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非粘性流のラグランジュ的性質

京大数理研 大木谷耕司 (Koji Ohkitani)

Onset of energy dissipation at a finite time in high Reynolds number three-dimensional

flows, which starts from a smooth initial condition, underlies Kolmogorov’s theory of turbu-

lence. This vaguely suggests a possibility of finite-time blow-up of the enstrophy, the mean

square vorticity, of the Euler equations. Several numerical $simulations^{1,2}$ show a rapid

increase of vorticity, however, neither presence nor absence of singularity was established3 ,

except for axisymmetric $flows^{4,5}$ . In this paper we propose a Lagrangian frozen-in hy-

pothesis as a local vorticity-strain eorrelation in order to better explain the numerically

observed behavior.

We first derive a nonlinear ordinary differential equation which governs the peak value

of the vorticity and strain under the Lagrangian frozen-in hypothesis. This hypothesis is

an immediate extension from the two-dimensional case,6 the validity of the latter was

examined in a recent numerical study of Euler equations.7

The vorticity equation for an inviscid fluid reads(summation implicit for repeated

indices)

$\frac{D\omega_{i}}{Dt}=S_{ij}\omega_{j}$ , (1)

where $\frac{D}{Dt}=\frac{\partial}{\partial t}+(\tau\iota\cdot\nabla)$ denotes the Lagrangian derivative and $S_{ij}= \frac{1}{2}(\partial u_{i}/\partial x_{j}+$

$\partial u_{j}/\partial x_{i});i,j=1,2,3$ the rate-of-strain tensor. Mathematically rigorous bounds8 on the

(Sobolev) norm9 of the velocity have been obtained for flows with 11 $u(x, 0)||_{s}<\infty,$ $(s\geq 3)$
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as

$||u(x, t)\Vert_{s}\leq\Vert u(x, 0)\Vert_{s}\exp(C\exp(CI_{BKM}(t)))$, (2)

$||u(x, t)\Vert_{s}\leq\Vert u(x, 0)\Vert_{s}\exp(CI_{P}(t))$ . (3)

Here, we set $I_{BKM}(t)= \int_{0}^{t}\sup|\omega(x, t’)|dt’$ and $I_{P}(t)= \int_{0}^{t}\sup|S_{ij}(x, t’)|dt’$ and $C$ is a

constant. These bounds implies that if a solution loses regularity at a finite time, then not

only the vorticity but the strain becomes infinite simultaneously. On the other hand, a

possibility for the classical solution to break down with the finite total enstrophy cannot

be ruled out2. Though the estimates do not necessarily imply that increase in vorticity

and strain occur at the same location, we can construct a phenomenological model which

has such a property as a direct consequence.

Suppose that a flow starts from a smooth initial condition. The Lagrangian frozen-

hypothesis means that singular structures, that is, regions with high vorticity and strain

move with an inviscid fluid. We consider the evolution of a particular structure associated

with a particle $a$ or approximately its surrounding neighbors. The hypothesis can be stated

more precisely as follows.

First, we suppose from the results of numerical simulation2 that i) the vorticity aligns

with the strain eigenvector;

$S_{ij}(a,t)\omega_{j}(a,t)=\lambda_{2}(a,t)\omega_{i}(a,t)$, (4)

associated with the second largest eigenvalue $\lambda_{2}(a, t)>0$ of $S_{ij}$ . (Three eigenvalues of

$S_{ij}$ are denoted by $\lambda_{1},$ $\lambda_{2},$ $\lambda_{3}$ , where $\lambda_{1}\geq\lambda_{2}\geq\lambda_{3}.$ ) If i) is valid from $t=0$, then we

have formally $\omega(a,t)=\omega(a, 0)\exp\int_{0}^{t}\lambda_{2}(a, t’)dt’$ for $t>0$ , implying that rapid growth in

vorticity and strain occur at the same particle.
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Here we introduce two quantities $A$ and $r$ . One is the difference between vorticity and

strain,

$A(a, t)=\omega_{i}^{2}(a, t)/2-S_{ij}^{2}(a,t)$ . (5)

Note that $A$ represents a nonlocal $effect^{1}$ due to the pressure, because we have $A(a, t)=$

$\nabla^{2}p$ from $Du/Dt=-\nabla p$ . The other $r$ specifies the ratio of the relevant eigenvalue to the

strain (equivalent to assigning a ratio between two eigenvalues including $\lambda_{2}$ )

$r(a, t)=\lambda_{2}(a, t)/(S_{ij}^{2}(a,t))^{\frac{1}{2}}$ . (6)

Because of the incompressibility condition and $\sum_{i=1}^{3}\lambda_{i}^{2}=S_{ij}^{2}$ , we have $|\lambda_{2}|\leq(S_{ij}^{2})^{\frac{1}{2}}/\sqrt{6}$ . In

terms of $r$ and $A$ , the maximum vorticity $q(t)=|\omega(a, t)|^{2}/2$ satisfies a nonlinear ordinary

differential equation

$\frac{dq}{dt}=2rq\sqrt{q-A}$ . (7)

Now we make two assumptions by extending the consequences of Weiss’ hypothesis6

for two-dimensional flows into three dimensions. Because strain and vorticity compete

with each other while growing, it is likely that (ii) the (positive) difference $A$ changes more

slowly in time than themselves. Finally, we assume that (iii) $r$ also varies slowly in time.

This is true when $\lambda_{2}$ has the same asymptotic time dependence as $\lambda_{1}$ (or $\lambda_{3}$ ). It should be

noted that without the assumption (iii) the following relations (8)$-(10)$ hold as inequalities

with $r=1/\sqrt{6}$ , which bound the left hand sides from above because $r(a, t)<1/\sqrt{6}$ .

We will mainly consider the simplest case where $A(a)$ and $r(a)$ are strictly time-

independent. In this case, (7) is solved as

$q(t)= \frac{A}{\sin^{2}\{r\sqrt{A}(t_{*}-t)\}}$ (8)
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where $t_{*}$ is a constant denoting the blowup time, constrained by $r\sqrt{A}t_{*}<\pi/2$ to ensure

a monotonic increase of $q$ and $s$ . The strain $s(t)=S_{ij}(a, t)^{2}$ correspondingly behaves as

$s(t)= \frac{A}{\tan^{2}\{r\sqrt{A}(t_{*}-t)\}}$ (9)

If (7) were to hold with $A<$ O,we would have $q(t)=B/\sinh^{2}\{r\sqrt{B}(t_{*}-t)\}$ , and $s(t)=$

$B/\tanh^{2}\{r\sqrt{B}(t_{*}-t)\}$ with $B=-A$ . However, this is unrealistic because of a numerical

fact that vorticity is larger than strain at the point of peak vorticity (see below). As $tarrow t_{*}$ ,

we have

$q(t) \approx s(t)\approx\frac{1}{r^{2}(t_{*}-t)^{2}}$ , (10)

When $|r\sqrt{A}(t_{*}-t)|$ is not small, the evolution is more complicated than purely algebraic.

Actually, we will show that such evolution can appear to be exponential. This provides a

possible explanation as to why it is difficult to observe finite-time blowup directly.

From (8) and(9), the integrals in the estimates (2),(3) are obtained as $I_{BKM}(t)=$

$\frac{\sqrt{2}}{r}\log\frac{\tan\{r\sqrt{A}t_{*}/2\}}{\tan\{r\sqrt{A}(t_{*}-t)/2\}}$ and $I_{P}(t)= \frac{1}{r}\log\frac{\sin\{r\sqrt{A}t_{*}\}}{\sin\{r\sqrt{A}(t_{*}-t)\}}$, where the frozen evolution is as-

sumed to begin at $t=0$ . Both of these become infinity at $t=t_{*}$ so that if the hypothesis

persists it implies the the breakdown of the solution. We must be careful in using these

integrals to monitor the singularity numerically, because they grow much slowly than vor-

ticity and strain themselves. Note that (7) includes the more intuitive (local) model11

$D\omega/Dt=S\omega\sim\omega^{2}$ , in the limit $Aarrow 0$ .

Here we briefly consider how (8) works in more general cases. This can be seen by

calculating $dq/dt$ using (8) with time-dependent $r$ and $A$ ,

$\frac{dq}{dt}=2rq\sqrt{q-A}[1+\frac{\dot{A}}{2r\sqrt{A}A}\tan\{r\sqrt{A}(t_{*}-t)\}-(\frac{\dot{r}}{r}+\frac{\dot{A}}{2A})(t_{*}-t)]$ , (11)
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where the overdot denotes $d/dt$ . When $r\sqrt{A}(t_{*}-t)$ is not very close to $\pi/2$ and $A(a, t)$ ,

$r(a, t)$ are slowly varying; $\dot{A}/A,\dot{r}/r\ll 1$ with $t_{*}=O(1)$ , the second and third terms in

the brackets can be neglected and (8) is an approximate solution to (7). We note that

precise structure of the vorticity field cannot be determined at the crude level of the present

phenomenology. Furthermore, the values of $r$ and $A$ are expected to depend on the initial

condition, even if they are nearly constant.

Now we examine the above predictions together with the underlying hypotheses by

numerical simulation using a 2/3-dealiased pseudo-spectral method with 128 grid points.

Time marching was done by the second-order Runge-Kutta method. The initial condition

is a phase-randomized field whose energy spectrum $E(k)$ is 1 for $k\leq 3$ and $0$ otherwise.

To obtain the Lagrangian characteristics we trace $128^{3}$ particles subject to the flow with

$x(a,t=0)=a$;

$\frac{dx(a,t)}{dt}=u(x(a,t),$ $t$ ), (12)

by interpolating the velocity with the second-order accurate TS13 scheme12. The vorticity

in $a$ -space is obtained as $\overline{\omega}(a,t)=\omega(x(a, t),t)$ , again using interpolation.

To check the accuracy we fit the spectrum as $E(k)\propto k^{-\alpha}\exp(-\mu k)$ in $k\geq 5$ . The

analyticity distance is $\mu=9.7\cross 10^{-2},8.2\cross 10^{-2},4.9\cross 10^{-2}(\approx 128/2\pi)$ and $2.8\cross 10^{-2}$ for

$t=0.5,0.6,0.7$ and 0.8. The computation is regarded as reliable for $t<0.7\sim$ . The energy

spectra at these times are plotted in Fig.1. The rapid fall-off at highest wavenumbers

disappears at $t=0.8$ which indicates numerical inaccuracy at this time. Indeed, contours

of high vorticity regions, which are rather smooth at $t=0.7$ (see Fig.5 below), display

some numerical oscillations at $t=0.8$ (not shown). Accuracy in $a$ -space is firstly checked
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by the equivalence of enstrophy $x$ -and $a$ -spaces; they differ only by $6\cross 10^{-4},2\cross 10^{-3}$

in relative error at $t=0.7,0.8$ . A further check is done by the Cauchy’s integral

$\overline{\omega}(a,t)=\overline{\omega}(a, 0)\cdot\frac{\partial}{\partial a}x(a,t)$, (13)

at $t=0.1$ . The right hand side computed by a second-order finite difference for $\triangle x_{1}$

agrees with the left hand side within 1% of relative error, at 91% of grid points where

$|\triangle x_{1}/\triangle a_{1}|\leq 1$ etc. We consider this satisfactory because (13) is true only when such a

difference can be regarded as a derivative.

To test hypothesis i), we plot the time evolution of the direction cosines between

vorticity and the three eigenvectors of $S_{ij}$ at the point of maximum vorticity (Fig.2).

The vorticity monotonically tends to align with the second eigenvector. Actually, initially

violent vortex stretching starts at the point of maximum vorticity rather than maximum

strain. Thus, strong vorticity makes the nearby strain grow, not the converse.

Time evolution of $100\log q(t),$ $100\log s(t)$ and $q(t),$ $s(t)$ at the point of maximum vor-

ticity are shown in Fig.3. From the logarithmic plot, $q(t)$ appears to grow exponentially

consistent with other simulations1 and so does $s(t)$ at later times. A crucial observation

is obtained in the linear plot that $q(t)$ and $s(t)$ grow with their difference approximately

constant. More precisely, in $0\leq t\leq 0.7$ , it changes about 10% with respect to its mean

while $q(t)$ grows by a factor of 5.8 and $s(t)$ by 31. This supports the hypothesis, ii).

We show evolution of $\frac{1}{r\sqrt{A}}Sin^{-1}\sqrt{\frac{A}{q}}$ by squares in Fig.4. At later times, it roughly

behaves $as\propto(t_{*}-t)^{-1}$ . This is expected from (8) for constant $A$ and $r$ . A least-s$\dot{q}uares$

fit by $(t_{*}-t)^{-1}$ in $0.5\leq t\leq 0.7$ estimates $t_{*}\approx 1.25$ . In Fig.4, we also plot evolution of $r$

(triangles) and $\frac{1}{(t_{*}-t)\sqrt{A}}$ Sin$-1\sqrt{\frac{A}{q}}$ (circles) with $t_{*}=1.25$ . A good coicidence between the

6
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two in $t\geq 0.4$ shows consistency of (8) and supports iii).

The locations of the maximum vorticity in $x$ -space are (9,26,96),(3,26,88), (3,28,87),

(5,30,86),(6,32,87),(7,33,87),(8,34,87),(8,34,85) and (7,34,84) in mesh units for $t=0,0.1$ ,

..,0.8. In $a$ -space they are(9,26,96),(3,23,87),(2,22,86),(2,22,86), (3,23,85),(4,24,84),

(4,24,83),(4,25,82) and (3,24,83). The point moves roughly in the $x_{2}$ direction in $x$ -space,

but is almost fixed in $a$ -space.

In Fig.5 the sectional contours of $q$ centered on the point of maximum vorticity is

plotted in $x$ -space at $t=0.7$. The high vorticity regions take the form of $sheets^{1,2}$ .

The shaded high strain regions indeed occupy the same location13 consistent with the

hypothesis (ii). Examination of contours at earlier times show that $x_{2}$ is roughly normal

to the sheet. In Fig.6 similar plots are made in $a$ -space, where the high vorticity regions

take the form of blobs. This suggests that vorticity is more localized in $a$ -space than in

$x$ -space, consistent with Lagrangian frozen-in hypothesis.

Because of a limited resolution, the present result cannot be taken as an evidence of

finite-time singularity. However, it suggests that the nonlocal effect due to the pressure

makes difficult the direct observation of blowup. It may be interesting to apply the present

model for axisymmetric flows which were reproted to blow $up^{4,5}$ .
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Figure Captions

Figure 1. Energy spectra at times $t=0.5$ (solid), 0.6(dashed), 0.7(dash-dotted) and

0.8(dash-double-dotted).

Figure 2. Time evolution of the squared direction cosines at the point of maximum vor-

ticity between vorticity and the first (circles), second (triangles) and third(squares) eigen-

vector of the strain tensor. Their sum is unity.

Figure 3. Time evolution of q(t)(circles) and s(t)(squares), 1001ogq(t)(triangles) and

$100\log s(t)(plusses)$ at the point of maximum vorticity. Note that the difference between $q$

and $s$ is almost constant.

Figure 4. Time evolution of $\frac{1}{r\sqrt{A}}Sin^{-1}\sqrt{\frac{A}{q}}$ (squares).The dashed line is determined by

least-squares fit in $0.5\leq t\leq 0.7$ . Time evolution of $r$ (triangles) and $\frac{1}{(t_{*}-t)\sqrt{A}}Sin^{-1}\sqrt{\frac{A}{q}}$

(circles). Note that $r<1/\sqrt{6}\approx 0.408$ .

Figure 5. Sectional contours of vorticity centered at the maximum point of vorticity in

x-space $(-\pi\leq x_{1}\leq\pi, 0\leq x_{2}, x_{3}\leq 2\pi)$ at $t=0.7$. Regions whose strain is larger than

80% of its maximum in the plane are shaded.

Figure 6. Sectional contours of vorticity centered at the maximum point of vorticity in a-

space at $t=0.7$ plotted as in Fig.5
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