute will be arbitrated if two sides can not reach an agreement will affect
the prior negotiation or bargaining of the parties. Further, the effect depends on the arbitration
procedure to be used and the disputants’ estimates about the arbitrator’s fair point. A good
procedure should have a deterrent effect of providing an incentive for the parties to reach a
negotiated settlement before the arbitration is really used. Usually, the effect is measured
by the so-called “contract zone”, which is the range of potential settlement that both parties
consider preferable to arbitration.

Research to date on arbitration procedures has by and large adopted the following classical
model: two disputants share a common estimate of the arbitrator’s fair point that lies in interval
$[L, H]$ , where $L(H)$ is the lower (upper) bound. In this model, it turns out that the common
estimate makes the use of arbitration unnecessary, because impasses or disagreement should
never occur (Samuelson (1988), Zeng, Chen and Ohnishi (1991), Zeng and Ohnishi (1991)).

On the other hand, the assumption that both disputants have the common estimate seems
implausible, because disputant’s estimate is determined by many factors, such as risk attitude,
temperament which his opponent may be ignorant of. Further, as shown in Zeng, Chen and
Ohnishi (1991), they may have different estimates because of the incomplete information about
opponents’ reservation prices. Thus, it is theoretically and practically important to consider
the case in which each disputant is ignorant of his opponent’s estimate.

In this paper, we first consider how to measure the difference between two estimates. When
two disputants take pessimistic views about the arbitrator’s fair point, they should be able to
reach an agreement in stead of resorting to arbitration. Therefore, in this case, we hold that
the two estimates are not intrinsically different. In terms of expected values and medians of
the two estimates, we define a nonnegative quantity $IG$ , called intrinsic gap. A positive IG
means that at least one of the disputants is over optimistic about the arbitrator’s fair point,
and this is the main reason why disputants resort to arbitration, as analyzed in Zeng, Chen
and Ohnishi (1991).

When disputants are ignorant of there opponents’ estimates, we assume that they give
arbitration offers which are “prudent” in the sense as used in game theory (Moulin (1986)).
Since the prudent strategy in O-sum game coincides with Nash equilibrium strategy, prudent
offer coincides with the Nash equilibrium offer in the case of classical model, as mentioned above.
However, when the two estimates are different, these two kinds of offer are also different.

There are some papers that discussed the case in which two disputants have different
estimates. For example, Wittman (1986), Brams and Merrill III (1986) assumed that two
estimates are common knowledge. An early paper by Farber and Katz (1979) discussed BA,
they researched the case that $IG=0$ and risk aversion dominates. Their conclusions is that
the contract zone is empty if $IG$ is positive and risk aversion does not dominate, and they
avoided the case. however, this is an interesting case in our opion.

In Section 2, we describe the basic model, define intrinsic gap and prudent offer. Then
we mention two criteria for evaluating arbitration procedures. In Section 3, we analyze three
typical arbitration procedures FOA, FOA and CA and derive prudent offers for them. Our
results show that FOA, BA and CA are not powerful enough to overcome positive intrinsic gap,
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in the sense that the contract zones are empty when $IG$ is positive. In Section 4, we present
a new arbitration procedure $-Final-Double-Offer$ Arbitration (FDOA). In this procedure,
every disputant is required to give two offers. The first is his real offer which may become the
final result as in FOA. The second is his estimate about the arbitrator’s fair point. Although his
estimate is only probabilistic, this second offer is required to be deterministic. By calculating
disputants’ prudent offers in FDOA, we show that the contract zone of FDOA is always larger
than that of BA, FOA or CA under very weak condition. FDOA can sometimes induce a
nonempty contract zone even when $IG$ is positive.

2 Basic Model

Two parties, refered to as seller and buyer, must jointly decide on a determinate value of some
continuous variable $x$ in $[L, H]$ , where $L(H)$ is a finite lower (upper) bound. Disputant $s$

(seller) wants the value to be high –the higher the better – whereas $b$ (buyer) wants the
value to be low –the lower the better. We suppose that $s$ and $b$ are risk-neutral.

When $s$ and $b$ cannot reach an agreement by themselves, they resort to arbitration. For
arbitration, each disputant is required to give arbitrator his offer that expresses his demand.
We denote the offers of $s$ and $b$ by $x_{s}$ and $x_{b}$ when they resort to arbitration. The arbitrator’s
fair point is denoted by $x_{a}$ .

We describe s’s $(b’ s)$ estimate on the arbitrator’s fair point by probabilistic density function
$f_{s}(x)(f_{b}(x))$ and distribution function $F_{s}(x)(F_{b}(x))$ over $[L, H]$ . We suppose that $f_{s}(x)$ and
$f_{b}(x)$ are continuous functions with means $E_{s},$ $E_{b}$ , and medians $m_{s},$ $m_{b}$ respectively, i.e.,

$E_{S}= \int_{L^{H}}xf_{s}(x)dx$ , $E_{b}= \int_{L^{H}}xf_{b}(x)dx$ ,

$F_{s}(m_{s})= \int_{L^{m_{\epsilon}}}f_{s}(x)dx=\frac{1}{2}$ $F_{b}(m_{b})= \int_{L^{m_{b}}}f_{b}(x)dx=\frac{1}{2}$

As analyzed in introduction, it seems natural for two parties having different and inaccu-
rate estimates about the arbitrator’s behavior. The intrinsic gap defined below measures the
difference between $f_{s}(x)$ and $f_{b}(x)$ .

Definition 2.1 The intrinsic gap between the estimates of two disputants $s$ and $b$ is

$IG= \max\{0, \min\{E_{s}-E_{b}, m_{s}-m_{b}\}\}$ .

We can see that $IG\geq 0$ . If $s$ and $b$ are pessimistic about the arbitrator’s fair point, i.e.,
$E_{s}\leq E_{b},$ $m_{s}\leq m_{b}$ , then $IG=0$ . In this case, as $s$ and $b$ are risk-neutral, they should be able
to reach agreement in $[m_{s}, m_{b}]$ , and therefore we hold that the estimates are not intrinsically
different. What we are interested in is the case that $E_{s}>E_{b}$ and $m_{s}>m_{b}$ , i.e., $IG$ is positive.
Zeng, Chen and Ohnishi (1991) argue that $IG>0$ is the main reason for two disputants resort
to arbitration.

Since disputant is ignorant of the estimate of his opponent, he has to give arbitration offer
basing only on his own estimate. It is natural to assume that disputant take prudent strategy
(Moulin (1986)). The obtained offer is the following prudent offer:
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Definition 2.2 Value $x_{s}^{*}(x_{b}^{*})$ is a prudent offer of $s(b)$ under an arbitration procedure $P$ if
and only if

$\inf$ $g_{s}(x_{s}^{*}, x_{b}|P)=$ $\sup$ $\inf$ $g_{s}(x_{s}, x_{b}|P)$

$x_{b}\in[L,H]$ $x_{s}\in[L,H]^{x_{b}\in[L,H]}$

$(. \inf_{x_{e}\in[L,H]}g_{b}(x_{s}, x_{b}^{*}|P)=\sup_{x_{b}\in[L,H]\vee}\inf_{x_{s}\in[L,H]}g_{b}(x_{s}, x_{b}^{*}|P))$

where $g_{s}(x_{s}, x_{b}|P)(g_{b}(x_{s}, x_{b}|P))$ denotes the expected profit of $s(b)$ under the procedure $P$ if
$ss$ offer is $x_{s}$ and $bs$ offer is $x_{b}$ .

Two criteria have been frequently used to evaluate the effectiveness of arbitration procedures
(Farber and Katz (1979)).

The first criterion is frequency. It is commonly thought that a good procedure is one that
provides an incentive for the parties to reach a negotiated settlement and hence seldom used.
The incentive effect is measured by the so-called contract zone defined below. Denote

(2.1) $EA_{s}(P)= \sup_{x_{q}}\inf_{x_{b}}g_{s}(x_{s}, x_{b}|P)+L$ ,

(2.2) $EA_{b}(P)=H- \sup_{x_{b}}\inf_{x_{\vee}}g_{b}(x_{s}, x_{b}|P)$

where $g_{s}(x_{s}, x_{b}|P)$ and $g_{b}(x_{s}, x_{b}|P)$ are the same as in Definition 2.1. They characterize $s’s$

and $b’s$ secure expected values (H. Moulin (1986)) of arbitration if arbitration procedure $P$ is
really used.

Definition 2.3 The contract zone ofprocedure $P$ is defined to be the interval $[EA_{s}(P), EA_{b}(P)]$

if $EA_{s}(P)\leq EA_{b}(P)$ , and empty set if $EA_{s}(P)>EA_{b}(P)$ .

We can see that contract zone defines the range of potential settlements that both disputants
consider preferable to arbitration. Disputants cannot reach agreement by themselves if the
contract zone is empty. The larger the contract zone is, the larger the possibility that two
disputants reach agreememt by themselves is. By the definition, we know that the length of
contract zone is determined by two factors: what arbitration procedure will be employed and
what the disputants’ estimates are? A good procedure should produce nonempty contract zone
even if $IG>0$ .

The second criterion is the extent to which the arbitrated settlement differs from the bar-
gaining settlement that could have been reach in an environment that did not include the
procedure. An arbitration procedure is said to be of low quality if the arbitrated result is more
extreme than the bounds of the contract zone when this zone is nonempty.

3 Prudent Offers in Procedures FOA, BA and CA

In this section, we derive prudent offers in three typical arbitration procedures FOA, BA and
CA. Then we calculate their contract zones and evaluate these procedures by the two criteria
described in Section 2. For simplicity, we suppose that $f_{s}(x)(f_{b}(x))$ is symmetric around
$x=m_{s}(x=m_{b})$ on its support, which implies that $E_{s}=m_{s}(E_{b}=m_{b})$ .
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As stated in Section 2, $g_{s}(x_{s}, x_{b}|P)(g_{b}(x_{s}, x_{b}|P))$ denotes the expected profit of $s(b)$ under
the procedure $P$ if $s’ s$ offer is $x_{s}$ and $b’ s$ offer is $x_{b}$ . For simplicity, we omit the indication of
procedure $P$ , and the notation becomes $g_{s}(x_{s}, x_{b})(g_{b}(x_{s}, x_{b}))$ if it does not make confusion.

For FOA, if the offer of $s$ is $x_{s}$ , and the offer of $b$ is $x_{b}$ , then the expected profit of $s$ is

$g_{s}(x_{s}, x_{b})=\{g_{2}^{1}(x_{s},x_{b})^{\frac{x_{S}+x_{b}}{2}}g_{s}^{s}(x^{s},x^{b})=\frac{x_{s}\int_{x_{s}+x_{b}}L}{2}-L^{f_{s}(x)dx+x_{b}\int_{\frac{x+x_{b}H_{s}}{2}}f_{s}(x)dx-L}=$
$ifx_{s}^{s}ifx>x_{b}\leq x_{b}$

,

and the expected profit of $b$ is

$g_{b}(x_{s}, x_{b})=\{g_{2}^{1}(x_{s},x_{b})-g_{s}^{b}(x_{s},x^{b})=H-\frac{x_{s}\int_{x_{s}+x_{b}}}{2}$
$ifx_{s}ifx_{s}\leq x_{b}^{b}>x$

.

The following theorem is an immediate consequence of the main theorem of Brams and Merrill
III (1983).

Theorem 3.1 Assume that $f_{s}’(m_{s})$ and $f_{b}’(m_{s})$ exist and $f_{s}(m_{s})>0,$ $f_{b}(m_{b})>0$ hold. Then,
in $FOA$ ,

$x_{s}^{*}=m_{s}+ \frac{1}{2f_{s}(m_{s})}$ , $x_{b}^{*}=m_{b}- \frac{1}{2f_{b}(m_{b})}$

are prudent offers of $s$ and $b$ respectively, if

$f_{s}(x)\leq f_{s}(m_{s})+4f_{s}^{2}(m_{s})|x-m_{s}|$ for $x$ such that $|x-m_{s}| \leq\frac{1}{4f_{s}(m_{s})}$

$f_{b}(x)\leq f_{b}(m_{b})+4f_{b^{2}}(m_{b})|x-m_{b}|$ for $x$ such that $|x-m_{b}| \leq\frac{1}{4f_{b}(m_{b})}$

and there exist $c_{s1}\in[L, m_{s}],$ $c_{s2}\in[m_{s}, H],$ $c_{b1}\in[L, m_{b}]$ and $c_{b2}\in[m_{b}, H]$ such that

$f_{s}(x)$ $\geq$ $f_{s}(m_{s})exp(-2f_{s}(m_{s})|x-m_{s}|)$ for $c_{s1}\leq x\leq c_{s2}$ ,

$f_{s}(x)$ $\leq$ $f_{s}(m_{s})exp(-2f_{s}(m_{s})|x-m_{s}|)$ for $x\leq c_{s1}$ and $x\geq c_{s2}$ ,

$f_{b}(x)$ $\geq$ $f_{b}(m_{b})exp(-2f_{b}(m_{b})|x-m_{b}|)$ for $c_{b1}\leq x\leq c_{b2}$ ,

$f_{b}(x)$ $\leq$ $f_{b}(m_{b})exp(-2f_{b}(m_{b})|x-m_{b}|)$ for $x\leq c_{b1}$ and $x\geq c_{b2}$ .

We can also calculate $EA_{s}(FOA)$ and $EA_{b}(FOA)$ defined by (2.1) and (2.2) when $f_{s}$ and
$f_{b}$ satisfy the conditions of Theorem 3.1:

$EA_{s}(FOA)$ $=$ $\sup_{x_{8}}\inf_{x_{b}}\{x_{b}F_{s}(\frac{x_{s}+x_{b}}{2})+x_{s}[1-F_{s}(\frac{x_{s}+x_{b}}{2})]\}=m_{s}$

$EA_{b}(FOA)$ $=$ $\sup_{x_{b}}\inf_{x_{s}}\{x_{b}F_{b}(\frac{x_{s}+x_{b}}{2})+x_{s}[1-F_{b}(\frac{x_{s}+x_{b}}{2})]\}=m_{b}$ .

As we have assumed that $f_{s}$ and $f_{b}$ are symmetric around $m_{s}$ and $m_{b}$ on their support respec-
tively, $EA_{b}(FOA)-EA_{s}(FOA)=m_{b}-m_{s}=E_{b}-E_{s}$ . Hence, contract zone is nonempty if
and only if $IG=0$ , where $IG$ is the intrinsic gap of Definition 2.1. In this sense, we say that
FOA is not powerful enough to overcome positive intrinsic gap.
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Farber (1980) relaxed the assumption that the two disputants are risk-neutral and discussed
FOA with the condition that $f_{s}=f_{b}$ . In this case, there may exist a contract zone only if risk
aversion dominates (S. H. Farber and H. C. Katz (1979)). But even though the contract zone
exits, their offers are out of the contract zone. Thus FOA is of low quality according to the
second criterion of Section 2.

Now let us analyze BA and CA. To ensure the uniqueness of their offers, we introduce
arbitration fees (Zeng, Chen and Ohnishi (1991)). We denote the total arbitration fee by (a
positive number) $\alpha$ . The fee is paid in the following manner:

1. Every party pays $\alpha/2$ , if $x_{s}\leq x_{b}$ or $|x_{a}-x_{s}|=|x_{a}-x_{b}|$ ,
2. $s$ pays $\alpha$ if $|x_{a}-x_{s}|>|x_{a}-x_{b}|$ and $b$ pays $\alpha$ if $|x_{a}-x_{s}|<|x_{a}-x_{b}|$ .

We denote by $x_{s}^{\uparrow}$ and $x_{b}^{\dagger}$ the solutions of the following equations:

(3.1) $x_{s}-E_{s}$ $=$ $\alpha(\frac{1}{2}-\int_{L^{x_{s}}}f_{s}(x)dx)$ ,

(3.2) $x_{b}-E_{b}$ $=$ $\alpha(\frac{1}{2}-\int_{x_{b}}^{H}f_{b}(x)dx)$ .

It is easy to prove the following lemma:

Lemma 3.1 Equation (3.1) $((3.2))$ has a unique solution $x_{s}^{\uparrow}(x_{b}^{\dagger})$ in $[L, H]$ and

$|x_{s}^{\uparrow}-E_{s}| \leq\frac{\alpha}{2}$ $(|x_{b}^{\dagger}-E_{b}| \leq\frac{\alpha}{2})$ .

Remark 3.1 a) When $f_{s}(x)=f_{b}(x),$ $x_{s}^{\uparrow}=x_{b}^{\dagger}$ .
b) If $f_{s}(x)(f_{b}(x))$ is symmetric around $m_{s}(m_{b})$ on its support, then $x_{s}^{\uparrow}=E_{s}(x_{b}^{\dagger}=E_{b})$ .
c) $x_{s}^{\uparrow}$ and $x_{b}^{\dagger}$ converge to $E_{s}$ and $E_{b}$ respectively when $\alpha$ converges to $0$ .

The following two theorems tells us the prudent offers in procedures BA and CA.

Theorem 3.2 The above $x_{s}^{\uparrow}and$ $x_{b}^{\dagger}$ are the prudent offers of $s$ and $b$ respectively under $BA$

with arbitration fee $\alpha$ .

Theorem 3.3 If $f_{s}(x)$ is nondecreasing in $[L, x_{s}^{\uparrow}]$ and $f_{b}(x)$ is nonincreasing in $[x_{b}^{\dagger}, H]$ , then
$x_{s}^{\uparrow}and$ $x_{b}^{\dagger}$ are the prudent offers of $s$ and $b$ respectively, under $CA$ procedure with arbitration

fee $\alpha$ .

By Theorems 3.2, 3.3 and Remark 3.1, $EA_{s}(BA)=EA_{s}(CA)=m_{s}=E_{s},$ $EA_{b}(BA)=$

$EA_{b}(CA)=m_{b}=E_{b}$ , when $f_{s}$ and $f_{b}$ are unimodal, symmetric around $m_{s}$ and $m_{b}$ on their
supports respectively. Hence, contract zone is nonempty only if $IG=0$ , i.e., neither BA nor
CA is powerful enough to overcome positive $IG$ .

The reason that we introduce arbitration fee is to ensure the uniqueness of offers. For the
convenience of comparing with FOA and the following FDOA, we are interested in the case of
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$\alphaarrow 0$ . In this limit case, by Remark 3.1, $x_{s}\dagger=E_{s}$ and $x_{b}^{\dagger}=E_{b}$ , and they form the bounds of
contract zone. Thus procedure CA always make the final result equal to or more extreme than
the bounds if the contract zone is nonempty, therefore CA is of low quality. As to procedure
BA, the final result may fall into the contract zone. In this sense, BA is better than FOA and
CA.

4 $Final-Double-Offer$ Arbitration

By the theorems in Section 3, we can see that, if the arbitration fee is small, BA, FOA and
CA can have a nonempty contract zone only if $IG=0$ . It is desired to introduce a procedure
that can induce the existence of contract zone even at the presence of a positive intrinsic gap.

Fig. 1: flow chart of FDOA procedure

By Theorem 3.1 and Chatterjee (1981), we see that a reason why FOA fails to induce
convergence is that estimates of $s$ and $b$ are probabilistic. However the idea of FOA to enforce
the closeness between disputant’s epected value of estimate and his offer is useful. Based on
this observation, we introduce here a new arbitration procedure $Final-Double-Offer$ Arbitration
(FDOA). In FDOA, disputants $s$ and $b$ are requested to give pairs of two offers $(x_{s}^{1}, x_{s}^{2})$ , and
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$(x_{b}^{1}, x_{b}^{2})$ respectively. The first components $x_{s}^{1}$ and $x_{b}^{1}$ are their real offers, which may become the
final result as in FOA. The second components $x_{s}^{2}$ and $x_{b}^{2}$ are their estimates of the arbitrator’s
fair point. Although their estimates may be probabilistic, $x_{s}^{2}$ and $x_{b}^{2}$ are required to be accurate.

As illustrated in the flow chart of Figure 1, the arbitrator will first compare $x_{s}^{2},$ $x_{b}^{2}$ with
his fair point $x_{a}$ . If $x_{s}^{2}>x_{b}^{2}$ , their estimates are not compatible. This time, as in FOA, the
arbitrator will choose $x_{s}^{1}$ ( $x_{b}^{1}$ or $(x_{s}^{1}+x_{b}^{1})/2$ ) as the final result if $x_{s}^{2}$ is closer (farther or equal)
to $x_{a}$ than $x_{b}^{2}$ to $x_{a}$ . By this rule, we discourage the disputants to give an estimate that is too
optimistic. If $x_{s}^{2}\leq x_{b}^{2}$ , their estimates are compatible. This time, the arbitrator will compare
$|x_{s}^{1}-x_{s}^{2}|$ with $|x_{b}^{1}-x_{b}^{2}|$ . If $|x_{s}^{1}-x_{s}^{2}|<|x_{b}^{1}-x_{b}^{2}|,$ $s$ has made more concession and thus $s’ s$ offer

$x_{s}^{1}$ will be the final result. By this rule, we encourage the disputants to make their offers $x_{s}^{1}$

and $x_{b}^{1}$ close to their estimates $x_{s}^{2}$ and $x_{b}^{2}$ respectively.

Theorem 4.1 Let $(x_{s}^{1\#}, x_{s}^{2\#}),$ $(x_{b}^{1\#}, x_{b}^{2\#})$ be the prudent offers of $s$ and $b$ . The-n $x_{s}^{2\#}$ maximizes

(4.1) $(x_{s}-L) \frac{1-F_{s}(x_{s})}{2-F_{s}(x_{s})}$

and $x_{b}^{2\#}$ maximizes

(4.2) $(H-x_{b}) \frac{F_{b}(x_{b})}{1+F_{b}(x_{b})}$ ,

furthermore $x_{s}^{1\#}$ and $x_{b}^{1\#}$ are respectively given by

(4.3) $x_{s}^{1\#}=x_{s}^{2\#}+(x_{s}^{2\#}-L) \frac{F_{s}(x_{s}^{2\#})}{2-F_{s}(x_{s}^{2\#})}$ , $x_{b}^{1\#}=x_{b}^{2\#}-(H-x_{b}^{2\#}) \frac{1-F_{b}(x_{b}^{2\#})}{1+F_{b}(x_{b}^{2\#})}$ .

The resulting secure expected profit of $s$ is

(4.4) $2(x_{s}^{2\#}-L) \frac{1-F_{s}(x_{s}^{2\#})}{2-F_{s}(x_{s}^{2\#})}$

and the expected profit of $b$ is

(4.5) $2(H-x_{b}^{2\#}) \frac{F_{b}(x_{b}^{2\#})}{1+F_{b}(x_{b}^{2\#})}$ .

Corollary 4.1 By (2.1), (2.2), $(4\cdot 4)$ and $(4\cdot 5)$ , we have

$EA_{s}(FDOA)$ $=$ $L+2(x_{s}^{2\#}-L) \frac{1-F_{s}(x_{s}^{2\#})}{2-F_{s}(x_{s}^{2\#})}$,

$EA_{b}(FDOA)$ $=$ $H-2(H-x_{b}^{2\#}) \frac{F_{b}(x_{b}^{2\#})}{1+F_{b}(x_{b}^{2\#})}$ .

Corollary 4.2 If $x_{s}^{2\#}\in(L, H)(x_{b}^{2\#}\in(L, H))$ and $f_{s}(x)(f_{b}(x))$ is differentiable, then $x_{s}^{2\#}(x_{b}^{2\#})$

is a solution of

(4.6) $(x-L)f_{s}(x)$ $=$ $[1-F_{s}(x)][2-F_{s}(x)]$

$((H-x)f_{b}(x) = F_{b}(x)[1+F_{b}(x)])$
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Now, we show the effectiveness of procedure FDOA.

Theorem 4.2 If $f_{s}(x)$ and $f_{b}(x)$ are unimodal and symmetric around $m_{s}$ and $m_{b}$ on their
supports respectively, then $EA_{s}$ (FDOA) $\leq m_{s}$ and $EA_{b}(FDOA)\geq m_{b}$ .

$Proof^{8}$ : By Corollary 4.1, it is sufficient to prove

(4.7) $2(x-L)(1- \frac{1}{2-F_{s}(x)})\leq m_{s}-L$, for all $x\in[L, H]$ .

(i) Let $m_{s}=(H+L)/2$ . When $x\leq(H+L)/2$ , the inequality (4.7) is obvious. When
$(H+L)/2<x\leq(3H+L)/4$ , we have $F_{s}(x)\geq 1/2$ , therefore $1-1/(2-F_{s}(x))\leq 1/3$ . Hence

$2(x-L)(1- \frac{1}{2-F_{s}(x)})\leq 2[\frac{3}{4}(H-L)]\frac{1}{3}=\frac{H-L}{2}=m_{s}-L$ .

When $x>(3/4)H+(1/4)L$ , we have $F_{s}(x)\geq 3/4>2/3$ , therefore

$2(x-L)(1- \frac{1}{2-F_{s}(x)})\leq 2(H-L)(1-\frac{3}{4})=\frac{H-L}{2}=m_{s}-L$ .

(ii) Let $m_{s}>(H+L)/2$ . By an argument similar to (i), when $x\in[2m_{s}-H, H]$ ,

$2(x-L)(1- \frac{1}{2-F_{s}(x)})\leq m_{s}-(2m_{s}-H)=H-m_{s}\leq m_{s}-L$ .

When $x\in[L, 2m_{s}-H$ ), $F_{s}(x)=0$ , therefore

$2(x-L)(1- \frac{1}{2-F_{s}(x)})=2(x-L)\frac{1}{2}=x-L\leq m_{s}-L$.

(iii) Let $m_{s}<(H+L)/2$ . By an argument similar to (i), when $x\in[L, 2m_{s}-L$ ),

$2(x-L)(1- \frac{1}{2-F_{s}(x)})\leq m_{s}-L$ .

When $x\in,[2m_{s}-L, H]$ , as $F_{s}(x)=1$ , we have

$2(x-L)(1- \frac{1}{2-F_{s}(x)})=0\leq m_{s}-L$ .

As (4.7) holds in all cases, we have completed our proof for $s$ . The conclusion for $b$ similarly
holds. Q.E. $D$ .

When $f_{s}(x)$ and $f_{b}(x)$ satisfy the conditions of Theorem 4.2, the contract zone may exist
even if $IG$ is positive. We show this by the following example.

Example 1: Let $L=-0.3,$ $H=1$ , and we assume symmetric triangular distributions
$f_{s}(x)$ and $f_{b}(x)$ :

$f_{s}(x)=\{\begin{array}{l}4x4-4xifx\in ifx\in[0,\frac{1}{2,1}][\frac{1}{2},]0otherwise\end{array}$ $f_{b}(x)=\{\begin{array}{l}4(x+0.3)ifx\in[-0.3,0.2]2.8-4xifx\in[0.2,0.7]0otherwise\end{array}$

3To conserve space, details of the proofS of other threorems, lemmas and consequences are available from the
authors.



25

These are unimodal and symmetric on their support around their medians $m_{s}=0.5$ and
$m_{b}=0.2$ respectively, as shown in Figure 2. By Definition 2.1, $IG=0.3>0$ . Thus, according
to the conclusions of Section 3, if either of FOA, BA and CA is used, the contract zone will be
empty.

Fig.2

For $x\geq 1/2$ , expression (4.1) becomes

$\frac{x\int_{x^{1}}(4-4x)dx}{1+\int_{x^{1}}(4-4x)dx}=\frac{2x(2-4x+2x^{2})}{3-4x+2x^{2}}$

Let
$y(x)= \frac{2x(2-4x+2x^{2})}{3-4x+2x^{2}}$ .

As $y’(x)<0,$ $\sup_{x\geq 1/2}y(x)=y(1/2)=1/3$ .
For $x\leq 1/2$ , the maximum of expression (4.1) becomes

$\sup_{x}\frac{x(1-2x^{2})}{1-x^{2}}=\frac{x(1-2x^{2})}{1-x^{2}}|_{x=\frac{\sqrt{5-\sqrt{17}}}{2}}\approx 0.33674>y(\frac{1}{2})$ .

Thus the estimate of $sx_{s}^{2\#}$ is $\frac{\sqrt{5-\sqrt{17}}}{2}\approx 0.46821$ , and his offer is $x_{s}^{1\#}\approx 0.59967$ by (4.3). By
(4.4), $EA_{s}(FDO_{\#}A)\approx 0.336742$

Similarly, $x_{b}$ $\approx 0.23719,$ $x_{b}^{1\#}\approx 0.10033,$ $EA_{b}$ (FDOA) $\approx 0.36326$ . As $EA_{b}(FDOA)>$

$EA_{s}$ (FDOA), their contract zone exists, and the disputants prefer reaching agreement in
[0.33674, 0.36326] to arbitration.

Example 2: $f_{s}(x)$ is the same as in Example 1, but $f_{b}(x)=f_{s}(x)$ , so that $IG=0$ . Of
course $x_{s}^{1\#},$ $x_{s}^{2\#}$ and $EA_{s}(FDOA)$ is the same as Example 1. Similar to Example 1, we can
show that $x_{b}^{1\#}\approx 0.40033,$ $x_{b}^{2\#}\approx 0.53179$ and $EA_{b}(FDOA)\approx 0.66325$ . Therefore, the contract
zone is [0.33674, 0.66325]. It is interesting to note that both $x_{s}^{1\#}$ and $x_{b}^{1\#}$ belong to this interval.
As the final result of FDOA will be either $x_{s}^{1\#}$ , or $x_{b}^{1\#}$ or their mean, the result will fall into this
interval. Therefore according to the second criterion described in Section 2, FDOA is not of
low quality in this case.

Example 3: Consider the case of uniform distribution, $L=0,$ $H=1,$ $f_{s}(x)=1$ . As $f_{s}(x)$

is not strictly unimodal function, unless we consider (positive) arbitration fee, arbitration
procedure CA fails to induce the convergence of offers if $f_{b}(x)=f_{s}(x)$ (Brams and Merrill
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(1986), Zeng, Chen and Ohnishi (1991)). Now, we consider FDOA. As $x=2-\sqrt{2}\approx 0.58578$ is
the unique solution of (4.9), by Corollary 4.2, $x_{s}^{2ti}=2-\sqrt{2}\approx 0.58578$ , and $x_{s}^{1\#}=2(\sqrt{2}-1)\approx$

0.82842 by (4.3). By (4.4), $EA_{s}(FOA)=6-4\sqrt{2}\approx 0.34314<0.5$ . Therefore, FDOA is
powerful enough to induce a nonempty contract zone if $f_{b}(x)=f_{s}(x)$ .
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