グラフの上のランダムな衝突モデル
 A RANDOM COLLISION MODEL ON GRAPHS

統計数理研究所•総合研究大学院大学 伊藤 栄明
Yosiaki Itoh
The Institute of Statistical Mathematics
and The Graduate University for Advanced Studies

We investigate a random collision model on graphs which is an ide－ alized situation for interacting types．The types may represent species， genotypes，brands，factions or other classifications．

Consider a graph G of a finite nonempty set $V=V(G)$ of p points together with a specified set $X(G)$ of q unordered pairs of distinct points． A pair $x=\{u, v\}$ of points in X is called a line of G and x is said to join u and v ．The points u and v are adjacent，u and v are incident with each other，as are v and x ．
$W\left(u_{1}, u_{2}, \cdots, u_{k}\right)$ is the set of all pairs of distinct points $u_{1}, u_{2}, \cdots, u_{k}$ ． We consider a population of paricles of p types， $1,2, \cdots, p$ which consist of $N_{1}(t), N_{2}(t), \cdots, N_{p}(t)$ respectively at time t ．We write

$$
\begin{equation*}
\vec{N}(t)=\left(N_{1}(t), N_{2}(t), \cdots, N_{p}(t)\right) \tag{1}
\end{equation*}
$$

It is assumed that initially $\vec{N}(0)=\vec{\alpha}$ ，that in each unit of time a pair of particles are chosen at random from the n particles，and that all possible pairs are equiprobably chosen．There exist adjacency relations between the types as defined by the graph G ，with points $V(G)=\{1,2, \cdots, p\}$ and adjacencies $X(G)$ ．Further it is assumed that a choice of a pair of particles of different types i and j ，for which $(i, j) \in X(G)$ ，changes the pair of particles of the type i with probability $\frac{1}{2}$ and of the type j with probability $\frac{1}{2}$ ．A choice of a pair of particles of different types $(i, j) \in W(V)-X(G)$ does not make any effect，as well as a choice of a pair of the same type．

For each point $i \in V(G)$ ，consider variable $x_{i} . S_{k}\left(x_{1}, x_{2}, \cdots, x_{p}\right)$ is k－th order elementary symmetric function．$W\left(u_{1}, u_{2}, \cdots, u_{k}\right)$ is the set of all pairs of distinct points $u_{1}, u_{2}, \cdots, u_{k}$ ．Let $|S|$ be the number of the elements of the set S ．Consider

$$
\begin{equation*}
T_{k, l}\left(x_{1}, x_{2}, \cdots, x(p)\right)=\sum_{\left|W\left(u_{1}, u_{2}, \cdots, u_{k}\right) \cap X(G)\right|=l} x_{u_{1}} x_{u_{2}} \cdots x_{u_{k}} \tag{2}
\end{equation*}
$$

$\{N(t), t=0,1,2, \cdots\}$ is a Markov chain with transition probabilities defined by

$$
\begin{equation*}
\operatorname{Pr}\left(\vec{N}(t+1)=\vec{n}_{i j} \mid \vec{N}(t)=\vec{n}\right)=\frac{n_{i} n_{j}}{n(n-1)} \tag{3}
\end{equation*}
$$

for $(i, j) \in X(G)$ ，where $\vec{n}=\left(n_{1}, n_{2}, \cdots, n_{p}\right), n=\sum_{i=1}^{p} n_{i}, \overrightarrow{n_{i j}}$ is a vec－ tor with i－th component $n_{i}+1, j$－th component $n_{j}-1$ ，and all other components equal to those of \vec{n} ．We have

$$
\begin{equation*}
\operatorname{Pr}(N(t \vec{t}+1)=\vec{n} \mid \vec{N}(t)=\vec{n})=\sum_{i=1}^{p} \frac{n_{i}^{2}}{n(n-1)}+\sum_{(i, j) \in W(V)-X(G)} \frac{2 n_{i} n_{j}}{n(n-1)} \tag{4}
\end{equation*}
$$

Theorem．Let $Q(t)$ be the number of existing types at time t ．

$$
\begin{equation*}
\operatorname{Pr}(Q(t) \geq k) \geq \frac{T_{k, 0}(\vec{N}(0))}{{ }_{M} C_{k}\left(\frac{n}{M}\right)^{k}} \tag{5}
\end{equation*}
$$

where $M=\max \left\{k \| W\left(u_{1}, u_{2}, \cdots, u_{k}\right) \cap X(G) \mid=0\right\}$ ．

参考文献

［1］Itoh，Y．（1973）．On a ruin problem with interaction，Ann．Inst． Statist．Math．，25，635－641
［2］Itoh，Y．（1979）．Random collision models in oriented graphs，J．Appl． Prob．，16，36－44
［3］Itoh，Y．（1982）．Random cllision models on graphs，Pacific Area Statistical Conference，27－30
［4］Harary，F．（1969）．Graph theory，Addison－Wesley Publishing Com－ pany，Inc．，Massachusetts．

