Max－Flow Problem of Strang＇s Type

椋 毅（Takeshi MUKU）山崎 稀鹝（Maretsugu YAMASAKI）

島 根 大学理学部（Shimane Univ．）

1．Introduction

The celebrated duality theorem called max－flow min－cut theorem on a finite network due to Ford and Fulkerson［1］has been generalized to many directions．Among them，we shall be interested in Strang＇s work［4］．Strang＇s results were further generalized by Nozawa ［3］in the continuous case．Strang gave a max－flow min－cut theorem on a finite network as a motivation of his theory．Here we shall be concerned with the Strang＇s max－flow problem on an infinite network．Related to this max－flow problem，we shall discuss several mathematical programming problems as in［5］．
More precisely，let X be the countable set of nodes，Y be the countable set of arcs and K be the node－arc incidence matrix．We always assume that the graph $G=\{X, Y, K\}$ is connected and locally finite and has no self－loop．For a strictly positive real function r on Y ，the pair $N=\{G, r\}$ is called an infinite（discrete）network in this paper．In case $r=$ 1，we can identify G with $N=\{G, 1\}$ ，and we may call G an infinite network．

Denote by $L(X)$ the set of real valued functions on X ．For $u \in L(X)$ ，let $S u$ be its support，i．e．，

$$
S u=\{x \in X ; u(x) \neq 0\}
$$

and let $L_{0}(X)$ be the set of $u \in L(X)$ such that $S u$ is empty or a finite set．For notation and terminolgy，we mainly follow［5］and［6］．

For a given $f \in L(X)$ ，we call $w \in L(Y)$ a f－flow if there exists a number t which satisfies the condition

$$
\sum_{y \in Y} K(x, y) w(y)=t f(x) \text { on } X
$$

Denote by $\mathbf{F}(f)$ the set of all f－flows．In case $f \neq 0$ ，the number t in the above definition is uniquely determined by w ，so we call it the strength of w and denote it by $I(w)$ ．

Given a non－negative real function C on Y which is called a capacity，we consider the following max－flow problem which was studied by Strang in the case where G is a finite network：
（1．1）Find $M(\mathbf{F}(f) ; C)=\sup \{I(w) ; w \in \mathbf{F}(f),|w(y)| \leq C(y)$ on $Y\}$ ．
For a subset A of X ，denote by φ_{A} the characteristic function of A ，i．e．，$\varphi_{A}(x)=1$ for $x \in A$ and $\varphi_{A}(x)=0$ for $x \in X-A$ ．Let a, b two distinct nodes and consider the special case where $f=\varphi_{\{b\}}-\varphi_{\{a\}}$ ．Then $w \in \mathbf{F}(f)$ implies

$$
\sum_{y \in Y} K(x, y) w(y)=0 \text { on } X-\{a, b\}
$$

$$
I(w)=-\sum_{y \in Y} K(a, y) w(y)=\sum_{y \in Y} K(b, y) w(y) .
$$

Namely every f-flow is a usual flow from the source a to the sink b and Problem (1.1) is the usual max-flow problem.

To state a dual problem of Problem (1.1), let us recall the definition of a cut. For mutually disjoint nonempty subsets A and B of X, denote by $A \ominus B$ the set of all arcs which connect directly A with B. A subset Q of Y is a cut if there exists a nonempty proper subset A of X such that $Q=A \ominus(X-A)$.

Let us define a quasi-norm $\|u\|_{C}$ of $u \in L(X)$ by

$$
\|u\|_{C}=\sum_{y \in Y} C(y)\left|\sum_{x \in X} K(x, y) u(x)\right| .
$$

For $Q=A \ominus(X-A)$, we have

$$
\left\|\varphi_{A}\right\|_{C}=\left\|1-\varphi_{A}\right\|_{C}=\sum_{y \in Q} C(y) .
$$

Let us define an inner product $\langle u, v\rangle$ of $u, v \in L(X)$ by

$$
<u, v>=\sum_{x \in X} u(x) v(x)
$$

whenever the sum is well-defined.
Let $\mathrm{U}(X)$ be the set of all functions $u \in L(X)$ taking values only 0 and 1 , i.e., the range $u(X)$ of u is equal to $\{0,1\}$. Notice that for every cut $Q=A \ominus(X-A)$, both φ_{A} and $1-$ φ_{A} belong to $\mathrm{U}(X)$.

Now we consider the general case where f satisfies the condition

$$
\begin{equation*}
f \neq 0, \quad<|f|, 1><\infty \quad \text { and } \quad<f, 1>=0 \tag{1.2}
\end{equation*}
$$

This condition holds if G is a finite network and $\mathbf{F}(f)$ contains w such that $I(w) \neq 0$.
Strang introduced the following min-cut problem:
(1.3) Find $M^{*}(\mathbf{U}(f) ; C)=\inf \left\{\|\varphi\|_{C} /|<f, \varphi>| ; \varphi \in \mathbf{U}(f)\right\}$,
where $\mathbf{U}(f)=\{\varphi \in \mathbf{U}(X) ;<\varphi, f>\neq 0\}$.
In the special case where $f=\varphi_{\{b\}}-\varphi_{\{a\}}$ as above, it is easily seen that Problem (1.3) is reduced to the usual min-cut problem.

Strang stated the following duality theorem [4; p.128]:
THEOREM 1.1. Let G be a finite network. Then $M(\mathbf{F}(f) ; C)=M^{*}(\mathbf{U}(f) ; C)$ holds and both Problems (1.1) and (1.3) have optimal solutions.

In the next section, we shall begin with proving this theorem which was roughly stated in [4]. We shall study whether this theorem is valid or not on an infinite network. Related
to the f-flows, we shall consider an extremum problem which is analogous to the extremal width of a and b (cf. [5]).

2. Max-flow min-cut theorem on a finite network

In this section, we always assume that G is a finite network, i.e., X and Y are finite sets. To apply the duality theory in [2], we shall formulate Problem (1.1) as a usual linear programming problem on paired spaces.

Let us take

$$
\begin{gathered}
\mathcal{X}=\mathcal{Y}=L(Y) \times R, \mathcal{Z}=\mathcal{W}=L(X) \times L(Y) \times L(Y) \\
\mathcal{P}=L(Y) \times R, \mathcal{Q}=\{0\} \times L^{+}(Y) \times L^{+}(Y) \\
T \mathbf{x}=T(w, t)=\left(\sum_{y \in Y} K(\cdot, y) w(y)-t f, w,-w\right) \\
\mathbf{y}_{0}=(0,-1), \mathbf{z}_{0}=(0,-C,-C)
\end{gathered}
$$

Define bilinear functionals:

$$
(\mathbf{x}, \mathbf{y})_{1}=\left((w, t),\left(w^{\prime}, t^{\prime}\right)\right)_{1}=\sum_{y \in Y} w(y) w^{\prime}(y)+t t^{\prime}
$$

for $\mathbf{x}=(w, t), \mathbf{y}=\left(w^{\prime}, t^{\prime}\right) \in L(Y) \times R$;

$$
(\mathbf{z}, \mathbf{w})_{2}=\left((u, v, w),\left(u^{\prime}, v^{\prime}, w^{\prime}\right)\right)_{2}=<u, u^{\prime}>+\sum_{y \in Y} v(y) v^{\prime}(y)+\sum_{y \in Y} w(y) w^{\prime}(y)
$$

for $\mathbf{z}=(u, v, w), \mathbf{w}=\left(u^{\prime}, v^{\prime}, w^{\prime}\right) \in L(X) \times L(Y) \times L(Y)$. Then \mathcal{X} and \mathcal{Y} (resp. \mathcal{Z} and \mathcal{W}) are paired linear spaces with respect to $(\cdot, \cdot)_{1}\left(\right.$ resp. $\left.(\cdot, \cdot)_{2}\right)$. We see that the quintuple $\left\{T, P, Q, \mathrm{y}_{0}, \mathrm{z}_{0}\right\}$ is a linear program and

$$
-M(\mathbf{F}(f) ; C)=\inf \left\{\left(\mathbf{x}, \mathbf{y}_{0}\right)_{1} ; \mathbf{x} \in P, T \mathbf{x}-\mathbf{z}_{0} \in Q\right\}
$$

Denote by T^{*} the adjoint of T. Then

$$
T^{*}\left(u, w_{1}, w_{2}\right)=\left(\sum_{x \in X} K(x, \cdot) u(x)+w_{1}-w_{2},-<u, f>\right) .
$$

The dual problem is to find the value

$$
\tilde{M}^{*}=\sup \left\{\left(\mathbf{z}_{0}, \mathbf{w}\right)_{2} ; \mathbf{w} \in \mathcal{Q}^{+}, \mathbf{y}_{0}-T^{*} \mathbf{w} \in \mathcal{P}^{+}\right\}
$$

where \mathcal{P}^{+}and \mathcal{Q}^{+}are dual cones of \mathcal{P} and \mathcal{Q} respectively and given by

$$
\mathcal{P}^{+}=\{0\} \times\{0\}, \mathcal{Q}^{+}=L(X) \times L^{+}(Y) \times L^{+}(Y)
$$

Rewriting the right hand side of \tilde{M}^{*}, we see that $-\tilde{M}^{*}$ is equal to the value of the following extremum problem: Minimize the objective function

$$
\sum_{y \in Y} C(y)\left[w_{1}(y)+w_{2}(y)\right]
$$

subject to $w_{1}, w_{2} \in L^{+}(Y),\langle u, f\rangle=1$ and

$$
\sum_{x \in X} K(x, y) u(x)+w_{1}(y)-w_{2}(y)=0 \quad \text { on } Y .
$$

Therefore we have

$$
-\tilde{M}^{*}=V:=\inf \left\{\|u\|_{C} ; u \in L(X),<u, f>=1\right\} .
$$

Since \mathcal{X} and \mathcal{Z} are finite dimensional and \mathcal{P} and \mathcal{Q} are polyhedral cones, there is no duality gap (cf. [2]), i.e., $M(\mathbf{F}(f) ; C)=\tilde{M}^{*}$. It follows that $M(\mathbf{F}(f) ; C)=V$. By an easy calculation, we obtain

$$
\begin{equation*}
V=\min \left\{\|u\|_{C} /|<u, f>| ; u \in L(X),<u, f>\neq 0\right\} \tag{2.1}
\end{equation*}
$$

and hence
(2.2) $\quad V=\min \left\{\|u\|_{C} /|<u, f>| ; u \in \mathbf{V}(f)\right\}$,
where $\mathbf{V}(f)=\{u \in L(X) ; 0 \leq u(x) \leq 1$ on $X,<u, f>\neq 0\}$.
Our next step is to show that $\mathbf{V}(f)$ can be replaced by $\mathbf{U}(f)$ in (2.2). To do this, we need a discrete analogue to the coarea formula.

LEMMA 2.1. Let $u \in L^{+}(X)$ and $u(X)=\left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\}$ with $\alpha_{0}=0<\alpha_{1}<$ $\alpha_{2}<\cdots<\alpha_{n}$ and put $A_{k}=\left\{x \in X ; u(x) \geq \alpha_{k}\right\}$. Then

$$
\sum_{x \in X} u(x) f(x)=\sum_{k=1}^{n}\left(\alpha_{k}-\alpha_{k-1}\right) \sum_{x \in A_{k}} f(x) .
$$

PROOF. Put $\beta_{k}=\sum_{x \in A_{k}} f(x)$ for $0 \leq k \leq n$ and let $A_{n+1}=\emptyset$ and $\beta_{n+1}=0$. By the relation

$$
B_{k}:=A_{k}-A_{k+1}=\left\{x \in X ; u(x)=\alpha_{k}\right\},
$$

we see that

$$
\begin{aligned}
\sum_{x \in X} u(x) f(x) & =\sum_{k=1}^{n+1} \sum_{x \in B_{k-1}} u(x) f(x) \\
& =\sum_{k=1}^{n+1} \alpha_{k-1}\left(\beta_{k-1}-\beta_{k}\right)
\end{aligned}
$$

Changing the order of summation, we obtain the desired relation.
LEMMA 2.2. Let $u,\left\{\alpha_{k}\right\}$ and A_{k} be the same as above and put $Q_{k}=A_{k} \ominus\left(X-A_{k}\right)$ for $k=1, \cdots, n$. Then

$$
\sum_{y \in Y} C(y)\left|\sum_{x \in X} K(x, y) u(x)\right|=\sum_{k=1}^{n}\left(\alpha_{k}-\alpha_{k-1}\right) \sum_{y \in Q_{k}} C(y) .
$$

PROOF. Note that $B_{j} \cap B_{k}=\emptyset$ if $j \neq k$ and

$$
\left|\sum_{x \in X} K(x, y) u(x)\right|=\alpha_{k}-\alpha_{j}
$$

if $y \in B_{j} \ominus B_{k}$ and $j<k$. Note that if the endpoints of y belong to B_{j}, i.e., $\{x \in$ $X ; K(x, y) \neq 0\} \subset B_{j}$, then

$$
\left|\sum_{x \in X} K(x, y) u(x)\right|=0
$$

Put

$$
\mu_{j k}=\sum_{y \in B_{j} \ominus B_{k}} C(y) \quad \nu_{j}=\sum_{y \in Q_{j}} C(y)
$$

with $\nu_{n+1}=0$. Then it is easily seen that

$$
\sum_{k=0}^{j} \mu_{k j}=\sum_{y \in A_{j} \ominus\left(X-A_{j}\right)} C(y)=\sum_{y \in Q_{j}} C(y)=\nu_{j}
$$

and similarly

$$
\sum_{k=j+1}^{n} \mu_{j k}=\sum_{y \in Q_{j+1}} C(y)=\nu_{j+1}
$$

By the above observation, we have

$$
\begin{aligned}
\sum_{y \in Y} C(y)\left|\sum_{x \in X} K(x, y) u(x)\right| & =\sum_{j=0}^{n} \sum_{k=j+1}^{n} \mu_{j k}\left(\alpha_{k}-\alpha_{j}\right) \\
& =\sum_{j=1}^{n} \alpha_{j} \sum_{k=0}^{j} \mu_{k j}-\sum_{j=0}^{n} \alpha_{j} \sum_{k=j+1}^{n} \mu_{j k} \\
& =\sum_{j=1}^{n} \alpha_{j} \nu_{j}-\sum_{j=0}^{n} \alpha_{j} \nu_{j+1}
\end{aligned}
$$

Now we shall prove a fundamental lemma.
LEMMA 2.3. The relation $V=M^{*}(\mathbf{U}(f) ; C)$ holds and there exists $\varphi \in \mathbf{U}(f)$ such that $M^{*}(\mathbf{U}(f) ; C)=\|\varphi\|_{C} /|<\varphi, f>|$.

PROOF. Let us put $M^{*}=M^{*}(\mathrm{U}(f) ; C)$. Clearly, $V \leq M^{*}$. Suppose that $V<M^{*}$, i.e., there exists $\varepsilon>0$ such that $M^{*} \geq V+\varepsilon$. Then

$$
\begin{equation*}
\|\varphi\|_{C} \geq(V+\varepsilon) \mid<\varphi, f>1 \tag{2.3}
\end{equation*}
$$

holds for all $\varphi \in \mathbf{U}(f)$. Since (2.3) holds trivially for $\varphi \in \mathbf{U}(X)-\mathbf{U}(f)$, (2.3) holds for all $\varphi \in \mathbf{U}(X)$. For any proper subset A of X, we have $\varphi_{A} \in \mathbf{U}(X)$ and by (2.3)

$$
\sum_{y \in A \ominus(X-A)} C(y) \geq(V+\varepsilon)\left|<\varphi_{A}, f>\right| .
$$

Let $u \in \mathbf{V}(f)$ and $u(X)=\left\{\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n}\right\}$ with $\alpha_{0}=0<\alpha_{1}<\cdots<\alpha_{n} \leq 1$ and put $A_{k}=\left\{x \in X ; u(x) \geq \alpha_{k}\right\}$. Multiplying both sides of the above inequality (with $A=A_{k}$)) by $\alpha_{k}-\alpha_{k-1}$ and summing both sides over k, we have by Lemmas 2.1 and 2.2

$$
\begin{aligned}
\|u\|_{C} & =\sum_{k=1}^{n}\left(\alpha_{k}-\alpha_{k-1}\right) \sum_{y \in A_{k} \Theta\left(X-A_{k}\right)} C(y) \\
& \geq \sum_{k=1}^{n}\left(\alpha_{k}-\alpha_{k-1}\right)(V+\varepsilon)\left|<\varphi_{A_{k}}, f>\right| \\
& \geq(V+\varepsilon)\left|\sum_{k=1}^{n}\left(\alpha_{k}-\alpha_{k-1}\right) \sum_{x \in A_{k}} f(x)\right| \\
& =(V+\varepsilon)|<u, f>| .
\end{aligned}
$$

Namely we have $V+\varepsilon \leq\|u\|_{C} /|<u, f>|$ for all $u \in \mathrm{~V}(f)$, and hence $V+\varepsilon \leq V$. This is a contradiction. Thus $V=M^{*}$. Since $\mathbf{U}(f)$ contains only a finite number of elements, there exists $\varphi \in \mathbf{U}(f)$ such that $M^{*}=\|\varphi\|_{c} /|<\varphi, f>|$.

Summing up (2.2), (2.3) and Lemma 2.3, we complete the proof of Theorem 1.1.

3. Max-flow min-cut theorems on an infinite network

In order to study a max-flow problem on an infinite network, we consider the subset $\mathbf{F}_{0}(f)=\mathbf{F}(f) \cap L_{0}(Y)$ of the set of f-flows. In this section, we always assume the following condition:

$$
\begin{equation*}
f \in L_{0}(X), f \neq 0 \text { and }<f, 1>=0 \tag{3.1}
\end{equation*}
$$

Let $\left\{G_{n}\right\}\left(G_{n}=<X_{n}, Y_{n}>\right)$ be an exhaustion of G, i.e., each G_{n} is a finite subnetwork of G and $\left\{G_{n}\right\}$ approximates G increasingly. For simplicity, we assume that $S f \subset X_{1}$. Define $C_{n} \in L^{+}(Y)$ by $C_{n}(y)=C(y)$ for $y \in Y_{n}$ and $C_{n}(y)=0$ for $y \in Y-Y_{n}$ and consider the following extremum problems:
(3.2) Find $M_{n}=M\left(\mathbf{F}(f) ; C_{n}\right)$;
(3.3) Find $M_{n}^{*}=M^{*}\left(\mathrm{U}(f) ; C_{n}\right)$.

We shall be concerned with the limits of $\left\{M_{n}\right\}$ and $\left\{M_{n}^{*}\right\}$.
LEMMA 3.1. $\lim _{n \rightarrow \infty} M\left(\mathbf{F}(f) ; C_{n}\right)=M\left(\mathbf{F}_{0}(f) ; C\right)$.

PROOF. If w is a feasible solution of Problem (3.2), then $w \in L_{0}(Y)$ by the condition $|w(y)| \leq C_{n}(y)$ on Y, and hence $M_{n} \leq M_{n+1} \leq M\left(\mathbf{F}_{0}(f) ; C\right)$. For any $\varepsilon>0$, there exists $w \in \mathbf{F}_{0}(f)$ such that

$$
M\left(\mathbf{F}_{0}(f) ; C\right)-\varepsilon<I(w), \quad|w(y)| \leq C(y) \text { on } Y .
$$

There exists n_{0} such that $S w \subset Y_{n}$ for all $n \geq n_{0}$. Then w is a feasible solution of Problem (3.2) for $n \geq n_{0}$, and hence $M\left(\mathbf{F}_{0}(f) ; C\right)-\varepsilon<I(w) \leq M_{n}$ for all $n \geq n_{0}$.

We see easily the following:

REMARK 3.2. The value of Problem (3.2) is equal to the value of the following max-flow problem on G_{n} :
(3.4) Maximize $t \quad$ subject to $w \in L\left(Y_{n}\right),|w(y)| \leq C_{n}(y)$ on Y and

$$
\sum_{y \in Y_{n}} K(x, y) w(y)=t f(x) \text { on } X_{n}
$$

Related to Problem (3.3), consider the following min-cut problem on G_{n} :

$$
\begin{equation*}
\text { Find } M^{*}\left(\mathbf{U}\left(f ; X_{n}\right) ; C_{n}\right)=\inf \left\{\sum_{y \in Y_{n}} C_{n}(y)\left|\sum_{x \in X_{n}} K(x, y) \varphi(x)\right| ; \varphi \in \mathbf{U}\left(f ; X_{n}\right)\right\} \tag{3.5}
\end{equation*}
$$ where $\mathbf{U}\left(f ; X_{n}\right)$ is the set of all $\varphi \in L\left(X_{n}\right)$ such that $\varphi\left(X_{n}\right)=\{0,1\}$ and $\sum_{x \in X_{n}} \varphi(x) f(x) \neq$ 0 .

LEMMA 3.3. $M_{n}^{*}=M^{*}\left(\mathrm{U}\left(f ; X_{n}\right) ; C_{n}\right)$ holds and there exists $\varphi \in \mathrm{U}(f)$ such that $M_{n}^{*}=$ $\|\varphi\|_{C_{n}} /|<\varphi, f>|$.

PROOF. The equality follows from our construction. Problem (3.5) has an optimal solution $\varphi^{\prime} \in \mathrm{U}\left(f ; X_{n}\right)$ by Theorem 1.1 and the extension φ of φ^{\prime} to $X-X_{n}$ by 0 belongs to $\mathbf{U}(f)$ and satisfies our requirement.

LEMMA 3.4. $\lim _{n \rightarrow \infty} M_{n}^{*}=M^{*}(\mathbf{U}(f) ; C)$ and there exists $\varphi \in \mathbf{U}(f)$ such that $M^{*}(\mathrm{U}(f) ; C)$ $=\|\varphi\|_{C} /|<\varphi, f\rangle \mid$.

PROOF. By definition, $M_{n}^{*} \leq M_{n+1}^{*} \leq M^{*}(\mathbf{U}(f) ; C)$ is clear. There exists $\varphi_{n} \in \mathbf{U}(f)$ such that $M_{n}^{*}=\left\|\varphi_{n}\right\|_{C_{n}} /\left|<\varphi_{n}, f>\right|$. Since $f \in L_{0}(X)$, it should be noted that the set $\{|<\varphi, f>| ; \varphi \in \mathrm{U}(f)\}$ contains only a finite number of real numbers which are apart from 0 , so that there exists $\alpha>0$ such that

$$
\begin{equation*}
|<\varphi, f>| \geq \alpha>0 \text { for all } \varphi \in \mathrm{U}(f) \tag{3.6}
\end{equation*}
$$

Since $\varphi_{n}(X)=\{0,1\}$, we may assume that $\left\{\varphi_{n}\right\}$ converges pointwise to $\tilde{\varphi} \in L(X)$ by choosing subsequences if necessary. We see by (3.6) that $\tilde{\varphi} \in \mathbf{U}(f)$. Since $f \in L_{0}(X)$,
$<\varphi_{n}, f>\rightarrow<\tilde{\varphi}, f>$ as $n \rightarrow \infty$. It follows that

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} M_{n}^{*} & \geq \sum_{y \in Y} \liminf _{n \rightarrow \infty} C_{n}(y)\left|\sum_{x \in X} K(x, y) \varphi_{n}(x)\right| /\left|<\varphi_{n}, f>\right| \\
& \geq \sum_{y \in Y} C(y)\left|\sum_{x \in X} K(x, y) \tilde{\varphi}(x)\right| /|<\tilde{\varphi}, f>| \\
& \geq M^{*}(\mathbf{U}(f) ; C) .
\end{aligned}
$$

This completes the proof.
By Theorem 1.1 and Lemmas 3.1, 3.3 and 3.4 and Remark 3.2, we obtain the following:
THEOREM 3.5. $M\left(\mathbf{F}_{0}(f) ; C\right)=M^{*}(\mathrm{U}(f) ; C)$ holds and there exists an optimal solution of the min-cut problem.

In the special case where $f=\varphi_{\{b\}}-\varphi_{\{a\}}$, this theorem was proved in [5].

4. Extremal width of a network

Denote by $\mathbf{Q}(f)$ the set of all cuts generated by $\varphi \in \mathbf{U}(f)$, i.e.,

$$
\mathbf{Q}(f)=\{S \varphi \ominus(X-S \varphi) ; \varphi \in \mathbf{U}(f)\}
$$

and consider the following extremum problem of minimizing

$$
H(W):=\sum_{y \in Y} r(y) W(y)^{2}
$$

subject to $W \in L^{+}(Y)$ and

$$
\sum_{y \in Q} W(y) /|<\varphi, f>| \geq 1 \text { for all } Q=S \varphi \ominus(X-S \varphi) \in \mathbf{Q}(f)
$$

Let $\mu(\mathbf{Q}(f))^{-1}$ be the value of this problem. In the case where $f=\varphi_{\{b\}}-\varphi_{\{a\}}$, this value is called the extremal width between $\{a\}$ and $\{b\}$ of N in [5].

Denote by $E^{*}(\mathbf{Q}(f))$ the set of all feasible solutions of this problem, i.e..

$$
E^{*}(\mathbf{Q}(f))=\left\{W \in L^{+}(Y) ; M^{*}(\mathbf{U}(f) ; W) \geq 1\right\}
$$

Then we have

$$
\mu^{*}(\mathbf{Q}(f))^{-1}=\inf \left\{H(W) ; W \in E^{*}(\mathbf{Q}(f))\right\}
$$

We shall consider the extremum problem of finding the following value related to f-flows:

$$
d^{*}\left(\mathbf{F}_{0}(f)\right)=\inf \left\{H(w) ; w \in \mathbf{F}_{0}(f), I(w)=1\right\} .
$$

We shall prove

THEOREM 4.1. Assume Condition (3.1). Then $d^{*}\left(\mathbf{F}_{0}(f)\right)=\mu^{*}(\mathbf{Q}(f))^{-1}$.
PROOF. Let $w \in \mathbf{F}_{0}(f), I(w)=1$ and put $W(y)=|w(y)|$. For any $\varphi \in \mathbf{U}(f)$,

$$
\begin{aligned}
|<\varphi, f>| & =\left|\sum_{y \in Y} w(y) \sum_{x \in X} K(x, y) \varphi(x)\right| \\
& \leq \sum_{y \in Y} W(y)\left|\sum_{x \in X} K(x, y) \varphi(x)\right|
\end{aligned}
$$

so that $W \in E^{*}(\mathbf{Q}(f))$. Thus $\mu^{*}(\mathbf{Q}(f))^{-1} \leq H(W)=H(w)$, and hence $\mu^{*}(\mathbf{Q}(f))^{-1} \leq$ $d^{*}\left(\mathbf{F}_{0}(f)\right)$. On the other hand, let $W \in L^{+}(Y)$ satisfy $M^{*}(\mathbf{U}(f) ; W) \geq 1$. Then by Theorem 3.5,

$$
M\left(\mathbf{F}_{0}(f) ; W\right)=M^{*}(\mathrm{U}(f) ; W) \geq 1
$$

For any positive number $t<1$, there exists $w \in \mathbf{F}_{0}(f)$ such that $|w(y)| \leq W(y)$ and $I(w)>t$. Clearly $w^{\prime}:=w / I(w) \in \mathbf{F}_{0}(f)$ and $I\left(w^{\prime}\right)=1$, so that

$$
d^{*}\left(\mathbf{F}_{0}(f)\right) \leq H(w / I(w))<H(W) / t^{2}
$$

Letting $t \rightarrow 1$, we have $d^{*}\left(\mathbf{F}_{0}(f)\right) \leq H(W)$, and hence $d^{*}(\mathbf{Q}(f)) \leq \mu^{*}(\mathbf{Q}(f))^{-1}$. This completes the proof.

Related to the above flow problems, let us consider the following extremum problem of minimizing the Dirichlet sum:

$$
\begin{equation*}
\text { Find } \dot{d}(f)=\inf \{D(u) ; u \in L(X) \text { and }<u, f>=1\} \tag{4.1}
\end{equation*}
$$

where $D(u):=H(d u)$ and

$$
d u(y)=-r(y)^{-1} \sum_{x \in X} K(x, y) u(x)
$$

We have the following reciprocal relation:
THEOREM 4.2. Assume Condition (3.1). Then $d(f) d^{*}\left(\mathbf{F}_{0}(f)\right)=1$.
PROOF. Let $w \in \mathbf{F}_{0}(f), I(w)=1$ and $u \in L(X),\langle u, f\rangle=1$. Then

$$
\begin{aligned}
1=\langle u, f\rangle & =\sum_{y \in Y} w(y) \sum_{x \in X} K(x, y) u(x) \\
& \leq[H(w)]^{1 / 2}[D(u)]^{1 / 2},
\end{aligned}
$$

so that $1 \leq d(f) d^{*}\left(\mathbf{F}_{0}(f)\right)$. Denote by $\mathbf{F}_{2}(f)$ the closure of $\mathbf{F}_{0}(f)$ in the Hilbert space $L_{2}(Y ; r)=\{w \in L(Y) ; H(w)<\infty\}$ with the inner product

$$
H\left(w, w^{\prime}\right)=\sum_{y \in Y} r(y) w(y) w^{\prime}(y)
$$

Then we have $d^{*}\left(\mathbf{F}_{0}(f)\right)=d^{*}\left(\mathbf{F}_{2}(f)\right)$. Let $\left\{w_{n}\right\}$ be a sequence in $\mathbf{F}_{0}(f)$ such that $I\left(w_{n}\right)$ $=1$ and $H\left(w_{n}\right) \rightarrow d^{*}\left(\mathbf{F}_{0}(f)\right)$ as $n \rightarrow \infty$. Since $\left(w_{n}+w_{m}\right) / 2 \in L_{0}(Y)$ is a f-flow of unit strength, we see by the standard method that $H\left(w_{n}-w_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$. There exists $\tilde{w} \in L_{2}(Y ; r)$ such that $H\left(w_{n}-\tilde{w}\right) \rightarrow 0$ as $n \rightarrow \infty$. Clearly $\tilde{w} \in \mathbf{F}_{2}(f)$ and $I\left(w_{n}\right) \rightarrow I(\tilde{w})$ as $n \rightarrow \infty$. It follows that $I(\tilde{w})=1$ and $d^{*}\left(\mathbf{F}_{2}(f)\right)=H(\tilde{w})$. For any $w^{\prime} \in \mathbf{F}_{0}(0)$ (a finite cycle) and for any real number t, we have $\tilde{w}+t w^{\prime} \in \mathbf{F}_{2}(f)$, so that $H(\tilde{w}) \leq H\left(\tilde{w}+t w^{\prime}\right)$. By the usual variational method, we have $H\left(\tilde{w}, w^{\prime}\right)=0$. We see by the same arguement as in [7] that there exists $\tilde{u} \in \mathrm{D}(\mathrm{N})$ such that $d \tilde{u}(y)=\tilde{w}(y)$ on Y. Here $D(N)$ is the set of all $u \in L(X)$ with finite Dirichlet sum. Notice that $H\left(\tilde{w}, w_{m}-w_{n}\right)=0$ for all n, m by the above observation, so that $H(\tilde{w})=H\left(\tilde{w}, w_{n}\right)$. It follows that

$$
\begin{aligned}
<\tilde{u}, f> & =\sum_{x \in X} \tilde{u}(x) \sum_{y \in Y} K(x, y) w_{n}(y) \\
& =\sum_{y \in Y} w_{n}(y) \sum_{x \in X} K(x, y) \tilde{u}(x) \\
& =H\left(w_{n}, \tilde{w}\right)=H(\tilde{w})=D(\tilde{u}) .
\end{aligned}
$$

Therefore $\langle f, \tilde{u} / D(\tilde{u})\rangle=1$, and

$$
d(f) \leq D(\tilde{u} / D(\tilde{u}))=D(\tilde{u})^{-1}=H(\tilde{w})^{-1}=d^{*}\left(\mathbf{F}_{0}(f)\right)^{-1} .
$$

Thus $d(f) d^{*}\left(\mathbf{F}_{0}(f)\right) \leq 1$. This completes the proof.

Theorems 4.1 and 4.2 were proved in [5] in the case where $f=\varphi_{\{b\}}-\varphi_{\{a\}}$.

References

[1] L.R. Ford and D.R. Fulkerson, Flows in networks, Princeton Univ. Press, Princeton, N.J., 1962.
[2] K. S. Kretschmer, Programmes in paired spaces, Canad. J. Math. 13(1961), 221-238.
[3] R. Nozawa, Max-flow min-cut theorem in an anisotropic network, Osaka J. Math. 27(1990), 805-842.
[4] G. Strang, Maximal flow through a domain, Math. Programming, 26(1983), 123-143.
[5] M. Yamasaki, Extremum problems on an infinite network, Hiroshima Math. J. 5(1975), 223-250.
[6] M. Yamasaki, Max-flow min-cut theorems on an infinite network, RIMS Kokyuroku 680(1989), 81-88.
[7] M. Yamasaki, Nonlinear Poisson equations on an infinite network, Mem. Fac. Sci. Shimane Univ. 23(1989), 1-9.

