グラフの上のランダムな衝突モデル A RANDOM COLLISION MODEL ON GRAPHS

統計数理研究所・総合研究大学院大学 伊藤 栄明 Yosiaki Itoh The Institute of Statistical Mathematics

and The Graduate University for Advanced Studies

We investigate a random collision model on graphs which is an idealized situation for interacting types. The types may represent species, genotypes, brands, factions or other classifications.

Consider a graph G of a finite nonempty set V = V(G) of p points together with a specified set X(G) of q unordered pairs of distinct points. A pair $x = \{u, v\}$ of points in X is called a line of G and x is said to join u and v. The points u and v are adjacent, u and v are incident with each other, as are v and x.

 $W(u_1, u_2, \dots, u_k)$ is the set of all pairs of distinct points u_1, u_2, \dots, u_k . We consider a population of paricles of p types, $1, 2, \dots, p$ which consist of $N_1(t), N_2(t), \dots, N_p(t)$ respectively at time t. We write

$$\vec{N}(t) = (N_1(t), N_2(t), \cdots, N_p(t))$$
(1)

It is assumed that initially $N(0) = \vec{\alpha}$, that in each unit of time a pair of particles are chosen at random from the *n* particles, and that all possible pairs are equiprobably chosen. There exist adjacency relations between the types as defined by the graph *G*, with points $V(G) = \{1, 2, \dots, p\}$ and adjacencies X(G). Further it is assumed that a choice of a pair of particles of different types *i* and *j*, for which $(i, j) \in X(G)$, changes the pair of particles of the type *i* with probability $\frac{1}{2}$ and of the type *j* with probability $\frac{1}{2}$. A choice of a pair of particles of different types $(i, j) \in W(V) - X(G)$ does not make any effect, as well as a choice of a pair of the same type.

For each point $i \in V(G)$, consider variable x_i . $S_k(x_1, x_2, \dots, x_p)$ is k-th order elementary symmetric function. $W(u_1, u_2, \dots, u_k)$ is the set of all pairs of distinct points u_1, u_2, \dots, u_k . Let |S| be the number of the elements of the set S. Consider

$$T_{k,l}(x_1, x_2, \cdots, x(p)) = \sum_{|W(u_1, u_2, \cdots, u_k) \cap X(G)| = l} x_{u_1} x_{u_2} \cdots x_{u_k}$$
(2)

 $\{N(t), t = 0, 1, 2, \dots\}$ is a Markov chain with transition probabilities defined by

$$Pr(\vec{N}(t+1) = \vec{n}_{ij} \mid \vec{N}(t) = \vec{n}) = \frac{n_i n_j}{n(n-1)}$$
(3)

for $(i, j) \in X(G)$, where $\vec{n} = (n_1, n_2, \dots, n_p)$, $n = \sum_{i=1}^p n_i$, $\vec{n_{ij}}$ is a vector with *i*-th component $n_i + 1$, *j*-th component $n_j - 1$, and all other components equal to those of \vec{n} . We have

$$Pr(N(\vec{t}+1) = \vec{n} \mid \vec{N}(t) = \vec{n}) = \sum_{i=1}^{p} \frac{n_i^2}{n(n-1)} + \sum_{(i,j) \in W(V) - X(G)} \frac{2n_i n_j}{n(n-1)}$$
(4)

Theorem. Let Q(t) be the number of existing types at time t.

$$Pr(Q(t) \ge k) \ge \frac{T_{k,0}(\vec{N}(0))}{{}_{M}C_{k}(\frac{n}{M})^{k}}$$

$$\tag{5}$$

where $M = max\{k \mid | W(u_1, u_2, \dots, u_k) \cap X(G) | = 0\}.$

参考文献

- [1] Itoh, Y. (1973). On a ruin problem with interaction, Ann. Inst. Statist. Math., 25, 635-641
- [2] Itoh, Y. (1979). Random collision models in oriented graphs, J.Appl. Prob., 16, 36-44
- [3] Itoh, Y. (1982). Random cllision models on graphs, Pacific Area Statistical Conference, 27-30
- [4] Harary, F. (1969). Graph theory, Addison-Wesley Publishing Company, Inc., Massachusetts.