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Max-Flow Problem of Strang’s Type

椋毅 (Takeshi MUKU) 山崎 稀嗣 (Maretsugu YAMASAKI)

島根大学理学部 (Shimane Univ.)

1. Introduction
The celebrated duality theorem called max-flow min-cut theorem on a finite network due

to Ford and Fulkerson [1] has been generalized to many directions. Among them, we shall
be interested in Strang’s work [4]. Strang’s results were further generalized by Nozawa
[3] in the continuous case. Strang gave a max-flow min-cut theorem on a finite network
as a motivation of his theory. Here we shall be concerned with the Strang’s max-flow
problem on an infinite network. Related to this max-flow problem, we shall discuss several
mathematical programming problems as in [5].

More precisely, let $X$ be the countable set of nodes, $Y$ be the countable set of arcs and
$K$ be the node-arc incidence matrix. We always assume that the graph $G=\{X, Y, K\}$ is
connected and locally finite and has no self-loop. For a strictly positive real function $r$ on
$Y$ , the pair $N=\{G, r\}$ is called an infinite (discrete) network in this paper. In case $r=$

$1$ , we can identify $G$ with $N=\{G, 1\}$ , and we may call $G$ an infinite network.
Denote by $L(X)$ the set of real valued functions on $X$ . For $u\in L(X)$ , let $Su$ be its

support, i.e.,
$Su=\{x\in X;u(x)\neq 0\}$ ,

and let $L_{0}(X)$ be the set of $u\in L(X)$ such that $Su$ is empty or a finite set. For notation
and terninolgy, we mainly follow [5] and [6].

For a given $f\in L(X)$ , we call $w\in L(Y)$ a f-flow if there exists a number $t$ which satisfies
the condition

$\sum_{y\in Y}K(x, y)w(y)=tf(x)$ on $X$ .

Denote by $F(f)$ the set of all f-flows. In case $f\neq 0$ , the number $t$ in the above definition
is uniquely determined by $w$ , so we call it the strength of $w$ and denote it by $I(w)$ .

Given a non-negative real function $C$ on $Y$ which is called a capacity, we consider the
following max-flow problem which was studied by Strang in the case where $G$ is a finite
network:

(1.1) Find $M( F(f);C)=\sup${$I(w);w\in F(f),$ $|w(y)|\leq C(y)$ on $Y$ }.

For a subset $A$ of $X$ , denote by $\varphi_{A}$ the characteristic function of $A$ , i.e., $\varphi_{A}(x)=1$ for
$x\in A$ and $\varphi_{A}(x)=0$ for $x\in X-A$ . Let $a,$

$b$ two distinct nodes and consider the special
case where $f=\varphi_{\{b\}}-\varphi_{\{a\}}$ . Then $w\in F(f)$ implies

$\sum_{y\in Y}K(x, y)w(y)=0$ on $X-\{a, b\}$ ,
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$I(w)=- \sum_{y\in Y}K(a, y)w(y)=\sum_{y\in Y}K(b, y)w(y)$ .

Namely every f-flow is a usual flow from the source ($x$ to the sink $b$ and Problem (1.1) is
the usual max-flow problem.

To state a dual problem of Problem (1.1), let us recall the definition of a cut. For
mutually disjoint nonempty subsets $A$ and $B$ of $X$ , denote by $A\ominus B$ the set of all arcs
which connect directly $A$ with $B$ . A subset $Q$ of $Y$ is a cut if there exists a nonempty
proper subset $A$ of $X$ such that $Q=A\ominus(X-A)$ .

Let us define a quasi-norm $||u||_{C}$ of $u\in L(X)$ by

$||_{tA}||_{C}= \sum_{y\in Y}C(y)|\sum_{x\in X}K(x, y)u(x)$ .

For $Q=A\ominus(X-A)$ , we have

$|| \varphi_{A}||_{C}=||1-\varphi_{A}||_{C}=\sum_{y\in Q}C(y)$
.

Let us define an inner product $<u,$ $v>ofu,$ $v\in L(X)$ by

$<u,$ $v>= \sum_{x\in X}u(x)v(x)$

whenever the sum is well-defined.
Let $U(X)$ be the set of all functions $u\in L(X)$ taking values only $0$ and 1, i.e., the range

$u(X)$ of $u$ is equal to $\{0,1\}$ . Notice that for every cut $Q=A\ominus(X-A)$ , both $\varphi_{A}$ and 1-
$\varphi_{A}$ belong to $U(X)$ .

Now we consider the general case where $f$ satisfies the condition

(1.2) $f\neq 0$ , $<|f|,$ $1><\infty$ and $<f,$ $1>=0$ .

This condition holds if $G$ is a finite network and $F(f)$ contains $w$ such that $I(w)\neq 0$ .
Strang introduced the following min-cut problem:

(1.3) Find $M^{*}( U(f);C)=\inf\{||\varphi||_{C}/|<f, \varphi>|\cdot, \varphi\in U(f)\}$,

where $U(f)=\{\varphi\in U(X);<\varphi, f>\neq 0\}$ .
In the special case where $f=\varphi_{\{b\}}-\varphi\{a\}$ as above, it is easily seen that Problem (1.3)

is reduced to the usual min-cut problem.
Strang stated the following duality theorem [4; p.128]:

THEOREM 1.1. Let $G$ be a finite network. Then $M(F(f);C)=M^{*}(U(f);.C)$ holds
and both $Pr$oblems (1.1) and (1.3) have optimal solu tions.

In the next section, we shall begin with proving this theorem which was roughly stated
in [4]. We shall study whether this theorem is valid or not on an infinite network. Related
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to the f-flows, we shall consider an extremum problem which is analogous to the extremal
width of $a$ and $b$ (cf. [5]).

2. Max-flow min-cut theorem on a finite network
In this section, we always assume that $G$ is a finite network, i.e., $X$ and $Y$ are finite

sets. To apply the duality theory in [2], we shall formulate Problem (1.1) as a usu$a1$ linear
programming problem on paired spaces.

Let us take

$\mathcal{X}=\mathcal{Y}=L(Y)\cross R,$ $Z=\mathcal{W}=L(X)\cross L(Y)\cross L(Y)$ ,
$\mathcal{P}=L(Y)\cross R,$ $\mathcal{Q}=\{0\}\cross L^{+}(Y)\cross L^{+}(Y)$ ,

$Tx=T(w, t)=(\Sigma_{y\in Y}K(\cdot, y)w(y)-tf,$ $w,$ $-w$),
$y_{0}=(0, -1),$ $z_{0}=(0, -C, -C)$ .

Define bilinear functionals:

$(x, y)_{1}=((w, t),$
$(w’, t’))_{1}= \sum_{y\in Y}w(y)w’(y)+tt’$

for $x=(w, t),$ $y=(w’,t’)\in L(Y)\cross R$ ;

$(z, w)_{2}=((u, v, w), (u’, v’, w’))_{2}=<u,$
$u’>+ \sum_{y\in Y}v(y)v’(y)+\sum_{y\in Y}w(y)w’(y)$

for $z=(u, v, w),$ $w=(u’, v’, w’)\in L(X)\cross L(Y)\cross L(Y)$ . Then $\mathcal{X}$ and $\mathcal{Y}$ (resp. $Z$ and
$\mathcal{W})$ are paired linear spaces with respect to $(\cdot, \cdot)_{1}(resp.(\cdot, \cdot)_{2})$ . We see that the quintuple
$\{T, P, Q, y_{0}, z_{0}\}$ is a linear program and

$-M( F(f);C)=\inf\{(x, y_{0})_{1}; x\in P, Tx-z_{0}\in Q\}$.

Denote by $\tau*$ the adjoint of $T$ . Then

$T^{*}(u, w_{1}, w_{2})=( \sum_{x\in X}K(x, \cdot)u(x)+w_{1}-w_{2},$ $-<u,$ $f>$ ).

The dual problem is to find the value

$\tilde{M}^{*}=\sup\{(z_{0}, w)_{2};w\in \mathcal{Q}^{+}, y_{0}-T^{*}w\in \mathcal{P}^{+}\}$ ,

where $\mathcal{P}^{+}$ and $Q^{+}$ are dual cones of $\mathcal{P}$ and $Q$ respectively and given by

$p+=\{0\}\cross\{0\},$ $Q^{+}=L(X)\cross L^{+}(Y)\cross L^{+}(Y)$ .

Rewriting the right hand side of $\tilde{M}^{*}$ , we see that $-\tilde{M}^{*}$ is equal to the value of the
following extremum problem: Minimize the objective function

$\sum_{y\in Y}C(y)[w_{1}(y)+w_{2}(y)]$
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subject to $w_{1},$ $w_{2}\in L^{+}(Y),$ $<u,$ $f>=1$ and

$\sum_{x\in X}K(x, y)u(x)+w_{1}(y)-w_{2}(y)=0$ on $Y$.

Therefore we have

$-\tilde{M}^{*}=V$ $:= \inf\{||u||_{C}; u\in L(X), <u, f>=1\}$ .

Since $\mathcal{X}$ and $Z$ are finite dimensional and 7 and $Q$ are polyhedral cones, there is no
duality gap (cf. [2]), i.e., $M(F(f);C)=\tilde{M}^{*}$ . It follows that $M(F(f);C)=V$. By an easy
calculation, we obtain

(2.1) $V= \min\{||u||_{C}/|<u, f>|;u\in L(X), <u, f>\neq 0\}$,

and hence

(2.2) $V= \min\{||u||_{C}/|<u, f>|;u\in V(f)\}$ ,

where $V(f)=$ { $u\in L(X);0\leq u(x)\leq 1$ on $X,$ $<u,$ $f>\neq 0$ }.
Our next step is to show that $V(f)$ can be replaced by $U(f)$ in (2.2). To do this, we

need a discrete analogue to the coarea formula.

LEMMA 2.1. Let $u\in L^{+}(X)$ and $u(X)=\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\}$ with $\alpha_{0}=0<\alpha_{1}<$

$\alpha_{2}<\cdots<\alpha_{n}$ and put $A_{k}=\{x\in X;u(x)\geq\alpha_{k}\}$ . Then

$\sum_{x\in X}u(x)f(x)=\sum_{k=1}^{n}(\alpha_{k}-\alpha_{k-1})\sum_{x\in A_{k}}f(x)$ .

PROOF. Put $\beta_{k}=\Sigma_{x\in A_{k}}f(x)$ for $0\leq k\leq n$ and let $A_{n+1}=\emptyset$ and $\beta_{n+1}=0$ . By the
relation

$B_{k}$ $:=A_{k}-A_{k+1}=\{x\in X;u(x)=\alpha_{k}\}$ ,

we see that

$\sum_{x\in X}u(x)f(x)$
$= \sum_{k=1}^{n+1}\sum_{x\in B_{k-1}}u(x)f(x)$

$= \sum_{k=1}^{n+1}\alpha_{k-1}(\beta_{k-1}-\beta_{k})$ .

Changing the order of summation, we obtain the desired relation.

LEMMA 2.2. Let $u,$ $\{\alpha_{k}\}$ and $A_{k}$ be the same as above and put $Q_{k}=A_{k}\ominus(X-A_{k})$

for $k=1,$ $\cdots,$ $n$ . Then

$\sum_{y\in Y}C(y)|\sum_{x\in X}K(x, y)u(x)|=\sum_{k=1}^{n}(\alpha_{k}-\alpha_{k-1})\sum_{y\in Q_{k}}C(y)$ .
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PROOF. Note that $B_{j}\cap B_{k}=\emptyset$ if $j\neq k$ and

$| \sum_{x\in X}K(x, y)u(x)|=\alpha_{k}-\alpha_{j}$

if $y\in B_{j}\ominus B_{k}$ and $j<k$ . Note that if the endpoints of $y$ belong to $B_{j}$ , i.e., $\{x\in$

$X;K(x, y)\neq 0\}\subset B_{j}$ , then

$| \sum_{x\in X}K(x, y)u(x)|=0$ .

Put

$\mu_{J^{k}}\cdot=\sum_{y\in B_{j}\ominus B_{k}}C(y)\nu_{J}\cdot=\sum_{y\in Q_{j}}C(y)$

with $\nu_{n+1}=0$ . Then it is easily seen that

$\sum_{k=0}^{J}\mu_{kj}=\sum_{y\in A_{j}\ominus(X-A_{j})}C(y)=\sum_{y\in Q_{J}}C(y)=\nu_{J}$

and similarly

$\sum_{k=j+1}^{n}\mu_{jk}=\sum_{y\in Q_{j+1}}C(y)=\iota/_{J+1}$ .

By the above observation, we have

$\sum_{y\in Y}C(y)|\sum_{x\in X}K(x, y)u(x)|$
$=$ $\sum_{J^{=0}}^{n}\sum_{k=j+1}^{n}\mu_{jk}(\alpha_{k}-\alpha_{j})$

$= \sum_{j=1}^{n}\alpha_{J}\sum_{k=0}^{J}\mu_{kj}-\sum_{j=0}^{n}\alpha_{J}\cdot\sum_{k=j+1}^{n}\mu_{jk}$

$= \sum_{J^{=1}}^{n}\alpha_{J}\cdot\nu_{j}-\sum_{=J0}^{n}\alpha_{j^{U}j+1}$ .

Now we shall prove a fundamental lemma.

LEMMA 2.3. The relation $V=M^{*}(U(f);C)holds$ and th $ere$ exists $\varphi\in U(f)sucl2$ that
$M^{*}(U(f);C)=||\varphi||_{C}/|<\varphi,$ $f>|$ .

PROOF. Let us put $M^{*}=M^{*}(U(f);C)$ . Clearly, $V\leq M^{*}$ . Suppose that $V<M^{*}$ , i.e.,
there exists $\epsilon>0$ such that $M^{*}\geq V+\epsilon$ . Then

(2.3) $||\varphi||_{C}\geq(V+\epsilon)|<\varphi,$ $f>|$
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holds for all $\varphi\in U(f)$ . Since (2.3) holds trivially for $\varphi\in U(X)-U(f),$ $(2.3)$ holds for all
$\varphi\in U(X)$ . For any proper subset $A$ of $X$ , we have $\varphi_{A}\in U(X)$ and by (2.3)

$\sum_{y\in A\ominus(X-A)}C(y)\geq(V+\epsilon)|<\varphi_{A},$
$f>|$ .

Let $u\in V(f)$ and $u(X)=\{\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n}\}$ with $\alpha_{0}=0<\alpha_{1}<\cdots<\alpha_{n}\leq 1$ and put
$A_{k}=\{x\in X;u(x)\geq\alpha_{k}\}$ . Multiplying both sides of the above inequality (with $A=A_{k}$ ))
by $\alpha_{k}-\alpha_{k-1}$ and summing both sides over $k$ , we have by Lemmas 2.1 and 2.2

$||u||_{C}$ $=$ $\sum_{k=1}^{n}(\alpha_{k}-\alpha_{k-1})\sum_{y\in A_{k}\ominus(X-A_{k})}C(y)$

$\geq$ $\sum_{k=1}^{n}(\alpha_{k}-\alpha_{k-1})(V+\epsilon)|<\varphi_{A_{k}},$ $f>|$

$\geq$ $(V+\epsilon)$ $| \sum_{k=1}^{n}(\alpha_{k}-\alpha_{k-1})\sum_{x\in A_{k}}f(x)|$

$=$ $(V+\epsilon)|<u,$ $f>|$ .

Namely we have $V+\epsilon\leq||u||_{C}/|<u,$ $f>|$ for all $u\in V(f)$ , and hence $V+\epsilon\leq V$ . This
is a contradiction. Thus $V=M^{*}$ . Since $U(f)$ contains only a finite number of elements,
there exists $\varphi\in U(f)$ such that $M^{*}=||\varphi||_{C}/|<\varphi,$ $f>|$ .

Summing up (2.2), (2.3) and Lemma 2.3, we complete the proof of Theorem 1.1.

3. Max-flow min-cut theorems on an infinite network
In order to study a max-flow problem on an infinite network, we consider the subset

$F_{0}(f)=F(f)\cap L_{0}(Y)$ of the set of f-flows. In this section, we always assume the following
condition:

(3.1) $f\in L_{0}(X),$ $f\neq 0$ and $<f,$ $1>=0$ .

Let $\{G_{n}\}(G_{n}=<X_{n}, Y_{n}>)$ be an exhaustion of $G$ , i.e., each $G_{n}$ is a finite subnetwork of
$G$ and $\{G_{n}\}$ approximates $G$ increasingly. For simplicity, we assume that $Sf\subset X_{1}$ . Define
$C_{n}\in L^{+}(Y)$ by $C_{n}(y)=C(y)$ for $y\in Y_{n}$ and $C_{n}(y)=0$ for $y\in Y-Y_{n}$ and consider the
following extremum problems:

(3.2) Find $M_{n}=M(F(f);C_{n})$ ;

(3.3) Find $M_{n^{*}}=M^{*}(U(f);C_{n})$ .

We shall be concerned with the limits of $\{M_{n}\}$ and $\{M_{n^{*}}\}$ .

LEMMA 3.1. $\lim_{narrow\infty}M(F(f);C_{n})=M(F_{0}(f))C)$ .
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PROOF. If $w$ is a feasible solution of Problem (3.2), then $w\in L_{0}(Y)$ by the condition
$|w(y)|\leq C_{n}(y)$ on $Y$ , and hence $M_{n}\leq M_{n+1}\leq M(F_{0}(f);C)$ . For any $\epsilon>0$ , there exists
$w\in F_{0}(f)$ such that

$M(F_{0}(f);C)-\epsilon<I(w)$ , $|w(y)|\leq C(y)$ on $Y$.

There exists $n_{0}$ such that $Sw\subset Y_{n}$ for all $n\geq n_{0}$ . Then $w$ is a feasible solution of Problem
(3.2) for $n\geq n_{0}$ , and hence $M(F_{0}(f);C)-\epsilon<I(w)\leq M_{n}$ for all $n\geq n_{0}$ .

We see easily the following:

REMARK 3.2. The value of Problem (3.2) is equal to the value of the following max-flow
problem on $G_{n}$ :

(3.4) Maximize $t$ subject to $w\in L(Y_{n}),$ $|w(y)|\leq C_{n}(y)$ on $Y$ and

$\sum_{y\in Y_{n}}K(x, y)w(y)=tf(x)$
on $X_{n}$ .

Related to Problem (3.3), consider the following min-cut problem on $G_{n}$ :

(3.5) Find $M^{*}( U(f;X_{n});C_{n})=\inf\{\Sigma_{y\in Y_{n}}C_{n}(y)|\Sigma_{x\in X_{n}}K(x, y)\varphi(x) ; \varphi\in U(f;X_{n})\}$,

where $U(f;X_{n})$ is the set of all $\varphi\in L(X_{n})$ such that $\varphi(X_{n})=\{0,1\}$ and $\Sigma_{x\in X_{n}}\varphi(x)f(x)\neq$

$0$ .

LEMMA 3.3. $M_{n}^{*}=M^{*}(U(f;X_{n});C_{n})$ holds and there exists $\varphi\in U(f)$ such that $M_{n}^{*}=$

$||\varphi||_{C_{n}}/|<\varphi,$ $f>|$ .

PROOF. The equality follows from our construction. Problem (3.5) has an optimal solu-
tion $\varphi’\in U(f;X_{n})$ by Theorem 1.1 and the extension $\varphi$ of $\varphi’$ to $X-X_{n}$ by $0$ belongs to
$U(f)$ and satisfies our requirement.

LEMMA 3.4. $\lim_{narrow\infty}M_{n}^{*}=M^{*}(U(f);C)$ and there exists $\varphi\in U(f)$ such that $M^{*}(U(f);C)$

$=||\varphi||_{C}/|<\varphi,$ $f>|$ .

PROOF. By definition, $M_{n^{*}}\leq M_{n+1}^{*}\leq M^{*}(U(f);C)$ is clear. There exists $\varphi_{n}\in U(f)$

such that $M_{n}^{*}=||\varphi_{n}1i_{C_{n}}/1<\varphi_{n},$ $f>|$ . Since $f\in L_{0}(X)$ , it should be noted that the set
$\{|<\varphi, f>|;\varphi\in U(f)\}$ contains only a finite number of real numbers which are apart from
$0$ , so that there exists $\alpha>0$ such that

(3.6) $|<\varphi,$ $f>|\geq\alpha>0$ for all $\varphi\in U(f)$ .

Since $\varphi_{n}(X)=\{0,1\}$ , we may assume that $\{\varphi_{n}\}$ converges pointwise to $\tilde{\varphi}\in L(X)$ by
choosing subsequences if necessary. We see by (3.6) that $\tilde{\varphi}\in U(f)$ . Since $f\in L_{0}(X)$ ,



75

$<\varphi_{n},$ $f>arrow<\tilde{\varphi},$ $f>asnarrow\infty$ . It follows that

$\lim_{narrow}\inf_{\infty}M_{n}^{*}$ $\geq$

$\sum_{y\in Y}\lim_{narrow}\inf_{\infty}C_{n}(y)|\sum_{x\in X}K(x, y)\varphi_{n}(x)|/|<\varphi_{n},$
$f>|$

$\geq$

$\sum_{y\in Y}C(y)|\sum_{x\in X}K(x, y)\tilde{\varphi}(x)|/|<\tilde{\varphi},$
$f>|$

$\geq$ $M^{*}(U(f);C)$ .

This completes the proof.
By Theorem 1.1 and Lemmas 3.1, 3.3 and 3.4 and Remark 3.2, we obtain the following:

THEOREM 3.5. $M(F_{0}(f);C)=M^{*}(U(f);C)$ holds and there exists an optim $\partial 1$ solu-
tion of the $mi$n-cut problem.

In the special case where $f=\varphi_{\{b\}}-\varphi_{\{a\}}$ , this theorem was proved in [5].

4. Extremal width of a network
Denote by $Q(f)$ the set of $al1$ cuts generated by $\varphi\in U(f)$ , i.e.,

$Q(f)=\{S\varphi\ominus(X-S\varphi);\varphi\in U(f)\}$

and consider the following extremum problem of minimizing

$H(W)$
$:= \sum_{y\in Y}r(y)W(y)^{2}$

subject to $W\in L^{+}(Y)$ and

$\sum_{y\in Q}W(y)/|<\varphi,$
$f>|\geq 1$ for all $Q=S\varphi\ominus(X-S\varphi)\in Q(f)$ .

Let $\mu(Q(f))^{-1}$ be the value of this problem. In the case where $f=\varphi_{\{b\}}-\varphi_{\{a\}}$ , this value
is called the extremal width between $\{a\}$ and $\{b\}$ of $N$ in [5].

Denote by $E^{*}(Q(f))$ the set of all feasible solutions of this problem, i.e..

$E^{*}(Q(f))=\{W\in L^{+}(Y);M^{*}(U(f);W)\geq 1\}$ .

Then we have
$\mu^{*}(Q(f))^{-1}=\inf\{H(W);W\in E^{*}(Q(f))\}$ .

We shall consider the extremum problem of finding the following value related to f-flows:

$d^{*}( F_{0}(f))=\inf\{H(w);w\in F_{0}(f), I(w)=1\}$ .

We shall prove
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THEOREM 4.1. Assume Condition (3.1). Then $d^{*}(F_{0}(f))=\mu^{*}(Q(f))^{-1}$ .

PROOF. Let $w\in F_{0}(f),$ $I(w)=1$ and put $W(y)=|w(y)$ . For any $\varphi\in U(f)$ ,

$|<\varphi,$ $f>|$ $=$
$| \sum_{y\in Y}w(y)\sum_{x\in X}K(x, y)\varphi(x)|$

$\leq$

$\sum_{y\in Y}W(y)|\sum_{x\in X}K(x, y)\varphi(x)|$
,

so that $W\in E^{*}(Q(f))$ . Thus $\mu^{*}(Q(f))^{-1}\leq H(W)=H(w)$ , and hence $\mu^{*}(Q(f))^{-1}\leq$

$d^{*}(F_{0}(f))$ . On the other hand, let $W\in L^{+}(Y)$ satisfy $M^{*}(U(f))W)\geq 1$ . Then by Theorem
3.5,

$M(F_{0}(f);W)=M^{*}(U(f);W)\geq 1$ .

For any positive number $t<1$ , there exists $w\in F_{0}(f)$ such that $|w(y)|\leq W(y)$ and
$I(w)>t$ . Clearly $w’$ $:=w/I(w)\in F_{0}(f)$ and $I(w’)=1$ , so that

$d^{*}(F_{0}(f))\leq H(w/I(w))<H(W)/t^{2}$ .

Letting $tarrow 1$ , we have $d^{*}(F_{0}(f))\leq H(W)$ , and hence $d^{*}(Q(f))\leq\mu^{*}(Q(f))^{-1}$ . This com-
pletes the proof.

Related to the above flow problems, let us consider the following extremum problem of
minimizing the Dirichlet sum:

(4.1) Find $d(f)= \inf${$D(u))u\in L(X)$ and $<u,$ $f>=1$ },

where $D(u);=H(du)$ and

$du(y)=-r(y)^{-1} \sum_{x\in X}K(x, y)u(x)$ .

We have the following reciprocal relation:

THEOREM 4.2. Assume Condition (3.1). Then $d(f)d^{*}(F_{0}(f))=1$ .

PROOF. Let $w\in F_{0}(f),$ $I(w)=1$ and $u\in L(X),$ $<u,$ $f>=1$ . Then

$1=<u,$ $f>$ $=$
$\sum_{y\in Y}w(y)\sum_{x\in X}K(x, y)u(x)$

$\leq$ $[H(w)]^{1/2}[D(u)]^{1/2}$ ,

so that $1\leq d(f)d^{*}(F_{0}(f))$ . Denote by $F_{2}(f)$ the closure of $F_{0}(f)$ in the Hilbert space
$L_{2}(Y;r)=\{w\in L(Y);H(w)<\infty\}$ with the inner product

$H(w, w’)= \sum_{y\in Y}r(y)w(y)w’(y)$ .
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Then we have $d^{*}(F_{0}(f))=d^{*}(F_{2}(f))$ . Let $\{w_{n}\}$ be a sequence in $F_{0}(f)$ such that $I(w_{n})$

$=1$ and $H(w_{n})arrow d^{*}(F_{0}(f))$ as $narrow\infty$ . Since $(w_{n}+w_{m})/2\in L_{0}(Y)$ is a f-flow of unit
strength, we see by the standard method that $H(w.-w.)arrow 0$ as $n,$ $marrow\infty$ . There exists
$\tilde{w}\in L_{2}(Y;r)$ such that $H(w_{n}-\tilde{w})arrow 0$ as $narrow\infty$ . Clearly $\tilde{w}\in F_{2}(f)$ and $I(w_{n})arrow I(\tilde{w})$

as $narrow\infty$ . It follows that $I(\tilde{w})=1$ and $d^{*}(F_{2}(f))=H(\tilde{w})$ . For any $w’\in F_{0}(0)(a$ finite
cycle) and for any real number $t$ , we have $\tilde{w}+tw’\in F_{2}(f)$ , so that $H(\tilde{w})\leq H(\tilde{w}+tw’)$ .
By the usual variational method, we have $H(\tilde{w}, w’)=0$ . We see by the same arguement as
in [7] that there exists $\tilde{u}\in D(N)$ such that $d\tilde{u}(y)=\tilde{w}(y)$ on $Y$ . Here $D(N)$ is the set of
all $u\in L(X)$ with finite Dirichlet sum. Notice that $H(\tilde{w}, w_{m}-w_{n})=0$ for all $n,$ $m$ by the
above observation, so that $H(\tilde{w})=H(\tilde{w}, w_{n})$ . It follows that

$<\tilde{u},$ $f>$ $=$
$\sum_{x\in X}\tilde{u}(x)\sum_{y\in Y}K(x, y)w_{n}(y)$

$=$
$\sum_{y\in Y}w_{n}(y)\sum_{x\in X}K(x, y)\tilde{u}(x)$

$=$ $H(w_{n},\tilde{w})=H(\tilde{w})=D(\tilde{u})$ .

Therefore $<f,\tilde{u}/D(\tilde{u})>=1$ , and

$d(f)\leq D(\tilde{u}/D(\tilde{u}))=D(\tilde{u})^{-1}=H(\tilde{w})^{-1}=d^{*}(F_{0}(f))^{-1}$ .

Thus $d(f)d^{*}(F_{0}(f))\leq 1$ . This completes the proof.

Theorems 4.1 and 4.2 were proved in [5] in the case where $f=\varphi_{\{b\}}-\varphi_{\{a\}}$ .
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