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\S Introduction

0.1 We would like to introduce you to the theory of mixed Hodge modules which
is inaugurated and built up by Morihiko Saito [S1,2]. This is a generalization of
Deligne’s mixed Hodge theory and gives us a tool in parallel with the theory of
constructible sheaves (or complexes) in the classical topology on complex analytic
spaces or in the \’etale topology on algebraic varieties over a field.

This exposition is intended to be slightly technical and contains precise defini-
tions, main results and indications on their proofs. For a person who needs only
the main results, there is a short neat exposition by Saito himself [S3].

We made efforts for this exposition to be comprehensible and omitted proofs
of the results, for which we indicated their sources. This exposition is not self-
contained being a part of a series of lectures prepared to learn mixed Hodge modules,
which was given during the workshop “Algebraic Geometry and Hodge theory” at
RIMS, December 1991.

Among others we assume the following prerequisites :
(1) on D-modules, perverse sheaves and the Riemann-Hilbert correspondence,

$cf.[H],[Bo],[BBD]$ ,
(2) on variations of (mixed) Hodge structures (or peri$od$ maps) and their ex-

tensions, $cf.[U],[Sc],[CK],[SZ]$ ,
(3) on vanishing-cycle functors for D-modules, $cf.[MuS],[Sa]$ .

This exposition does not include applications of mixed Hodge modules. As to
Koll\’ar’s conjecure and the Kodaira vanishing, Masahiko Saito’s exposition $[MaS]$

in this volume. As to the representation theory, $cf.[T],[L]$ . As to the Hodge(-type)
conjectures, cf.[S13].

We briefly explain the contents, cf.the contents below.
In \S 1, we give the filtered version of materials (direct images, vanishing-cycle

functors, etc.), treated in $[H],[MuS]$ . These are necessary to give the definition of
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Hodge modules and their polarization, which is the theme of \S 2. We also state
two basic results (2.4.2, 2.4.4) relating polarizable Hodge nodules and polarizable
variations of Hodge structure. The former result relies on the stability theorem
in \S 4 and the latter one relies on the combinatorial description of D-modules (or
perverse sheaves) in the normal crssing situation, cf.5.3.

In \S 3 we give the definition of mixed Hodge modules. The theory of gluing mixed
Hodge modules is stated as an application of Beilinson’s functor $\xi_{g}$ . The definition
of standard operations is given in 3.4 and the treatment of derived category is
briefly mentioned in 3.5. To understand these topics, a certain knowledge of sheaf
theory is indispensable.

In order to lower the burden, we pretended in the main text to work on smooth
spaces. This attitude is guaranteed by the consideration in \S Appendix.

We recollected in \S \S Complements the definitron of and comments on key techni-
cal notions : strictness (C.I.I,C.1.2), compatible filtrations (C.1.3), relative mon-
odromy filtrations (C.2).

CONTENTS
\S Introduction
\S 1 Filtered D-modules

\S 1.1 Induced filtered D-modules; \S 1.2 Filtered differential complexes and opera-
tions; \S 1.3 Vanishing-cycle functors

\S 2 Hodge modules
\S 2.1 Filtered D-modules with k-structure and strict support decomposition; \S 2.2
Definition of Hodge modules; \S 2.3 Polarization for Hodge modules; \S 2.4 Varia-
tions of Hodge structure and Hodge modules

\S 3 Mixed Hodge modules
\S 3.1 Specialization and prolongation; \S 3.2 Mixed Hodge modules; \S 3.3 More
about the extendability; \S 3.4 Standard operations; \S 3.5 Derived category of
mixed Hodge modules

\S 4 Stability and decomposition theorem
\S 5 Admissible variations and mixed Hodge modules
\S Appendix--Hodge modules on singular spaces
\S Complements l–Strictness and compatible filtrations-
\S Complements 2–Relative monodromy filtrations-
\S References

0.2 Motivations for mixed Hodge modules
There are several motivations to introduce the notion of mixed Hodge modules.

The first is the Hodge theory with degenerating coefficients ( $=VHS$ , i.e., variations
of Hodge structure) over a curve by Zucker [Z1], which includes the case of coho-
mology of open varieties. Its relativization or localization was an issue. It is also
related to the third motivation.
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The second is the problem of finding a notion of “good” variations of mixed
Hodge structure ( $=$ VMHS) in the sense of Deligne [Weil II, 1.8.14-15]. This is
tightly related with the above issue and is answered by the notion of admissible
VMHS by Steenbrink-Zucker [SZ] and Kashiwara [K1], cf.[S2,3.27].

The third is the problem of showing existence of pure Hodge structure on in-
tersection cohomologies of singular algebraic varieties over the field of complex
numbers C. Brylinski formulated a conjecture on this problem using Kashiwara-
Kawai’s canonical good filtration of regular holonomic D-modules, which turned
out to be intractable.

For this problem, there was a model to follow, namely, the theory of mixed
perverse sheaves by Beilinson-Bernstein-Deligne-Gabber [BBD] over algebraic vari-
eties defined over finite fields. It gave us the so-called decomposition theorem which
holds also for VHS of geometric origin over varieties over C. Thus finding a proof
of it without methods in characteristic $p$ is the fourth motivation.

Below these motivations, there immersed, as an analogy or a phylosophical sup-
port, yoga of weights of Grothendieck, which was a strong impetus to Deligne’s
mixed Hodge theory or to the weight formalism.

$a$

0.3 We enumerate more techinical motivations for the notion of mixed Hodge
modules.

First, consideration of limit (or limiting) mixed Hodge structure [Sc,St] led to
the study of nearby-cycle functors for one-parameter families. Its generalization
to the case of higher dimensional base constitutes a step in the proof of stability
$IS1,5.3.1]$ .

Second, the theory of Brieskorn lattices [S9] required a fine study of (microlo-
cal version of) Gauss-Manin systems or projective direct images and led to the
nomination of “V-filtration”.

Third, the interpretation of VHS in terms of D-modules led to use systematically
filtered D-modules and the strictness C.1.2 of their de Rham complexes led to the
notion of filtered differential complexes.

Fourth, the key to the inductive definition of mixed Hodge modules and their
polarizations was Gabber’s theorem which states that the (relative) monodromy
filtration equals the weight filtration in the $p$-adic situation.

Finally, Beilinson’s work on the derived category of perverse sheaves [B1] served
as a model for deriving standard functors for mixed Hodge modules (6 operations
of Grothendieck and $\psi,$ $\phi$ ).

0.4 Some cautions and indications to the reader are in order.
A complex space always means a separated and reduced complex analytic space.

An algebraic variety (over C) means a separated reduced scheme of finite type over
$\mathbb{C}$ .

We consider only right D-modules in this exposition. We sometimes omit the
adjetive “right”. The reader who likes left ones may consult the summary in [S5].
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The reader is recommended to look quickly \S Complements 1 at the end of this
exposition. \S 1 may be omitted and refered when necessary except the preparation
on nearby and vanishing cycle functors. \S Complements 2 may be refered to when
the reader doesn’t know the relative monodromy filtration.

We abbreviate the adjective “ quasi-unipotent and regular” (cf.1.3.3) as “q-r”
throughout this exposition.
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\S 1 Filtered D-modules

We give preparations on filtered versions of standard notions in the theory of
D-modules, especially vanishing-cycle functors.

\S 1.1 Induced filtered D-modules

1.1.1 The sheaf of rings of (linear) differential operators with holomorphic co-
efficients $D_{X}$ on a complex manifold $X$ (of complex dimension $D_{X}$ ) is naturally
filtered by the order of operators : $F_{p}D_{X}=\{P\in D_{X}|ordP\leq p\}$ .

A right filtered D-modules or $(D, F)$-module $(M, F)$ is, by definition, a right
D-module endowed with an increasing filtration $\{F_{p}M\}$ which is exhaustive (i.e.
$\bigcup_{p}FpM=M)$ , (locally) discrete (i.e. $F_{p}M=0(p\gg 0)$ and compatible with
$(D, F)$ (i.e. $F_{p}M\cdot F_{q}D\subset F_{p+q}M(\forall p,$ $q)$ ). Right filtered D-modules form an exact
category $MF(D_{X})$ . In fact, $MF(D_{X})$ is a full subcategory of the category of graded
modules over the graded ring (Rees ring) $\oplus_{p}F_{p}D$ (which are locally discrete).

1.1.2 In order to treat operations on filtered D-modules, we introduce the notion
of induced D-modules. To a filtered $\mathcal{O}_{X}$ -module $(L, F)$ (which is locally discrete),
we associate a filtered D-module $(M, F)=:(L, F)\otimes o(D_{X}, F)$ :

$M=L\otimes_{\mathcal{O}}D_{X}$

$F_{p}M= \sum_{i}F_{p-i}L\otimes F_{i}D_{X}$

A filtered D-modules obtained in this way is called an induced (filtered) D-module.
There is a canonical resolution of $(\mathcal{O}, F)$ by induced modules :

$(D_{X}\otimes_{\mathcal{O}}\wedge^{-}T_{X}, F)arrow(\mathcal{O}, F)$

$F_{p}((D_{X}\otimes_{\mathcal{O}}\wedge^{-i}T_{X})=F_{p+i}\otimes\wedge^{-i}T_{X}$

It is locally isomorphic to the Koszul complex $(D_{X}; \partial_{i}(1\geq i\geq d_{X}))[d_{X}]$ .
Using this, we obtain the following:

Lemma 1.1.3. For a filtered D-module $(M, F)$ , we $have$ a filtered resol$u$ tion by
induced modules :

$(M, F)\otimes(D_{X}\otimes 0\wedge^{-}T_{X}, F)arrow(M, F)$

We can prove this lemma by taking $Gr^{F}$ of the morphism.
We recall the derived categories of filtered (induced) D-modules very briefly. For

their definitions, see [Sl, \S 2].
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Proposition 1.1.4. We $h$ave the following commutative diagram of functors: $(\star=$

$b,$ $+,$ $-,$ $\infty$)
$D^{\star}F_{i^{f}}(D_{X})|\downarrow$

$arrow$

$D^{\star}F_{i}(D_{X})1\downarrow$

;
$D^{\star}F(D_{X})|\downarrow$

$DF_{i^{f}}(D_{X})^{\star}$ $arrow$ $DF_{i}(D_{X})^{\star}$ ; $DF(D_{X})^{\star}$ .
$Herearrow-means$ equivalence of categories $andarrow means$ fully faith$ful$.

Comments on the notations : $D^{\star}F()$ denotes the derived category obtained
starting from the category of complexes with boundedness condition $\star$ while $DF()^{\star}$

denotes the subcategory of $DF()$ consisting the objects with boundedness condition
$\star$ on their cohomologies. The superscript $f$ in the first row means the condition :

$G_{i}(M, F):=((F_{i}M)D_{X}, F)=(M, F)$ $i\gg O$ (loc)

while the superscript $f$ in the second row means the condition :

$Gr^{F}Gr_{i}^{G}(M, F)$ is acyclic $i\gg O$ (loc.)

The meaning of the following theorem is clear.

Proposition 1.1.5. We have $tl_{i}e$ equivalence of $ca$tegories:

$D_{c}^{b}$

。
$hF_{i^{f}}(D_{X})arrow-D_{C}^{b}$

。
$hF(D_{X})$ ,

where the left $h$an$d$ side $con$sists of objects $(M, F)$ satisfying the condition :

$\mathcal{H}^{j}Gr_{i}^{F}Gr_{i}^{G}$ M’is coheren $t_{01^{\gamma}}er\mathcal{O}_{X}\forall i,j$

The proof is reduced to the following :

Lemma. Let $(M, F)$ be an object of $MF(D_{X})$ such that $Gr^{F}M$ is coheren$t$ over
$Gr^{F}D_{X}$ . Then there exist a filtered quasi-isomorphism $(L, F)arrow(M, F)$ such that

$L^{j}=0$ for $j\not\in[-2d_{X}, 0]$

$(L^{j}, F)=\oplus_{p}L_{p}^{j}\otimes o_{X}(D_{X}, F[p])$

The proof is carried out as follows. We can find a resolution $(L, F)$ satisfying
the second condition in the lemma. Then we put

$(K, F)=Ker((L^{-2d_{X}+1}, F)arrow(L^{-2d_{X}+2}, F))$ .

To check that it is induced, free of finite type, one notes that $Gr^{F}K$ is locally a
direct factor of $Gr^{F}L^{-2d_{X}+1}$ since

$Ext_{GrD}^{i}(Gr^{F}K, N)\cong Ext_{GrD}^{i+2d_{X}}(Gr^{F}M, N)=0$ .
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Then one can conclude by Nakayama’s lemma.

\S 1.2 Filtered differential complexes and operations

1.2.1 In order to treat the direct image, one introduces the notion of filtered
differential complexes.

Put
$DR(M):=M\otimes_{D_{X}}\mathcal{O}$

for a right D-module. If $M$ is an induced module $L\otimes o_{X}D_{X}$ , then we have

$DR(M)=L$.
Consider the following functor:

$DR:M_{i}(D_{X})arrow M(\mathbb{C}_{X})$ .
It is faithful, i.e.,

$Hom_{D}(M_{1}, M_{2})arrow Homc(DR(M_{1}), DR(M_{2}))$

is injective for $M_{i}=L_{i}\otimes o_{X}D_{X}$ . We denote its image by $Hom_{Diff}(L_{1}, L_{2})$ . Put
$F_{p}Hom_{Diff}(L_{1}, L_{2}):=Hom_{O}(L_{1}, L_{2}\otimes_{\mathcal{O}}F_{p}D)$

$\subset Hom_{\mathcal{O}}(L_{1}, L_{2}\otimes D)=:Hom_{Diff}(L_{1}, L_{2})$ .
An element in this subspace is called a differential morphism of order $\leq p$ .

Next put for filtered $\mathcal{O}$-modules $(L_{i}, F)$

$Hom_{Diff}((L_{1}, F),$ $(L_{2}, F)):=\{\psi\in Hom_{Diff}(L_{1}, L_{2});F_{p}L_{1}arrow L_{1}arrow\psi$

$L_{2}arrow L_{2}/F_{p-q-1}(\forall p, q)\}$ .
An element $\psi$ is called a filtered diferential morphism.

Let us denote by $MF(\mathcal{O}_{X}, Diff)$ the category of filtered $\mathcal{O}_{X}$-modules $(L, F)$

with $F_{p}L=0$ for $p<<0$ as objects and filtered differential morphisms as mor-
phisms. Denote by $MF^{f}(\mathcal{O}_{X}, Diff)$ the full subcategory of those objects with
finite filtration.

1.2.2 In order to relate filtered differential complexes with filtered D-modules,
consider the following functors. First put

$DR^{-1}(L, F):=(L, F)\otimes(D_{X}, F)$ ,

which gives rise to the equivalence:
$DR^{-1}$ : $MF^{(f)}(\mathcal{O}_{X}, Diff)arrow MF_{i}^{(f)}(D_{X})$ .

Next consider
$\overline{DR}(M, F)$ $:=(M, F)\otimes_{D}(D_{X}\otimes_{\mathcal{O}}\Lambda^{-}T_{X}, F)$

$whose-i$-th term is equal to $(M, F)\otimes_{\mathcal{O}}(\Lambda^{i}T_{X}, F)$ under the convention $Gr_{p}^{F}\Lambda^{i}T_{X}=$

$0(p\neq i)$ . This complex is locally isomorphic to the (shifted) Koszul complex
$K(M;\partial_{i}(1\geq i\geq d_{X}))[d_{X}]$ .
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Lemma. $\overline{DR}(M, F)$ is a complex in $MF(\mathcal{O}_{X}, Diff)$ and the following holds :

$DR^{-1}(\overline{DR}(M, F))\cong(M, F)\otimes(D_{X}\otimes_{\mathcal{O}}\Lambda^{-}T_{X}, F)$

which is quasi-isomorpliic to $(M, F)$ by Lemma 1.1.3.

Then we have the following statement, cf.Proposition 1.1.4 :

Proposition 1.2.3. $DR^{-1}$ gives rise to the following equivalences of $ca$tegories :

$D^{\star}F(\mathcal{O}_{X}, Diff)\cong D^{\star}F(D_{X})$, $D^{\star}F^{f}(\mathcal{O}_{X}, Diff)\cong D^{\star}F_{i^{f}}(D_{X})$

$DF(\mathcal{O}_{X}, Diff)^{\star}\cong DF(D_{X})^{\star}$, $DF^{f}(\mathcal{O}_{X}, Diff)^{\star}\cong DF_{i^{f}}(D_{X})^{\star}$

$D_{coh}^{b}F(\mathcal{O}_{X}, Diff)\cong D_{coh}^{b}F(D_{X})$

$\overline{DR}$ is quasi-inverse to $DR^{-1}$ by the above Lemma.

1.2.4 “direct image”
Let $f$ : $Xarrow Y$ be a morphism. We define the direct image $f_{*}$ for filtered

D-modules to be the following composite:

$DF(D_{X})_{f}^{DR_{arrow}^{-1}\overline{DR}}DF_{i}(D_{X})^{D}arrow DF_{i}(f^{-1}D_{Y})R_{X/Y}arrow^{*}DF_{i}(D_{Y})f$ .

Here $DF(D_{X})_{f}$ denotes the category of filtered $D_{X}$ -modules whose support is
porper over Y. $DR_{X/Y}$ is the relative de Rham functor:

$DR_{X/Y}(M, F):=(M, F)\otimes_{D}(D_{Xarrow Y}, F)$

where we put $(D_{Xarrow Y}, F)=\mathcal{O}_{X}\otimes_{f^{-1}}o_{Y}f^{-1}(D_{Y}, F)$ so that $DR_{X/Y}(M, F)\cong$

$(L, F)\otimes_{f^{-1}}o_{Y}(f^{-1}D_{Y}, F)$ if $(M, F)=(L, F)\otimes o(D_{X}, F)$ . The right most $f_{*}$

denotes the usual direct image:

$f_{*}(M, F)=( \bigcup_{p}f_{*}F_{p}M, F),$ $F_{p}(f_{*}M)=f_{*}F_{p}M$ .

Using the equivalence in Proposition 1.2.3, we can also define the direct image
for filtered diffrential complexes:

$f_{*}$ : $D^{\star}F^{(f)}(\mathcal{O}_{X}, Diff)arrow D^{\star}F^{(f)}(\mathcal{O}_{Y}, Diff)$ .

1.2.5 “dual”
For $(M, F)\in MF(D_{X})$ , we want to consider its dual $D(M, F)$ . First put

$FHom_{D}((M, F),$ $(M’, F))$ $:=( \bigcup_{p}F_{p}Hom_{D}((M, F),$ $(M’, F)),$ $F$ )
$F_{p}Hom_{D}((M, F),$ $(M’, F))$ $:=F_{p}=\{\phi\in Hom_{D}(M, M’);\phi(F_{i}M)\subset F_{p+i}M’(\forall i)\}$ .
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Put
$D(M, F):=FHom_{D}((M, F),$ $K_{X}\otimes o(D_{X}, F))$ ,

where $K_{X}$ is a resolution of $\omega_{X}[d_{X}]$ by $\mathcal{O}_{X}$ -injective $D_{X}$-modules such that $K_{X}^{i}=$

$0,$ $i<-d_{X}$ . (We can take one such of finite length.)
Then $K_{X}\otimes o(D_{X}, F)$ has two right $D_{X}$ -module structures defined as

$(m\otimes P)r(g)=m\otimes Pg$ , $(m\otimes P)r(\partial_{i})=m\otimes P\partial_{i}$

$(m\otimes P)t(g)=mg\otimes P$, $(m\otimes P)t(\partial_{i})=m\partial_{i}\otimes P-m\otimes\partial_{i}P$

for $g\in \mathcal{O}_{X},$ $P\in D_{X},$ $m\in K_{X}$ . We use $t$ to consider $Hom_{D}$ and $r$ to equip a right
D-module structure on $FHom_{D}$ .

When $(M, F)$ is induced from $(L, F)\in MF^{f}(\mathcal{O}_{X}, Diff)$ , then we have

ID $(M, F)^{i}=Hom_{D}((L, F),$ $(K_{X}^{i}, F))\otimes o(D_{X}, F)$

where $F$ on $K_{X}^{i}$ is the trivial filtration.

Lemma 1.2.6. $D$ induces the following contravariant functor:

$D:D^{-}F_{i}^{f}(D_{X})arrow D^{+}F_{i}^{f}(D_{X})$,

which preserves the $su$ bcategory $D_{coh}^{b}F_{i}^{f}(D_{X})$ as well as $D_{coh}^{b}F(D_{X})$ .

1.2.7 We can define “dual” for a filtered differential complex $(L, F)\in C^{-}F^{f}(\mathcal{O}_{X}$ ,
$Diff)$ :

$D(L, F):=Hom_{D}((L, F),$ $(K_{X}, F))$

Then the functor $D$ preserves the category $D_{coh}^{b}F^{f}(\mathcal{O}_{X}, Diff)$ and commutes with
$DR^{-1}$ .

Denote by Forget the forgetful functor:

$DF(\mathcal{O}_{X}, Diff)arrow D(\mathbb{C}_{X})$ .

It is easy to see that Forget $(\overline{DR}(K_{X}, F))\simeq a_{X}^{!}\mathbb{C}\simeq \mathbb{C}_{X}(d_{X})[2d_{X}]$ . The natural
morphism

Forget $(Hom_{Diff}((L, F),\overline{DR}(K_{X}, F)))arrow Hom_{C}$ (Forget $(L,$ $F),$ $a_{X}^{!}\mathbb{C}$)

induces the following functorial morphism:

Forget(D(L’, $F)$ ) $arrow D(Forget(L, F))$ .
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Proposition. The above functorial morphism is isomorphic when restricted to
$D_{coh}^{b}F^{f}(\mathcal{O}_{X}, Diff)$ .

\S 1.3 Vanishing-cycle functors

1.3.1 Let $X_{0}$ be a closed smooth subvariety of $X$ of codimension 1 defined by a
local equation $t$ and set

$X_{0}arrow iXarrow jX^{*}=X\backslash X_{0}$ .

Then we dispose the filtration $V.D_{X}$ recalled in Mutsumi Saito’s expository
lecture $[MuS]$ .

Consider the category $MV(D_{X})$ of (right) coherent D-modules equipped with
a V-filtration. It is an abelian category and its morphisms are strictly compatible
with the filtration $V$ .

First recall the following elementary

Proposition 1.3.2 ([S1,3.1.8]). Let $M$ be an object of $MV(D_{X})$ . Then th$e$ fol-
lowing hold.

(1) The smallest $su$ bobject $M’$ of $Msucl_{i}$ that $M’|x*=M|x*is$ given by
$(V_{\alpha}M)D_{X}$ for any $\alpha<0$ .

(2) $M/M’\simeq i_{*}Coker(Gr_{-1}^{V}Marrow {}^{t}Gr_{0}^{V}M)\partial$ .
(3) $H_{[X_{0}]}^{0}(M)=i_{*}Ker(Gr_{0}^{V}Marrow tGr_{-1}^{V}M)$ .

We now proceed to consider the filtered version of the V-filtration.

Definition 1.3.3
Let $(M, F)$ be a coherent filtered D-module.

1) $(M, F)$ is said to be quasi-unipotent and regular (abbreviated as “q-r”) along $X_{0}$

if
(1) $M$ admits a V-filtration along $X_{0}$ .
(2) $(F_{p}V_{\alpha}M)t=F_{p}V_{\alpha-1}M$ for $\alpha<0$ .
(3) $(F_{p}Gr_{\alpha}^{V}M)\partial_{t}=F_{p+1}Gr_{\alpha+1}^{V}M$ for $\alpha>-1$ .
(4) $Gr^{F}Gr_{i}^{W}Gr_{\alpha}^{V}M$ is coherent over $Gr^{F}D_{X_{O}}$ .

Here $W$ is the monodromy fltration of $t\partial_{t}-\alpha$ on $Gr_{\alpha}^{V}M$ . (Note that $Gr_{0}^{V}D_{X}\simeq$

$D_{X_{O}}[t\partial_{t}].)$ (When (1), (2), (3) are satisfied, we say that $(M, F)$ admits a V-filtration
along $X_{0}.$ )
2) Let $f$ be a (local) holomorphic function on $X$ and $i_{f}$ : $Xarrow X\cross \mathbb{C}$ its graph
map. $(M, F)$ is said to be q-r along $f$ if $i_{f_{*}}(M, F)$ is q-r along $X\cross\{0\}$ .

Recall that $i_{f*}(M, F)\simeq(M\otimes_{\mathbb{C}}\mathbb{C}[\partial_{t}], F)$ , where $F$ is given by the convolution
of $F$ on $M$ and the degree with respect to $\partial_{t}$ .

The following lemma is fundamental for the later consideration.
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Proposition 1.3.4. (i) (2) $\Leftrightarrow F_{p}V<0^{M=V}<0^{M}\cap j_{*}j^{-1}F_{p}M$ $(\forall p)$ .
$(i’)(2)$ &t: $Gr_{0}^{V}Marrow Gr_{-1}^{V}M;strict\Leftrightarrow F_{p}V_{0}M=V_{0}M\cap j_{*}j^{-1}F_{p}M$ $(\forall p)$ .
(ii) If $(Gr_{-1}^{V}M)\partial_{t}=Gr_{0}^{V}M,$ $i.e.,M=(V<0^{M})D_{X}$ , then (3) for $\alpha\geq-1$

$\Leftrightarrow F_{p}M=\sum_{i\geq 0}(F_{p-i}V<0M)\partial_{t}^{i}$ (吻).
(iii) If $SuppM\subset X_{0}$ , tlien (3) $\Leftrightarrow F_{p}=\sum_{i\geq 0}F_{p-i}M_{0}\otimes\partial_{t}^{i}$ $(\forall p)$ .
Here $M_{0}$ is given by $M_{0}=Gr_{0}^{V}M=V_{0}M=Ker(t : Marrow M)$ so that $M=$
$M_{0}\otimes_{\mathbb{C}}\mathbb{C}[\partial_{t}]$ .
Remark 1.3.5 Assume that $(M, F)$ is q-r along $X_{0}$ .
1) If $(Gr_{-1}^{V}M)\partial_{t}=Gr_{0}^{V}M$ , the following holds:

$F_{p}M= \sum_{i\geq 0}(V<0^{M}\cap j_{*}j^{-1}F_{p-i}M)\partial_{t}^{i}$
$(\forall p)$ .

If $t$ : $(Gr_{0}^{V}M, F)arrow(Gr_{-1}^{V}M, F)$ is strict and injective, the following holds :

$F_{p}M= \sum_{i\geq 0}(V_{0}M\cap j_{*}j^{-1}F_{p-i}M)\partial_{t}^{i}$
$(\forall p)$ .

2) $V<0$ is determined by $M|_{X^{*}}$ . Moreover, if $M$ is given by a VHS $(L, F)$ on $X|_{X^{*}}$

$(L=L_{\mathcal{O}})$ ,
$M|x*=\Omega_{X}^{d_{X_{*}}}\otimes L$ $F_{p}M|x*=\Omega_{X}^{d_{X_{*}}}\otimes F_{p+d_{X}}L$ .

As to the V-filtration, we have the following relation:

$V<0^{M=\Omega_{X}^{d_{\lambda_{*}’}}}\otimes\overline{L}^{>-1}$

$V_{0}M=\Omega_{X}^{d_{X_{*}}}\otimes\overline{L}^{\geq-1}$ .

Here $\overline{L}\geq-1$ (resp. $\overline{L}^{>-1}$ ) denotes Deligne’s canonical extension of $L$ with eigenvalues
of the residue operator $res\nabla$ contained in $(-1,0$] (resp. $[-1,0$ )).

Recall that the condition $(Gr_{-1}^{V}M)\partial_{t}=Gr_{0}^{V}M$’ is equivalent to the one $M$

is a minimal extension of $M|_{X^{*}}$ . This, combined together with the ones (2) and
(3) for $\alpha\geq-1$ , implies that $F_{p}M$ is determined by $(M, F)|x*$ .

Now we state a criterion for q-r-ness in the case $SuppM\subset g^{-1}(0)$ .
Proposition 1.3.6 ([S1,3.2.6]). Let $i_{g}$ be the graph morphism for a function $g$ ,
$i_{0}$ : $X=X\cross\{0\}arrow X$ the natural inclusion. Suppose that $SuppM\subset g^{-1}(0)$ for a
coherent filtered D-module $(M, F)$ .

The following conditions are equivalent:
(1) $(F_{p}M)g\subset F_{p-1}M$ for any $p$ .
(2) $(M, F)$ is q-r along $g$ .
(3) One has a (canonical) isomorphism : $i_{g_{*}}(M, F)\simeq i_{0*}(M, F)$ .
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The following compatibility of $\psi,$ $\phi$ and $DR$ is indispensable for showing the fact
that the axiom of polarization is satisfied by the Hodge module coming from a
polarized VHS.

Proposition 1.3.7 $(cf.[MuS])$ . $Assume$ that $(M, F)$ is q-r along $X_{0}$ . Put $K=$
$DR_{X}(M)$ and le$tT=T_{s}T_{u}$ be the Jordan decomposition of the local monodromy
$T$ along $X_{0}$ . Then the isomorphism

$DR_{X_{O}}(Gr_{\alpha}^{V}M)\cong\{\begin{array}{l}\psi_{e(\alpha)}DR_{X}M[-1]\phi_{l}DR_{X}M[-1]\end{array}$

一

$1\leq\alpha<0\alpha=0$

$t\partial_{t}-\alpharightarrow$ $N$

$\partial_{t}$ $rightarrow$ can
$t$ $rightarrow$ $Var$

is given by $A_{\alpha},$ $B_{\alpha}$ (briefly described below). $e(\alpha)=exp(2\pi i\alpha)$ and $\psi_{\lambda}(K)$ denotes
$Ker(T_{s}-\lambda : \psi(K)arrow\psi(K))$ .

We $\underline{on}ly$ recall the construction of the above isomorphism very briefly.
Let $S^{*}arrow S^{*}=S\backslash \{0\}$ be the universal covering of the punctured disc $S^{*}$ ,

$\tilde{j}$ : $\overline{S}^{*}arrow S$ the natural projection. Consider the following diagram:

$\tilde{X}^{*}=X\cross s\overline{S}^{*}$
$arrow$ $x*$

$\tilde{j}$

$\searrow$ $\downarrow$

$X$ $arrow iX_{0}$

Here $Xarrow S$ is given by the equation $t$ .
Recall the definition of nearby-cycle and vanishing-cycle functors :

$\psi L:=i^{-1}R\tilde{j}_{*}\tilde{j}^{-}L$

$\phi L:=Cone(i^{-1}L[-1]arrow i^{-1}R\tilde{j}_{*}\tilde{j}^{-1}L[-1])[1]$

and also the moderate nearby-cycle functor, $cf.[MuS]$ :

$\psi_{\alpha}^{al}N$ $:=i^{-1}V_{\alpha}N\otimes_{\mathbb{C}\{t\}}\overline{\mathcal{O}}^{\alpha}[t^{-1}]$

$\overline{\mathcal{O}}^{\alpha}$

$:=t^{\alpha}\mathbb{C}\{t\}[logt]\subset(\tilde{j}_{*}\mathcal{O}_{\overline{S}^{*}})_{0}$

( $L$ is an arbitrary complex of sheaves and $N$ will be $DR_{X/S}M$ in the following.)
The isomorphism in the proposition is the composition of three morphisms. The

first one is
$DR_{X_{O}}Gr_{\alpha}^{V}M\cong Gr_{\alpha}^{V}DR_{X/S}M$
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where $DR_{X/S}$ is defined by

$DR_{X/S}V_{\alpha}M=V_{\alpha}M\otimes_{D_{X/S}}^{L}\mathcal{O}_{X}$

$D_{X/S}=\{P\in D_{X}; [P, t]=0\}$ .

The second one is $A_{\alpha}$ : $V_{0}\overline{DR}_{S}\psi_{\alpha}^{al}N\cong Gr_{\alpha}^{V}N[1]$ given by the following diagram:

$V_{-1}\psi_{\alpha}^{al}N\partial_{t}\downarrow$

$=$
$i^{-1}V_{\alpha}N\otimes_{\downarrow^{\mathbb{C}\{t\}}}\tilde{\mathcal{O}}^{\alpha+1}$

$(*)arrow$

$Gr_{\alpha,\downarrow}^{V}N$

$V_{0}\psi_{\alpha}^{al}N$ $=$ $i^{-1}V_{\alpha}N\otimes_{\mathbb{C}\{t\}}\overline{\mathcal{O}}^{\alpha}$ $arrow$ $0$

The cone of the first (and the second) column is $V_{0}\overline{DR}_{S}\psi_{\alpha}^{al}N$ . The morphism $(^{*})$

is given by
$\sum u_{j}\otimes t^{\alpha+1}(logt)^{j}/j!\vdasharrow u_{0}$ .

The third morphism is

$B_{\alpha}$ : $V_{0}\overline{DR}_{S}\psi_{\alpha}^{al}Narrow\overline{DR}_{S}\psi_{\alpha}^{al}Narrow ImB_{\alpha}$

$\subset\overline{DR}_{S}\psi N=\overline{DR}_{S}\psi DR_{X/S}M\simeq\psi DR_{X}M$

which is induced from the natural morphism $\psi_{\alpha}^{al}Marrow\psi M$ , and the image $ImB_{\alpha}$

is identified with $\psi_{e(\alpha)}DR_{X}M(\alpha\neq 0)$ . The case for $\alpha=0$ is treated similarly.
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\S 2 Hodge modules

In this \S , we give the definition of (polarizable) Hodge modules after some prepa-
rations in 2.1.

\S 2.1 Filtered D-modules with k-structure and strict support decomposition
2.1.1 Let $k$ be a subfield of $\mathbb{R}$ and $X$ a complex manifold as in \S 1. We use mostly
$k=\mathbb{Q}$ or R.

We have the following functors:
$DR:MF_{h}(D_{X})arrow Perv(\mathbb{C}_{X})$

$\otimes_{k}\mathbb{C}:Perv(k_{X})arrow Perv(\mathbb{C}_{X})$ .
Consider the following category:

$MF_{h}(D_{X}, k):=MF_{h}(D_{X})\cross Perv(C_{X}{}_{)}Perv(kx)$

whose object is a triple $((M, F),$ $K,$ $\alpha$ ) consisting of $(M, F)\in MF_{h}(D_{X}),$ $K\in$

$Perv(k_{X})$ and an isomorphism $\alpha$ : $DR(M, F)\simeq \mathbb{C}\otimes_{k}K$ in Perv $(\mathbb{C}_{X})$ . (We often
omit $\alpha$ in the notation.) Such a triple is called a filtered holonomic D-module with
a k-structure.

Lemma 2.1.2. $MF_{h}(D_{X}, k)$ is an exact $ca$tegory.
A sequence is exact iffits images are so in $MF_{h}(D_{X})$ and in Perv $(k_{X})$ .
$Ker$, Coker, $Im$ , Coim exist in $MF_{h}(D_{X}, k)$ .

2.1.3 “twist \‘a la Tate”
For $\mathfrak{M}=(M, F, K)\in MF_{h}(D_{X}, k)$ and $n\in \mathbb{Z}$ , put

$\mathfrak{M}(n)$ $:=(M(n), F[n], K(n))$

$M(n)=M\otimes_{Z}Z(n),$ $K(n)=K\otimes_{Z}Z(n)$

$Z(n)=(2\pi i)^{n}Z\subset \mathbb{C},$ $F[n]_{k}=F_{k-n}$ .
2.1.4 Let us define the direct image functor $\mathcal{H}^{i}f_{*}$ for a proper morphism $f$ :
$Xarrow Y$ . If $f_{*}(M, F)$ (cf.1.2.4) is strict (cf.C.1.2), then it makes sense to speak of
$\mathcal{H}^{i}f_{*}(M, F)$ and we put

$H^{i}f_{*}$fin: $=(?i^{i}f_{*}(M, F)^{p}\mathcal{H}^{i}f_{*}K)$

which is equipped with the isomorphism
$p\mathcal{H}^{i}f_{*}\alpha$ : $DR_{Y}\mathcal{H}^{i}f_{*}(M, F)=p\mathcal{H}^{i}f_{*}DR_{X}(M, F)\simeq p\mathcal{H}^{i}f_{*}(K\otimes_{k}\mathbb{C})$ .

The case we need in a moment is the case when $f$ is a closed immersion. In this
case, $f_{*}(M, F)$ is just a filtered D-module.
2.1.5 “vanishing-cycle functors”

Let $g$ be a (locally defined) holomorphic function on $X$ and denote by $i_{g}$ : $Xarrow$

$X\cross \mathbb{C}$ its graph. For $9X=(M, F, K)\in MF_{h}(D_{X}, k)$ , put
$(\overline{M}, F)=i_{g_{*}}(M, F)$ .

We define the functors $\psi_{g},$ $\phi_{g,1}$ as follows :
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Definition.

$\psi_{g}(\mathfrak{M})$ $;=(\oplus_{-1\geq\alpha<0}(Gr_{\alpha}^{V}\overline{M}, F[1])^{p}\psi_{g}K)$

$\phi_{g,1}(\mathfrak{M});=((Gr_{0}^{V}\overline{M}, F)^{p}\phi_{g,1}K)$

For the comparison isomorphisms (cf.2.1.1) omitted in the above definition, we
use the commutation isomorphisms of $DR$ with $\psi_{g}$ , $\phi_{g,1}$ in \S 1. We naturally get
the following morphisms in $MF_{h}(D_{X}, k)$ :

can: $\psi_{g,1}arrow\phi_{g,1}$ , $Var:\phi_{g,1}arrow\psi_{g,1}(-1)$

$N$ : $\psi_{g}arrow\psi_{g}(-1)$

Definition. We say that EM $h$as strict support $Z$ if SuppM $=Z$ and $\mathfrak{M}h$as no
subobject nor quotient whose support is $sm$aller than $Z$ .
Lemma 2.1.6. Assume that $(M, F)$ is q-r along $g$ .
(1) The following are equivalent:

(a) $9X$ (or $K$ or $(M,$ $F)$ ) has no subobject (resp. quotient) with support in $g^{-1}(0)$ .
(b) can: $\psi_{g,1}arrow\phi_{g,1}$ is surjective (resp. $Var:\phi_{g,1}arrow\psi_{g,1}(-1)$ is injective).

(2) Moreover, the following are equivalent.
(a) $\phi_{g,1}=KerVar\oplus Imcan$ .
(b) $\mathfrak{M}=(M_{1}, F, K_{1})\oplus(M_{2}, F, K_{2})$ (in $MF_{h}(D_{X}, k)$ such that $SuppM_{2}\subset g^{-1}(0)$

and that $\mathfrak{M}_{1}$ has no suobject nor $quo$tien $t$ with support in $g^{-1}(0)$ .
(We call these equivalent properties the decomposion property (dec) with respect

to $g.$ )
Remark 2.1.7 1) In the above lemma we can forget the filtrations $F$ , for the
functor

$MF_{h}(D_{X}, k)arrow M_{h}(D_{X})\cross p_{erv(Cx}{}_{)}Perv(k_{X})$

is faithful.
2) To see the geometric meaning of the property (dec), the following facts are
useful.

The largest quotient (resp. subobject) of $\tilde{M}=i_{g_{*}}M$ with support in $X\cross\{0\}$ is
$\tilde{M}/(V<0\tilde{M})D_{XxC}$ (resp. $i_{*}Ker(t:Gr_{0}^{V}arrow Gr_{-1}^{V}\tilde{M})$ ), where $i:X\cross\{0\}arrow X\cross \mathbb{C}$

is the inclusion. Note that $(V_{<0}\tilde{M})D_{X\cross C}$ is nothing but the minimal extension of
$\tilde{M}|_{X\cross \mathbb{C}^{*}}$ .

Similarly the largest quotient (resp. subobject) of $\tilde{K}=i_{g_{*}}K$ with support in $x\cross$

$\{0\}$ is $\tilde{K}/\tilde{K}_{1}$ (resp. $\tilde{K}_{2}$ ), where $\tilde{K}_{1}$ (resp. $\tilde{K}_{2}$ ) is the perverse sheaf corresponding
to $(\tilde{K}|_{X\cross C^{*}}, (\psi_{g,1}\tilde{K}\Leftrightarrow Imcan))$ (resp. $(0,$ $(0\Leftrightarrow KerVar))$ ) in the theory of gluing
of perverse sheaves by Deligne-MacPherson-Verdier, cf.[B2],[V1].
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3) The following is a filtered isomorphism thanks to the condition on V-filtration
: $(F_{p}V_{\alpha}M)t=F_{p}V_{\alpha-1}M$.

$Ker(\overline{M}arrow t\overline{M})\simeq Ker(Gr_{0}^{V}\overline{M}arrow tGr_{-1}^{V}\overline{M})$

It is not difficult to see the following:

Lemma 2.1.8. $Assume$ that $(M, F)$ is q-r along $g$ . Then the following are equiva-
lent.

(a) The decomposition property $(dec)$ holds for any $g$ .
$(b)$ For any open subset $U$ of $X$ , we $h$ave

$(M, F, K)|_{U}=\oplus_{Z}(M_{Z}, F, K_{Z})$ ,

where $Z$ runs through closed irreducible subsets ofX. (strict support decomposi-
tion”)

Definition We denote by $MF_{h}(D_{X}, k)_{dec}$ the category of filtered D-modules
with the condition in the above lemma. Denote also by $MF_{h}(D_{X}, k)_{Z}$ the category
of filtered D-modules with strict support $Z$ .

Therefore we have

$MF_{h}(D_{X}, k)_{dec}=\oplus_{Z}MF_{h}(D_{X}, k)_{Z}$

(locally finite decomposition).

This is part of the reasons why the decomposition theorem (cf.\S 5) holds. It
should be worthwhile to make the following:
Remark Given $\mathfrak{M}\in MF_{h}(D_{X}, k)_{Z}$ and assume that $g^{-1}(0)2Z$ , and that
can: $\psi_{g,1}arrow\phi_{g,1}$ is a strict epimorphism. Then we have

$F_{p} \overline{M}=\sum_{i}(V<0\overline{M}\cap j_{*}j^{-1}F_{p-i}\overline{M})\partial_{t}^{i}$

where $j:X\cross \mathbb{C}^{*}arrow jX\cross \mathbb{C}$ is the inclusion.

\S 2.2 Definition of Hodge modules
Definition 2.2.1 $\mathfrak{M}\in MF_{h}(D_{X}, k)_{Z}$ is called a Hodge module of weight $n$ if $\mathfrak{M}$

belongs to the category $MH(X, k;n)$ (inductively) defined in the following way :
$MH(X, k;n)$ is the largest full subcategory of $MF_{h}(D_{X}, k)_{dec}$ satisfying the

following conditions $HM1$ ), $2$ ) (for variable $X,$ $n$ ) :
HMI) If $\mathfrak{M}\in MH(X, k;n)$ has suppM $=\{x\}$ , then there exists a k-Hodge

structure $(H_{\mathbb{C}}, F, H_{k})$ of weight $n$ such that

$i_{x*}(H_{C}, F, H_{k})\simeq(M, F, K)$
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where $i_{x}$ : $\{x\}arrow X$ is the inclusion.
HM2) Given $M\in MH(X, k;n)$ , an open subset $U\subset X$ , a holomorphic function

$g$ defined on $U$ , and a closed subset $Z\subset U$ not contained in $g^{-1}(0)$ . If $(M_{Z}, F, K_{Z})$

denotes the component as in Lemma 2.8, then we have

$Gr_{i}^{W}\psi_{g,1}(M_{Z}, F, K_{Z}),$ $Gr_{i}^{t\nu}\phi_{g,1}(M_{Z}, F, K_{Z})\in MH(U, k;i)$,

where $W$ are the monodromy filtrations shifted by $n-1,$ $n$ respectively.
We put

$MH(X, k;n)_{Z}$ $:=MF_{h}(D_{X}, k)_{Z}\cap MH(X, k;n)$ .

Then we have as for $MF_{h}(D_{X}, k)_{dec}$

$MH(X, k;n)=\oplus_{Z}MH(X, k;n)_{Z}$ .

Remark 1) We will realize later that the condition HM2), quasi-unipotence along
$\forall g$ , and (dec) are strong conditions.
2) The conditions $HM1$ ), $2$ ) are local ones and stable by taking direct factors in
$MF_{h}(D_{X}, k)$ .

We first collect elementary properties.

Proposition 2.2.2. (1) For a closed immersion $i$ : $Xarrow Y$ , the following functor
$is$ an equivalence of categories :

$i_{*}:$ $MH_{Z}(X, k;n)arrow MH_{Z}(Y, k;n)$ ,

especially $MH_{\{x\}}(X, k;n)\approx$ (k-HS of weight $n$).
(2) Given a Hodge module $\mathfrak{M}=(M, F, K)\in MH_{Z}(X, k;n)$ . Then it holds that
$K$ is an intersection complex $IC_{Z}(L)$ with coefFcient $L$ and fin is generically a
variation ofHodge structure $(VHS)$ of weight $n-d_{Z}$ . Namely, there are a smooth,
Zariski open subset $U\subset Z$ such that $K|_{U}[-d_{Z}]=L$ is a local system on $U$ , and a
$VHS(L\otimes \mathcal{O}_{U}, F, L)$ of weight $n-d_{Z}$ such that

$\mathfrak{M}|_{X\backslash (Z\backslash U)}\cong i_{*}(L\otimes\Omega_{U}^{d_{U}}, F, L)$

$F_{p}(L\otimes\Omega_{U}^{d_{U}}\cong\Omega_{U}^{d_{U}}\otimes_{\mathcal{O}}F^{-p-d_{Z}}(L\otimes \mathcal{O}_{U})$

(3) $Hom(MH_{Z}(X, k;n),$ $MH_{Z’}(X, k;n’))=0$ if $Z\neq Z’$ or $n>n’$ .

A few comments on 2) in the above Proposition. Considering the holonomicity
of $M$ , it is clear that we have $K=IC_{Z}(L),$ $M=L\otimes \mathcal{O}_{U}$ for some $L$ . For the local
freeness of $Gr_{p}^{F}M$ , we use the following lemma. (We may assume $X=U.$ )
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Lemma. If $M$ is locally free $\mathcal{O}_{X}$ -module of finite type an$d$ if $Gr_{p}^{F}M\otimes_{\mathcal{O}_{X}}\mathcal{O}_{X_{O}}$ is
locally free over $O_{X_{O}}$ , then $Gr_{p}^{F}M$ is locally free over $\mathcal{O}_{X}$ .

The converse to 2) holds, cf.2.4.2.
Definition 2.2.3

We denote by $MF_{h}W(D_{X}, k)$ the category of filtered objects in $MF_{h}(D_{X})$ with
finite filtration (denoted by $W$ ).

Denote by $MHW(X, k)$ the full subcategory of $MF_{h}W(D_{X}, k)$ consisting of ob-
jects $((M, F, W), (K, W))\in MF_{h}W(D_{X}, k)$ such that $Gr_{i}^{W}(M, F, K)\in MH(X, k;i)$

$(\forall i)$ .
In \S 3, we define the category of mixed Hodge modules as a subcategory of

$MHW(X, k)$ by imposing some conditions on the filtration $W$ .
Lemma 2.2.4. The categories $MH_{Z}(X, k;n),$ $MH(X, k;n),$ $MHW(X, k)$ are
abelian categories. All $mo1pl_{1}isms$ are stric $t$ with respect to $F$ and to $(F, W)$ .

For $\mathfrak{M}=(M, F, K)\in MH_{Z}(X, k;n)$ , we have by definition

$(\psi_{g}\mathfrak{M}, W)\in MHW(X, k)$ , then $Gr_{i}^{W}\psi_{g}9X\in MH(X, k;i)(\forall i)$ ,

where $W$ is the N-filtration for the monodromy logarithm $N$ centered at $n-1$ .
Then the above lemma implies, for example, that for a morphism $\mathfrak{M}arrow \mathfrak{M}’$ we
$1_{1}ave$

$(\psi_{g}\mathfrak{M}, W)arrow(\psi_{g}\mathfrak{M}’, W)$ ; strict.

If, in addition, $Z\not\subset g^{-1}(0)$ , then

can: $(\psi_{g,1}, W)arrow(\phi_{g,1}, W)$

$Var:(\phi_{g,1}, W)arrow(\psi_{g,1}, W)(-1)$

are strict in $MF_{h}W(D_{X}, k),$ $cf.[Sl,5.1.17]$ .
\S 2.3 Polarization for Hodge modules

We consider the notion of polarization for Hodge modules, which generalizes that
for Hodge structure and is indispcnsable for proving the decomposition theorem.

Lemma 2.3.1.. For $9X\in MH_{Z}(X, k;n),$ $Gr^{F}M$ is a Colicn-Macaulay $Gr^{F}D_{X^{-}}$

module. Namely, the ffltered object $D(M, F)$ is strict.

cf. [S1,5.1.13].
Let DJt be an object of $MH_{h}W(D_{X}, k)$ and

$(M, F, K)=\oplus_{Z}(M_{Z}, F, K_{Z})$

its decolnpositon by strict support. Then a pairing on $K$

$S$ : $K\otimes Karrow a_{X}^{!}k(r)$
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decomposes accordingly : $S=\oplus_{Z}S_{Z}$ . We call $S_{Z}$ : $K_{Z}\otimes K_{Z}arrow a_{X}^{!}k(r)$ its
Z-component.

$S$ is said to be compatible with $F$ if there exists a morphism $(M, F, K)arrow$

$D(M, F, K)(r)$ such that $Karrow DK(r)$ corresponds to $S$ under

$Hom(K\otimes K, a_{X}^{!}k(r))\simeq Hom(K, Hom(K, a_{X}^{!}k(r)))$ .

Definition 2.3.2 An Hodge module $\mathfrak{M}\in MH_{Z}(X, k;n)$ is said to be polarizable if
there is a pairing (called “polarization”)

$S$ : $K\otimes Karrow a_{X}^{!}k(-n)$

compatible with $F$ and satisfying the following (inductively defined) conditions:
Pl) If $Z=\{x\}$ (thus $(M_{Z},$ $F,$ $K_{Z})=i_{x*}(H_{C},$ $F,$ $H_{k})$ ), then there exists a

polarization $S’$ of $(H_{\mathbb{C}}, F, H_{k})$ as a VHS (i.e. $S’(u,$ $C\overline{u})>0(\forall u\neq 0)$ ) such that
$S=i_{x*}S’$ .

P2) If $dimZ>0,$ $Z\not\geq g^{-1}(0)$ , then

$Gr_{i}^{Wp}\psi_{g}S_{Z}\cdot(id\otimes N^{i}):P_{N}Gr_{n-1+i}^{Wp}\psi_{g}K_{Z}\otimes P_{N}Gr_{n-1+i}^{Wp}\psi_{g}K_{Z}arrow a_{U}^{!}k(1-n-i)$

is a polarization on $P_{N}Gr_{n-1+i^{p}}^{W}\psi_{g}(M_{Z}, F, K_{Z})$ for $\forall i\geq 0$ .
Here $P_{N}$ means the primitive part with respect to the monodromy logarithm $N$ .

We identified $S_{Z}$ : $K_{Z}\otimes K_{Z}arrow a_{U}^{!}k(-n)$ with

$i_{g_{*}}S_{Z}$ : $i_{g_{*}}K_{Z}\otimes i_{g_{*}}K_{Z}arrow a_{Ux\mathbb{C}}^{!}k(-n)$ .

Remark 2.3.3 1) The following holds:

$p\phi_{g,1}S\cdot(can\otimes id)=p\psi_{g,1}S\cdot(id\otimes Var)$ .
2) The condition of polarization implies that $Gr_{i}^{Wp}\phi_{g,1}S_{Z}\cdot(id\otimes N^{i})$ is a polar-

ization on $P_{N}Gr_{n+i^{p}}^{W}\phi_{g}K_{Z}(\forall i\geq 0)$ , since the last perverse sheaf is isomorphic to
$P_{N}Gr_{r\iota+i^{p}}^{W}\psi_{g,1}K_{Z}$ via can.

3) If $g^{-1}(O)\supset Z$ , then $p\phi_{g}S_{Z}\simeq S_{Z}$ .
Lemma 2.3.4. (1) Let $i$ : $Xarrow Y$ be a closed immersion, $S$ a pairing on $K$ for
$\mathfrak{M}=(M, F, K)\in MH_{Z}(X, k;n)$ . Then $S$ is a polarization of $\mathfrak{M}$ iff $i_{*}S$ is that of
$i_{*}\mathfrak{M}$ .
(2) If $S$ is a polarization of $9\mathfrak{n}\in MH_{Z}(X, k;n)$ , then $S$ is $(-1)^{n}$ -symmetric and
tliere exist an open subset $U\subset Z$ such that $K|_{U}[-d_{Z}]=L$ is a local system an$d$ a
polarization $S’$ : $L\otimes Larrow k_{U}(d_{Z}-n)$ as a $VHS$ such that $S|_{X\backslash (Z\backslash U)}=i_{*}S$“, wh$ere$

$S”$ is given by

$S”$ $:=(-1)^{d_{Z}(d_{Z}-1)/2}S’$ : $L[d_{Z}]\otimes L[d_{Z}]arrow k_{U}(d_{Z}-n)[2d_{Z}]$ .

Denote by $MH_{Z}(X, k;n)^{p}$ the full subcategory of $MH_{Z}(X, k;n)$ consisting of
polarizable Hodge modules. Then the above lemma implies the following:
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Proposition 2.3.5. The category $MH_{Z}(X, k;n)^{p}$ ofpolarizable Hodge modules is
semi-sim$ple$.

\S 2.4 Variations of Hodge structure and Hodge modules
We state two fundamental results on the relation betweew VHS and Hodge mod-

ules. The proof is not elementary but uses the stability by projective morphism
and also the calculation of vanishing cycles in the normal-crossing case.

2.4.1 Consider a VHS $(L_{\mathcal{O}}, F, L)$ of weight $w-d_{X}$ polarized by

$S’$ : $L\otimes Larrow k(d_{X}-w)$ .

Put

$(M, F)$ $:=(\Omega_{X^{X}}^{d}, F)\otimes_{\mathcal{O}}(L_{\mathcal{O}}, F)$

$K$ $:=L[d_{X}]$

where $(\Omega_{X}^{d_{X}}, F)$ is defined by $Gr_{i}^{F}\Omega_{X}^{d_{X}}=0(i\neq-d_{X})$ . Then $(M, F)$ is a filtered
right $D_{X}$ -module and $K=DR_{X}(M)$ is a perverse sheaf. Since $a_{X}^{!}k=k(d_{X})[2d_{X}]$ ,
to give a pairing $S:K\otimes Karrow a_{X}^{!}k(-w)$ amounts to give a pairing

$H^{-2d_{X}}(K\otimes K)||$

具
$H^{-2d_{X}}(a_{X}^{!}k(-w))||$

$L\otimes L$
$(-1)^{d_{X}(d_{X}-1)/2}S’arrow$

$k(d_{X}-w)$

Thus we have defined a pairing on $K$ . We claim that this $S$ is compatible with the fil-
tration $F$ . Namely $S$ is induced by a filtered isomorphism $(M, F)\cong D(M, F)(-w)$ .

This can be seen by observing that $S’$ defines a pairing

$\overline{DR}(M, F)\otimes_{C}\overline{DR}(M, F)(w)arrow(\Omega_{X}, F)[2d_{X}]$ ,

since
$\overline{DR}(M, F)\cong(\Omega_{X}, F)\otimes(L_{\mathcal{O}}, F)$

where $F$ on $\Omega_{X}$ is the stupid filtration.
We are going to claim that a polarized VHS defines a polarized Hodge module

by the above construction.

Theorem 2.4.2. $M=(M, F, K)$ as above is a polarized Hodge module of weight
$w$ .

We refer the detail of the proof to [S1,5.4.3] and give here an outline of the proof.
The proof is done by an induction on $d_{X}$ and uses the stability by projective

morphism 4.1.1. (The case $d_{X}=0$ is trivial.)
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One has to check the condition HM2) for a holomorphic function $g$ .
First one reduces to the case when $g^{-1}(0)$ is normal-crossing. For this, take

a resolution of $g^{-1}(0)$ , a proper birational morphism $f$ : $\tilde{X}arrow X$ such that
$f^{-1}g^{-1}(0)$ is normal-crossing. Note that $\overline{\mathfrak{M}}=f^{*}\mathfrak{M}$ corresponds to the polarized
VHS $f^{*}(L_{\mathcal{O}}, F, L, S’)$ . By the canonical morphism

$f^{*}$ : $(M, K)arrow f_{*}(\tilde{M},\tilde{K})$ ,
$\mathfrak{M}$ is a direct factor of $P_{\ell^{p}}H^{0}f_{*}$ $(\tilde{M}, F,\tilde{K}, \tilde{S})$ by the stability 4.1.1 &[S1,5.3.1].

Then one assumes that $g=x_{1}^{m_{1}}\cdots x_{n}^{m_{n}}$ . One may assume in addition that
$g=(x_{1}\cdots x_{n})^{m}$ by taking a ramified covering of $X$ .

In this situation, one proves the following assertions.
$0)(M, F)$ is q-r along $g$ .
1) $\psi_{g,1}(M, F)arrow\phi_{g,1}(M, F)$ is a strict epimorphism and one has

$P_{N}Gr_{j-1}^{W}Gr_{-i/m}^{V}i_{g_{*}}(M, F)\simeq a_{J*}a_{j}^{!}(M, F)[j]\otimes\epsilon^{j}$ ,

where $W$ is the N-filtration for $N=t\partial_{t}+i/m$ and $\epsilon$ is the orientation sheaf of the
divisor with normal crossings $g^{-1}(0),$ $cf.[Sl,3.6.10]$ .

2) There is an isomorphism
$P_{N}Gr_{w-1+i}^{W}\psi_{g}(M, F)\simeq(\mathbb{C}^{m})\otimes(a_{i+1})_{*}(a_{i+1})^{*}(M, F)(-i)[-i-1]$ $(i\geq 0)$

compatibly with k-structure such that
$Gr^{W}\psi_{g}S\cdot(id\otimes N^{i})=S_{m}\otimes^{p}a_{i+1}^{*}S$

on $P_{N}Gr_{w-1+i}^{W}\psi_{g}K$ . ( $S_{m}$ denotes the standard pairing on $Z^{m}.$ )
In $1$ ), $2$ ), $a_{j}$ denotes the normalization

$a_{j}$ : $\tilde{D}^{(j)}arrow D^{(j)}arrow X$

of the union of intersections of $j$ components of $g^{-1}(0)$ .
From these assertions, the theorem follows immediately.
Note that this calculation using $\tilde{D}^{(j)}$ is central to the proof, cf.[Sl,Introduction].

2.4.3 In 2) of 2.2.2, we saw that a Hodge module generically comes from a VHS.
It means that a Hodge module is uniquely determined by the generic VHS if the
underlying D-module is a minimal extension (i.e., the underlying perverse sheaf is a
(twisted) intersection complex). The converse to this statement is true as we state
below.

Let $Y$ be a reduced divisor with normal crossings and $j$ : $U=X\backslash Yarrow X$ the in-
clusion. Given a filtered D-module with k-struture $M=(M, F, K)\in MF_{h}(D_{X}, k)$

such that $M|_{U}$ is $\mathcal{O}_{U}$ -coherent and that $M$ is the minimal extension of $M|_{U}$ .
Put

$(M, F)|_{U}=(\Omega_{U}^{d_{X}}, F)\otimes(L, F)$

so that one has $(M, F)=(j_{!*}(\Omega_{U}^{d_{X}}\otimes L), F)$ .
Assume that $(L, F)$ underlies a VHS $\mathbb{H}$ polarized by $S’$ .
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Theorem 2.4.4. On$e$ has $\mathfrak{M}\in MH_{X}(X, k;w)^{p}$ . Its polarization $S$ is induced from
$S’$ .

Construction of $S$ :
Use the following filtered quasi-isomorphism

$DR(j_{!*}(M|_{U}), F)arrow(\mathcal{L}_{(2)}(\mathbb{H}), F)[d_{X}]$

in $D^{b}F^{f}(O_{X}, Diff)$ . constructed by Kashiwara and Kawai [KK]. The right com-
plex is the $L^{2}$ -complex for the Poincar\’e metric on $U$ with coefficients in $\mathbb{H}$.

$S’$ induces a pairing

$(\mathcal{L}_{(2)}(\mathbb{H}), F)\otimes(\mathcal{L}_{(2)}(\mathbb{H}), F)arrow(\mathcal{D}b, F[-w])$

which gives rise to the required pairing $S$ . Here $\mathcal{D}b$ is the complex of currents and
its $F$ is the stupid filtration.
Points of the proof:

The proof is by induction on $d_{X}$ .
One checks the condition HM2) only for $\psi_{g,1}$ , since $\psi_{g,1}arrow\phi_{g,1}$ is strictly epi-

morphic.
Some reductions, cf.the proof of 2.4.2 : First one can assume that $g^{-1}(0)_{red}\cup Y$

is a divisor with normal crossings, by the stability 4.1.1. Thus one can assume that
$g^{-1}(0)_{red}\subset Y$ .

Then one can reduce to the case when $M$ has unipotent monodromy and that
$g=(x_{1}\cdots x_{n})^{m}$ .

One proves the following two statements:
(1) $P_{N}Gr_{j}^{W}\psi_{g}\mathfrak{M}$ admits the strict support decomposition (compatibly with $F$ )

such that each Z-component corrseponds to a polarized VHS of weight
$w-d_{Z}$ on a (Zariski) open set of $Z$ and the pull-back of $\mathfrak{M}$ to $Z$ is quasi-
unipotent and regular of normal crossing type, cf.\S 4.

(2) For each point $x\in X$ , consider the stalk of $(M, F)$ at $x$ (denote it by the
same symbol). Then the monodromy filtration $W$ on $\psi_{g}(M, F)$ exists in
$MF(D_{\triangle^{\mathfrak{n}}})_{rncqu}$ and the primitive decomposition of $Gr_{j}^{W}\psi_{g}(M, F)$ is com-
patible with $F$ .

These replace the calculation made in the proof of Theorem 2.4.2.
Then the induction proceeds.
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\S 3 Mixed Hodge modules

\S 3.1 Specialization and prolongation
Mixed Hodge modules are defined as those extensions of polarizable Hodge mod-

ules which satisfy certain admissibility conditions discussed in 3.1. They are some-
how defined to have nice behaviour under functorial operations. Finally they are
shown to form a category as large as one expects.

3.1.1 We assume $X$ to be smooth for simplicity. Once one has a suitable definition,
the formalism in the sequel goes through in the same way in the singular case as in
the smooth case, cf.Appendix.

Recall that $MHW(X)$ denotes the category of $(W-)filtered$ objects in $MF(D_{X})$

whose associated graduation belong to $MH(X, k)$ . Then $M$ has a V-filtration along
$g$ for $M=(M, F, K;W)$ and $(M, F)$ is q-r along $g$ . Put llit $=i_{g_{*}}\mathfrak{M}$.
Definition 3.1.2

1) Consider the following condition :
Spl) $F,$ $W,$ $V$ on $\tilde{M}$ are compatible.

If this condition is satisfied, put

$\psi_{g}(M, F, K)=(\oplus_{-1\leq\alpha<0}Gr_{\alpha}^{V}(\tilde{M}, F[1]), p\psi_{g}K)$

$\phi_{g,1}(M, F, K)=(c_{r_{0(\tilde{M},F),\phi_{g,1}K)}^{Vp}}$

We consider also the filtration induced from $W$ on $M$ :

$L_{i}\psi_{g}(M, F, K)=\psi_{g}W_{i+1}(M, F, K)$

$L_{i}\phi_{g,1}(M, F, K)=\phi_{g}W_{i}(M, F, K)$

2) We say that the vanishing-cycle functors along $g$ are well-defined for $\mathfrak{M}$ if the
following condition is satisfied in addition to Spl) :
Sp2) There exists a relative monodromy filtration $W$ on $(^{p}\psi_{g}K, L),$ $(^{p}\phi_{g,1}K, L)$ re-
spectively.

Then we define the nearby-cycle and vanishing-cycle functors as follows:

$\psi_{g}\overline{\mathfrak{M}}=(\psi_{g}(M, F, K);W)$

$\phi_{g,1}\overline{\mathfrak{M}}=(\phi_{g,1}(M, F, K), W)$ .

Remark 3.1.3
The above condition Sp2) is equivalent to the condition that the relative mon-

odromy filtration $W$ is well-defined on the specialization $Sp_{D}(K, L)$ along the di-
visor defind by $g$ . Hence the title of this subsection. We try not to use the special-
ization functor in this exposition and refer the reader to [S2,2.2].
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Next we consider the prolongeability across the divisor $g^{-1}(0)$ . Let

$j:Xarrow\overline{X}$ , $\overline{X}\backslash X=g^{-1}(0)_{red}$

the natural inclusion.
Definition 3.1.4

We say that the direct image $j_{*}$ (resp. $j_{!}$ ) is well-defined for $M\in MHW(X)$ if
there exists $\overline{\mathfrak{M}}\in MHW(\overline{X})$ such that

(1) $\overline{\mathfrak{M}}|x=j^{-1}\overline{\mathfrak{M}}=\mathfrak{M}$ .
(2) The vanishing-cycle functors along $g$ are well-defined for $\mathfrak{M}$ .
(3) $\tilde{K}=j_{*}K$ (resp. $\tilde{K}=j_{!}K$ ).

Note that $j_{*}$ SEJt (resp. $j_{!}\mathfrak{M}$) is unique (if it exists).

\S 3.2 Mixed Hodge modules
We define the category of mixed Hodge modules inductively as follows.

Definition 3.2.1
We say that $M\in MHW(X)$ belongs to the category $MHM(X)$ if the following

conditions are satisfied:
MHM) For any complex manifold $Y$ , any open set $U\subset X\cross Y$ , any fin$ite$ number
of holomorphic function$s$ on $Ug_{1},$ $g_{2},$ $\cdots$ an$d$ an integer $r\geq 1$ , the vanishing-cycle
functors along $g_{r}$ are well-defin$ed$ for $M_{r}$ an$dj_{r*},j_{r!}$ are well-defined for $j_{r}^{-1}\mathfrak{M}$.

Here $j_{r}$ : $U\backslash g_{r}^{-1}(O)arrow U$ is the indusion an$dfin_{r}$ is defined inductively as
follows:

$\mathfrak{M}_{1}$ $:=(\mathfrak{M}\otimes \mathbb{Q}_{Y}^{H}[d_{Y}])|_{U}$

$\mathfrak{M}_{r}$ $:=any$ one $of\{\begin{array}{l}\psi_{g_{r-1}}(\mathfrak{M}_{r-l}),\phi_{g_{r-1},1}(\mathfrak{M}_{r-l})j_{g_{r-1*}}j_{g_{r-1}^{-l}}(\mathfrak{M}_{r-l}),j_{g_{r-1!}}j_{g_{r-1}^{-l}}(\mathfrak{M}_{r-1})\end{array}$ $(r>1)$ .

$\mathbb{Q}_{Y}^{H}[d_{Y}]$ denotes $tl1e$ following objects in $MHW(X)$ :

$((\Omega_{Y}^{d_{Y}}, F),\mathbb{Q}_{Y}[d_{Y}];W)$ , $Gr_{-i}^{F}=Gr_{i}^{W}=0$ , $i\neq d_{Y}$ .

The above condition is local on $X$ .
It is readily checked that for a closed immersion $i:Xarrow Y$ the functor

$i_{*}:$ $MHM(X)arrow MHM_{X}(Y)$

is an equivalence of categories, where $MHM_{X}(Y)$ denotes the full subcategory of
$MHM(Y)$ consisting of the objects with support in $X$ .
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3.2.2 $\mathfrak{M}\in MHW(X)$ is called (graded)-polarizable if each $Gr_{k}^{W}\mathfrak{M}$ is a polarizable
Hodge module.

There is a descrition of $Ext$ groups in the category of mixed Hodge modules
$MHM(X)$ [S6], which in principle allows us to see how mixed Hodge modules
made of pure ones.

3.2.3 The following are the operations which can be easily defined.
(1) Tate twist $(n)$ , cf.2.1.3.
(2) Vanishing-cycle functors $\psi_{g},$ $\phi_{g,1}$ .
(3) Extension $j_{*}j^{-1},j_{!}j^{-1}$ over a locally principal divisor $X\backslash U(j$ : $Uarrow X$

the inclusion).
(4) Cohomological inverse images $f^{!}$ by a smooth morphism $f$ : $Xarrow Y$ :

$H^{-\ell}f^{!}\mathfrak{M}=$ $\omega_{X}\otimes_{f\mathcal{O}_{Y}}-1f^{-1}(M, F, W[-\ell])\otimes\omega_{Y}^{-1})[l]$

$H^{\ell}f^{*}\mathfrak{M}=$ $f^{!}M[-2l](-\ell)$ ( $\simeq M\otimes k_{Z}^{H}[d_{Z}]$ if $X\simeq Y\cross Z$)

where $\ell=d_{X}-d_{Y}$ .
Stability by these operations is almost trivial by the definition. But we need

Theorem 5.2.2 ([S2,3.21]) to show that cohomological inverse imges by a smooth
morphism preserve the polarizability.

\S 3.3 More about the extendability
3.3.1 We consider the conditions for extension over (locally principal) divisors.
We suppose the following situation:

$E_{0}=X\cross\{0\}arrow E=X\cross \mathbb{C}\sim E^{*}=X\cross \mathbb{C}^{*}$

Then the following are necessary in order for $\mathfrak{M}’\in MHW(E^{*})$ to extend to
$9\mathfrak{n}\in MHW(E)$ over $E$ :

(1) $j_{*}K’$ (or $j_{!}K’$ ) is constructible.
(2) $F_{p}V<0M=V<0^{M}\cap j_{*}F_{p}M’$ is coherent over $\mathcal{O}_{E}$ .
(3) $F,$ $V,$ $W$ are compatible on $V<0M$ .
(4) The relative monodromy filtration $W$ exists for $(\psi_{t}K, L)$ .
(5) $Gr_{i}^{W}\mathfrak{M}’$ extends to a Hodge module on $E$ .

Note that $(V<0M;F, V, W)$ depends only on $j^{-1}\mathfrak{M}=\mathfrak{M}’$ . Thus the above con-
ditions are conditions on SEJt’, which we call the extendability conditions.

We denote by $MHW(E^{*})_{ex}^{(p)}$ the full subcategory of $MHW(E)^{(p)}$ consisting of
those objects obeying the extendability conditions. Here we replace the condition
5) by a similar one $5)^{p}$ imposing polarizability on the Hodge module which extends
$Gr_{i}^{W}\mathfrak{M}’$ when we consider $MHW(E^{*})^{p}$ .

We remark that one can extend the above consideration to the case when $E,$ $E_{0}$

are replaced by a line bundle on $X$ and its zero section, cf.[S2,2.10].
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For an object $\mathfrak{M}’$ of $MHW(E^{*})$ , put
$\psi_{t}\mathfrak{M}=\psi_{t}\Re t’$ $:=(\oplus_{-1\leq\alpha<0}Gr_{\alpha}^{V}(M, F[1]),p\psi_{t}K;W)$

$\psi_{t,1}\mathfrak{M}’$ $:=(Gr_{-1}^{V}(M, F[1]),p\psi_{t,1}K;W)$ .

3.3.2 “Gluing”
Let us consider the category $MHW(E^{*}, E_{0})_{ex}^{(p)}$ of objects (SE)t‘, $M”;u,$ $v$ ), with

$\mathfrak{M}’\in MHW(E^{*})_{ex}^{(p)}$ , $M”\in MHW(E_{0})^{(p)}$

$u:\psi_{t,1}\mathfrak{M}’arrow \mathfrak{M}’’$ , $v:\mathfrak{M}’’arrow\psi_{t,1}\mathfrak{M}’(-1)$

$vu=N$ (on $\psi_{t,1}\mathfrak{M}’$ )

where $u,$ $v$ are morphisms in $MHW(E_{0})^{(p)}$ .
Consider also the category $MHW(E)_{sp}^{(p)}$ of those $\mathfrak{M}$ which are specializable, i.e.

for which the vanishing cycle functors along $E_{0}$ are wel-defined.
Proposition ([S2,2.8]). Tlie following functor is an equivalence of $ca$tegories :

$MHW(E)_{sp}^{(p)}arrow MHW(E^{*}, E_{0})_{ex}^{(p)}$

Qn $rightarrow$ ($j^{-1}M,$ $\phi_{t,1}M$; can, $Var$ )

We briefly indicate the construction of the inverse functor.
Given a quadruple $(\mathfrak{M}’, \mathfrak{M}’’;u, v)\in MHW(E^{*}, E_{0})_{ex}^{(p)}$ . Then by the theory of

gluing perverse sheaves by Deligne, MacPherson, Verdier, etc. we have a unique
perverse sheaf $K$ on $E$ and a regular holonomic D-module $M$ with $DR_{E}(M)\simeq$

$K\otimes \mathbb{C}$ such that
$j^{-1}(M, K)\cong(M’, K’)$ , $\phi_{t,1}(M, K)\cong(M’’, K’’)$

Then the filtration $F$ on $V_{0}M$ is defined by the following:

$m\in F_{p}V_{0}M\Leftrightarrow\{\begin{array}{l}j^{-l}m\in F_{p}M^{/}Gr_{0}^{V}m\in F_{p}M’\end{array}$

$c$ We extend it to the whole $M$ by

$F_{p}M= \sum_{i}(F_{p-i}V_{0}M)\partial_{t}^{i}$ .

To get $W$ on $(M, K)$ , we define the filtrations $L$ induced by $W$ on $\mathfrak{M}’,$ $\mathfrak{M}’’$

(inductively):
$L_{k}\psi_{t,1}(M, K)$ $:=\psi_{t,1}W_{k}(M’, K’)$

$L_{k}\phi_{t,1}(M, K)$ $:=u(L_{k-1}\psi_{t,1}(M, K)+v^{-1}(L_{k-1}\psi_{t,1}(M, K)\cap W_{k}\phi_{t,1}(M, K)$

Again, by the theory of gluing perverse sheaves, we obtain the unique filtration $W$

on $(M, K)$ such that
$j^{-1}W_{i}(M, K)=W_{i}(M’, K’)$ , $\phi_{t,1}W_{i}(M, K)=L_{i}\phi_{t,1}(M, K)$ .

The compatiblity of $F,$ $V,$ $W$ is guaranteed by the following lemma:
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Lemma. Suppose that $(M, F)$ is q-r along $E_{0}$ and that $F,$ $V,$ $W$ on $V<0$ are com-
$pa$tible for $(M, F, W)\in MFW(D_{E})$ .

Then $F,$ $V,$ $W$ are compatible on $M$ and $Gr_{i}^{W}(M, F)$ is q-r along $E_{0}$ .

3.3.3 As to the prolongation, we have

Proposition [S2,2.11]. For $\mathfrak{M}’\in MHW(E^{*})_{ex}^{(p)}$ , one has a functorial prolongation
$j_{*}M’$ (resp. $j_{!}M’$) $\in MHW(E)_{sp}^{(p)}$ (up to a canonical isomorphism).

For $M\in MHW(E)_{sp}^{(p)}$ , on$e$ has $j^{-1}\mathfrak{M}\in MHW(E)_{ex}^{(p)}$ and a functorial morphism

$\mathfrak{M}arrow j_{*}j^{-1}\mathfrak{M}$ $(resp.\mathfrak{M}arrow j\iota j^{-1}\mathfrak{M})$ .

We merely remark two things. First note that $j_{*}M’$ corresponds to
$(M’, \psi_{t,1}\mathfrak{M}’(-1),$ $N,$ $id$), in the dictionary of 3.3.2.

Also $\mathfrak{M}arrow j_{*}j^{-1}\mathfrak{M}$ corresponds to the following diagram :

$\psi_{t,1}\mathfrak{M}$

$arrow^{id}$
$\psi_{t,1}\mathfrak{M}$

$can\downarrow\uparrow Var$ $N\downarrow\uparrow id$

$\phi_{t,1}\mathfrak{M}$ $arrow$ $\psi_{t,1}\mathfrak{M}(-1)$

$Var$

Secondly it is not easy to show the polarizability of $j_{*}\mathfrak{M}’$ . Actually one needs
Kashiwara’s canonical splitting, cf.C.2

3.3.4 Gluing of mixed Hodge modules
We play the same game as in 3.3.2 in the case of mixed Hodge modules.
Let $g$ be a holomorphic function on $Y$ and consider the following morphisms:

$X=g^{-1}(0)_{red}arrow iY\underline{j}$ $U=Y\backslash X$

$Y$
$arrow i_{g}Y\cross \mathbb{C}\underline{j_{g}}$

$\{g\neq t\}$

Consider the following categories:

$MHM(U)_{Y}^{(p)}=${ $MHM$ extendable toY}

$MHM(U, X)_{ex}^{(p)}=\{\begin{array}{ll} \mathfrak{M}^{/}\in MHM(U)_{Y}^{(p)},\mathfrak{M}’’\in MHM(X)^{(p)}(\mathfrak{M}’,\mathfrak{M}’’\cdot.u,v)\cdot v\in Hom(\mathfrak{M},\psi^{g,1}\mathfrak{M}^{/}(-1)’)u\in Hom_{/^{vu=N}}(\psi_{g,1}\mathfrak{M},\mathfrak{M})\end{array}\}$.

Then we have
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Proposition [S2,2.28]. Tlie following functor is an equivalence of categories :

$MHM(Y)^{(p)}arrow MHM(U, X)_{ex}^{(p)}$

$\mathfrak{M}$ $\mapsto$ ($j^{-1}\mathfrak{M},$
$\phi_{g,1}\mathfrak{M};$ can, $Var$)

For the construction of the inverse functor, one needs Beilinson’s functor $\xi_{g}$

explained below. Using this, the object which gives back $(\mathfrak{M}’, \mathfrak{M}’’;u, v)$ is the
single complex associated to the following diagram:

$\mathfrak{M}’’$ $arrow v$
$\psi_{g,1}\mathfrak{M}’(-1)$

$u\uparrow$ $\uparrow$

$\psi_{g,1}\mathfrak{M}’$ $arrow$ $\xi_{g}j_{*}\mathfrak{M}’$

Remark Saito also proves gluing of Verdier type ([S2,2.31]) and that of
MacPherson-Vilonen type ([S2,2.32]).

3.3.5 Beilinson’s functor
The situation is the same as in 3.3.4. We define a functor

$\xi_{g}$ : $MHM(Y)^{(p)}arrow MHM(Y)^{(p)}$

by the formula:
$\xi_{g}\mathfrak{M}$ $:=\psi_{t,1}(j_{g})_{!}(j_{g})^{-1}$ (SE)t X $\mathbb{Q}_{\mathbb{C}}^{H}[1]$ ).

Then we have the following excat sequences:

$0arrow\psi_{g,1}\mathfrak{M}arrow\xi_{g}\mathfrak{M}arrow \mathfrak{M}arrow 0$

$0arrow j_{!}j^{-1}\mathfrak{M}arrow\xi_{g}\mathfrak{M}arrow\phi_{g,1}\mathfrak{M}arrow 0$

As an application of Beilinson’s functor, we have

Proposition [S2,2.23]. The natural functor

$D^{b}MHM_{X}(Y)arrow D_{X}^{b}MHM(Y)$

$is$ an equivalence of $ca$tegories, whose $qu$asi-inverse is given by $\phi_{g,1}$ .
In fact, we have quasi-isomorphisms:

$\mathfrak{M}arrow\xi_{g}\mathfrak{M}arrow\phi_{g,1}\mathfrak{M}$

for $M\cdot\in D_{X}^{b}MHM(Y)$ .



94

\S 3.4 Standard operations
We recall standard operations for mixed Hodge modules as in the sheaf theory,

which are important for applicaitons. For more complete treatment using derived
categories in algebraic context, we postpone it until 3.5.
3.4.1 Cohomological projective direct image

Let $f$ : $Xarrow Y$ be a projective morphism between separated and reduced com-
plex spaces. We then have the cohomological direct image functor when a suitable
strictness condition is satisfied, cf.A.5.

Here we admit the most esssential result of stablility for polarizable (or pure)
Hodge modules, which will be treated separately and in detail in \S 4, and explain
the mixed case.

Theorem ([S2,2.14,2.15]). Let $f$ : $Xarrow Y$ be a projecti$1^{r}e$ morphism. For an
object $\mathfrak{M}=((M, F),$ $K:W$) $\in MHW(X)^{p}$ , the followin$g$ hold.
1) $f_{*}(M, F)$ is strict and

$H^{j}f_{*}\mathfrak{M}$ $:=(H^{j}f_{*}(M, F),$ $pH^{j}f_{*}K;W[j]$ ) $\in MHW(Y)^{p}$

where $W_{i}H^{j}f_{*}(M, F)=Im(H^{j}f_{*}W_{i}(M, F)arrow H^{j}f_{*}(M, F))$ .
2) Put $h=gf$ wliere $G$ is a holomorphic function on Y. If $\psi_{h},$ $\phi_{h,1}$ are well-defined
for $\mathfrak{M}$, then $\psi_{g},$ $\phi_{g,1}$ are well-defin$ed$ for $H^{j}f_{*}\mathfrak{M}$ and one has

$\psi_{g}H^{j}f_{*}\mathfrak{M}\cong H^{j}f_{*}(\psi_{h}\mathfrak{M})$ , $\phi_{g},{}_{1}H^{j}f_{*}\mathfrak{M}\cong H^{j}f_{*}(\phi_{h,1}\mathfrak{M})$ .

3) The spectral sequence

$E_{1}^{-i,i+j}=H^{j}f_{*}Gr_{i}^{W}(M, F, K)\Rightarrow H^{j}f_{*}(M, F, K)$

degenerates at $E_{2}$ -terms and $d_{1}$ is a $morp1_{i}ism$ of Hodge modules.
Moreover $f_{*}(M, F),$ $Decf_{*}W$ ) is strict and on$eh$as

$H^{j}(f_{*}(M, F),$ $Decf_{*}W$ ) $\cong(H^{j}f_{*}(M, F),$ $H^{j}f_{*}W[j]$ ).

Comment ot the proof
As was mentioned above, the case $\mathfrak{M}$ is pure is treated in \S 4 separatedly and

assumed here. (cf.[S2,5.3.1] for 1), [S2,5.3.4] for 2))
Using the $E_{2}$ -degenaration in 3), 1) is deduced from the pure case.
For the validity of 3), the strictness of $f_{*}Gr_{i}^{W}(M, F)$ and the assumption

$(H^{j}f_{*}Gr_{i}^{W}(M, F)\in MF_{h}(D_{Y})$ and) $H^{j}f_{*}Gr_{i}^{W}M\in MH(Y, i+j)$ are sufficient.
3) is proved by the well-known argument of weight [TH II] (slightly extended in

exact categories).
2) in the general case follows from the following lemma asserting that the mon-

odromy weight filtration is preserved under projective direct image.
Put

$f=f\cross id:X\cross \mathbb{C}arrow Y\cross \mathbb{C}$

and consider $\tilde{M}=i_{g_{*}}M$ .
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Lemma ([S2,2.16]). $Assume$ that the following $con$dition$s$ hold for $\tilde{M}\in MF_{h}W$

$(D_{\overline{X}}, k)$ such that $(\tilde{M}, F)$ is q-r along $X\cross\{0\}$ .
a) $F,$ $V$, Won $\tilde{M}$ are compatible.
b) There exist relative monodromy ffltrations $W=W(N)$ on $(\psi_{t}\tilde{M}, L)$ ,

$(\phi_{t,1}\tilde{M}, L),$ $cf.3.1.2,2$) for $L$ .
c) $f_{*}Gr_{i}^{W}Gr_{k}^{L}\psi_{t}(\tilde{M}, F),$ $f_{*}Gr_{i}^{W}Gr_{k}^{L}\phi_{t,1}(\tilde{M}, F)$ are strict and their j-th coho-

mologies $H^{j}f_{*}$ belong to $MH(Y, i+j)$ .
d) $H^{j}f_{*}W$ on $H^{j}f_{*}Gr_{k}^{L}\psi_{t}(\tilde{M}, K)$ (resp. $H^{j}f_{*}Gr_{k}^{L}\phi_{t,1}(\tilde{M},$ $K)$ ) $eq$uals $W(N)[k]$ .
Then we have the following:

1) $\tilde{f}_{*}Gr_{i}^{W}(\tilde{M}, F)$ and $\tilde{f}_{*}\tilde{M},$ $F$ ) are strict on a neighborhood of $Y\cross\{0\}$ an$d$ their
cohomologies are q-r along $Y\cross\{0\}$ .
2) $F,$ $V,$ $H^{j}\tilde{f}_{*}W$ on $H^{j}\tilde{f}_{*}\tilde{M}$ are compatible.
3) $H^{j}f_{*}W$ equals $W(N)$ on $(H^{j}f_{*}\psi_{t}(\tilde{M}, F, K), H^{j}f_{*}L[j])$ (resp. $(H^{j}f_{*}\phi_{t,1}$

$(\tilde{M}, F, K),$ $H^{j}f_{*}L[j]$ )).
4) $F,$ $H^{j}f_{*}W,$ $H^{j}f_{*}L$ on $H^{j}f_{*}\psi_{t}\tilde{M}$ (resp. $H^{j}f_{*}\phi_{t,1}\tilde{M}$ ) are compatible.

It might be worthwhile to mention that it is important to consider the filtration
$Dec(f_{*}W)$ on $f_{*}\psi_{t}\tilde{M}$ (resp. $f_{*}\phi_{t,1}\tilde{M}$ ). One compares the spectral sequences as-
sociated to $Dec(f_{*}W)$ and $H^{j}f_{*}W[j]$ (which turn out to degenerate at $E_{2}$ -terms).
Note also that one uses Kashiwara’s canonical splitting in a passage from $Gr_{k}^{L}$ to
the whole.

From the above theorem, cohomological projective direct image $H^{j}f_{*}\mathfrak{M}$ is well-
defined. In fact, well-definedness of vanishing cycle functors follows from 2). Well-
definedness of direct image $j_{*},j!$ for $H^{j}f_{*}M$ follows from 1) applied for $H^{j}f_{*}(j_{*}M)$ ,
$H^{j}f_{*}(j_{!}\mathfrak{M})$ .
3.4.2 Cohomological direct image for projectively compactifiable morphisms
Definition A morphism $f$ : $Xarrow Y$ is said to be projectively compactifiable if
there exists a factorization $f=\overline{f}\cdot j$ such that $j$ : $Xarrow\overline{X}$ is an open immersion
with $\overline{X}\backslash X$ a divisor and $\overline{f}:\overline{X}arrow Y$ is a projective morphism, $cf.[SGA4,XVII]$ .

Two projective compactifications are said to be equivalent if there exists a third
one which dominates both.

The projective compactification $f=\overline{f}\cdot j$ is said to be admissible for $M\in$

$MHM(X)$ if $\mathfrak{M}$ is extendable to $\overline{X}$ . In this case, one puts
Definition $H^{j}f_{*}\mathfrak{M}:=H^{j}\overline{f}_{*}(j_{*}\mathfrak{M})$ , $H^{j}f_{!}\mathfrak{M}:=H^{j}\overline{f}_{*}(j_{!}\mathfrak{M})$ ,
which depends only on the equivalence class of projective compactifications of $f$ .
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3.4.3 Cohomological inverse image
CONSTRUCTION For any morphism $f$ : $Xarrow Y$ , there exist functors

$H^{j}f^{*},$ $H^{j}f^{!}$ : $MHM(Y)arrow MHM(X)$

compatibly with the functors

$pH^{j}f^{*p}H^{J}f^{!}$ : Perv$(k_{Y})arrow Perv(k_{X})$

cf.[S2,2.19].
The strategy is simple : factor $f$ into $f=p\cdot i$ with $p$ a smooth morphism of

relative dimension $\ell,$ $i$ a closed immersion.
Then the definition will be the following:

$H^{j}f^{*}\mathfrak{M}:=H^{j-\ell}i^{*}H^{p}p^{*}\mathfrak{M}$

$H^{j}f^{!}M:=H^{j+\ell}i^{*}H^{-\ell}p^{\downarrow \mathfrak{M}}$

The smooth inverse image was recalled in 3.2.
The inverse image by a closed immersion is defined in the following way.
Assume $X= \bigcap_{i}g_{i^{-1}}(0)_{red}$ for holomorphic functions $g_{1},$ $\cdots g_{r}$ on Y. Put

$U_{i}=\{g_{i}\neq 0\}$ , $j_{I}$ : $U_{I}= \bigcap_{i\in I}U_{i}arrow Y$

Then one defines

$H^{j}i^{*}M:=H^{j}(\oplus_{\# I=-}.(j_{I})_{!}j_{I}^{-1}\mathfrak{M})$

$H^{j}i^{!}\mathfrak{M}:=H^{j}(\oplus_{\# I=}.(j_{I})_{*}j_{I}^{-1}\mathfrak{M})$

mimicking the definition in the sheaf theory. Note that the complexes in the right
hand side are those in $MHM(Y)$ . The independence of factorizations is standard.

3.4.4 Direct image by a Zariski open immmersion
CONSTRUCTION For an open immersion $j$ : $Uarrow Y$ such that $Y\backslash U=X$ a closed
subspace of $Y$ , there exist functors $H^{k}j_{!}j^{-1},$ $H^{k}j_{*}j^{-1}$ : $MHM(Y)arrow MHM(Y)$
compatibly with $pH^{k}j_{!}j^{-1p}H^{k}j_{*}f^{-1}$ : Perv$(k_{Y})arrow Perv(k_{Y})$ . Moreover one has
the following long exact sequences:

$arrow H^{k}j_{!}j^{-1}\mathfrak{M}arrow H^{k}\mathfrak{M}arrow i_{*}H^{k}i^{*}\mathfrak{M}arrow$ $H^{k+1}j_{!}j^{-1}\mathfrak{M}arrow\cdots$

. $..arrow i_{*}H^{k}i^{!}\mathfrak{M}arrow H^{k}\mathfrak{M}arrow H^{k}j_{*}j^{-1}\mathfrak{M}arrow i_{*}H^{k+1}i^{!}\mathfrak{M}arrow\cdots$

( $H^{0}j_{!}j^{-1},$ $H^{0}j_{*}j^{-1}$ coinside with $j_{!}j^{-1},j_{*}j^{-1}$ when $X$ is a divisor).
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The definition is, using the notation in 3.4.3,

$H^{k}j_{!}j^{-1}\mathfrak{M}:=H^{k}(\oplus\# I=1-\cdot(j_{I})_{!}j_{I}^{-1}\mathfrak{M})$

$H^{k}j_{*}j^{-1}\mathfrak{M}:=H^{k}(\oplus_{\# I=1+}.(j_{I})_{*}j_{I}^{-1}\mathfrak{M})$

These functors in 3.4.3,3.4.4 preserve the polarizability. To show this one needs
the fact that polarizability is preserved under smooth inverse image, which in turn
relies upon Theorem 5.??, cf.[S2,3.20].

\S 3.5 Derived category of mixed Hodge modules
3.5.1 We review the formalism of standard operations for mixed Hodge modules
in parallel to that for constructible sheaves on an algebraic variety ( $=separated$ and
reduced scheme of finite type over C).

To work in algebraic category means to replace all notions in preceding sections
by corresponding algebraic analogues.

We refer the reader to the [S2,\S 4] for precise change in their definitions and
estrict ourselves to point out main differences.

For incetance, Perv $(k_{X})$ is the full subcategory of Perv $(k_{X^{an}})$ with respect to
algebraic stratifications. $D_{X}$ is the ring of differential operators with coefficients in
$\mathcal{O}_{X}$ when $X$ is smooth. The regularity of a holonomic $D_{X}$-modules means regularity
at infinity.

$MHM(X)$ is defined to be the full subcategory of $MHW(X)^{p}$ by imposing
the stability under the operations $\psi_{g},$ $\phi_{g,1},j_{!},j_{*}$ , ロ $k_{Y}^{H}[d_{Y}]$ , where $Y$ is smooth and
$j$ : $Uarrow X$ an open immersion such that $X\backslash U$ is a divisor. Thus the graded pieces
$Gr^{W}\mathfrak{M}$ are assumed to be polarizable.

3.5.2 Cohomological operations
For any morphism $f$ , one can define $H^{j}f_{*},$ $H^{j}f_{!},$ $H^{j}f^{*},$ $H^{j}f^{!}$ because of the ex-

istence of proper compactification for $f$ and od Chow’s lemma.
Beilinson’s functor $\xi_{g}(3.3.5)$ is available so that one has an equivalence of cate-

gories :
$i_{*}:$ $D^{b}MHM(X)arrow D_{X}^{b}MHM(Y)$

for a closed immersion $i:Xarrow Y$ .
We have (by the calculation in \S 5)

$MHM(pt)=$ {graded-polarizable MHS}

and also
$MHM(X)$ is stable by external tensor products.

Of course, $MHM(X)$ is an abelian category.
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3.5.3 Derived category
Let $D^{b}MHM(X)$ be the derived category of bounded complexes in $MHM(X)$ .
Then the $(k-)rational$ part of $\mathfrak{M}\cdot\in D^{b}MHM(X)$ is a bounded complex of

perverse $sl_{1}eavesK\cdot$ . Thanks to the realization functor [BBD,\S 3], we can obtain a
usual complex:

rat: $D^{b}MHM(X)arrow D_{c}^{b}(k_{X})$ ; rat $(M)=real(K)$

Then we can push the long arguments int$0$ the following simple:

Theorem. We $h$ave the standard operations

$f_{*},$ $f_{!},$ $f^{*},$ $f^{!},D,$ $\psi_{g},$ $\phi_{g,1}$ , 図, $\otimes,$ $Hom$

on $D^{b}MHM(X)$ and $tl_{i}ese$ are compatible with similar operation$s$ on $D_{c}^{b}(k_{X})$

through $tl_{i}e$ functor rat.

CONSTRUCTION: Mimic the arguments in Beilinson [B1,\S 3].
For $f_{*},$ $f!$ , take affine open coverings of $X$ and $Y$ compatibly with $f$ such that one

can have acyclic resolutions of finitely many given objects. It is all right because
$f_{*},$ $f!$ are left or right derived functors of $H^{0}f_{*},$ $H^{0}f_{!}$ in the case $X,$ $Y$ are affine.

$f^{*}$ (resp. $f^{!}$ ) are defined to be left (resp. right) adjoint functor of $f_{*}$ (resp. $f_{!}$ )
and their existence is reduced to the case $f$ is a closed immersion and to the case
$f$ is a projection $p:X\cross Yarrow Y$ .

For the former case, cf. the complex used in 3.4.3. For the latter, one represent
$p^{*}$ by an external tensor product $\mathfrak{M}\otimes$ ? (for some $\mathfrak{M}\in MHM(X)$ ) (i.e. prove its
naturality and existence).

Remark The technique (due to Beilinson) to construct standard functors be-
tween derived categories of certain nice abelian categories is axiomatized in [S12].
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\S Appendix–Hodge modules on singular spaces
We explain how to treat D-modules and Hodge modules on a singular space in

this \S .

A.1 Let $X$ be a reduced and separated complex analytic space. Consider a
covering by open sets $X= \bigcup_{i}U_{i}$ which is locally finite and also a collection of local
embeddings into smooth spaces $(U_{i}arrow V_{i})_{i}$ where $U_{i}arrow V_{i}$ is a closed immersion
into a smooth space $V_{i}$ . For an index subset $I$ , one has the following induced
morphism

$U_{I}$ $:=n_{i\in I}U_{i}arrow V_{I}$ $:=\Pi_{i\in I}V_{i}$ ,

and for $I\subset J$ one has the following commutative diagram:

$U_{I}$ $arrow$ $V_{I}$

$\uparrow$ $O$ $\uparrow pr_{IJ}$

$U_{J}$ $arrow$ $V_{J}$

Note that $pr_{IJ}$ is simply a projection.

A.2 Consider a collection of Hodge modules $\mathfrak{M}=\{M_{I}\}_{I}$ and morphisms $U_{IJ}$ :
$pr_{IJ*}M_{J}\simeq M_{I}$ on $V_{J}\backslash (U_{I}\backslash U_{J})$ which satisfies the condition:

$SuppM_{I}\subset U_{I}$ , $M_{I}\in MH(V_{I}, n)$

$u_{IK}=U_{IJ}\cdot(pr_{IJ})_{*}u_{JK}$ on $V_{J}\backslash (U_{I}\backslash U_{K})$ $(I\subset J\subset K)$ .

One can define an obvious equivalence of such data. An equivalence class has
a meaning independent of the choice of local embeddings and open coverings by
2.2.2,1).

The category of such objects is denoted by $MH(X, n)$ . $\{M_{I}\}_{I}$ is called a repre-
sentant of a Hodge module ’M. When $X$ is smooth, we can take $(U_{i})_{i}=\{X\}$ and
consider a usual Hodge module as a representant on $X$ . Therefore the definition
using representants generalizes the definition in 2.2.

Using this notion one can also consider the category $MHW(X)$ .

A.3 For $\mathfrak{M}=\{M_{I}\}_{I}\in MH(X;n)$ , one has a perverse sheaf $K\in Perv(k_{X})$

which induces $K_{I}$ underlying $M_{I}$ for each $I$ .
Similarly one has a globally defined $(K, W)$ for an object of $MHW(X)$ .
This enables us to define a polarization of a Hodge module $\mathfrak{M}$ on a singular space

as a pairing
$S$ : $K\otimes Karrow a_{X}^{!}k(-n)$

which induces a polarization for each representant $M_{I}$ by restriction. Similarly one
has the notion of graded polarization for an object of MHW(X).

A.4 We can consider the category $MF(D_{X})$ of filtered D-modules on a singular
space $X$ similarly to $MH(X)$ .



100

Let $f$ : $Xarrow Y$ be a proper morphism between separated and reduced complex
spaces. Then we have a functor

$f_{*}$ : $DF(D_{X})arrow DF(D_{Y})$ ,

the definition of which we are going to explain.
First choose locally finite open coverings of $X$ and $Y$ : $X= \bigcup_{i}U_{i},$ $Y=\bigcup_{i}U_{i}’$ and

closed embeddings into smooth spaces : $U_{i}arrow V_{i},$ $U_{i}’arrow V_{i}’$ such that there is a
morphism $f_{i}$ : $V_{i}arrow V_{i}’$ making the following diagram commute:

$U_{i}$

$f|_{U,arrow^{1}}$

$U_{i}’$

$\cap$ $O$ $\cap$

$V_{i}$

$arrow^{f_{i}}$

$V_{i}’$

Let $\{(M_{I}, F)\}$ be a representant of $(M, F)\in MF(D_{X})$ (thus $(M_{I}, F)$ belongs
to $MF(D_{V_{I}})$ with support in $U_{I}$).

Put then

$f_{*}(M, F):==s[ \bigoplus_{\# I-1=-}.DR^{-1} . (f_{I})_{!}\cdot\overline{DR}(\tau_{\leq 2d(I)+1}G(M_{I}, F))]$

$f_{i}=\Pi_{i\in I}f_{i}$ : $\Pi_{i\in I}V_{i}arrow\Pi_{i\in I}V_{i}’$

Here $G$ denotes Godement’s canonical flabby resolution such that $Gr_{p}^{F}G(M_{I})$ is
flabby $(\forall p)$ and $d(I)= \min\{dimV_{i};i\in I\}$ . This is just to take a suitable \v{C}ech
complex with respect to the “covering“ $\{U_{i}arrow V_{i}\}$ (and to take the associated
simple complex

$\geqq$ ).

A.5 Using $f_{*}$ in $A4,we$ can consider cohomological direct image functor.
Let $f$ : $Xarrow Y$ be as in A4 and let us take an object $(M, F, K)\in MF_{h}(D_{X}, k)$ ,

whose definition is obvious and not recalled here.
If any local representant of $f_{*}(M, F)$ is strict, we say $f_{*}(M, F)$ is strict and define

$H^{j}f_{*}(M, F, K)$ $:=(H^{j}f_{*}(M, F),$ $pH^{j}f_{*}K$ ) $\in MF_{h}$ ( $D_{Y}$ , た)

the isomorphism $\alpha$ : $DR(H^{j}f_{*}M)\cong \mathbb{C}\otimes^{p}H^{j}f_{*}K$ being induced from

$\bigoplus_{\# I-1=-}.(j_{I})\iota\overline{DR}(M_{I})\cong \mathbb{C}\otimes K$

($j_{I}$ is the inclusion $U_{I}= \bigcap_{i\in I}U_{i}arrow X$).
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\S Complements l–Strictness and compatible filtrations
We recollect here two key notions which are quite technical but crucial in the

theory of mixed Hodge modules.
C.l Let $\psi$ : $(E:, F)arrow(E_{2}, F)$ be a morphism between filtered objects in an
abelian category $\mathcal{A}$ . Here we consider decreasing filtrations and use the standard
convention: $F_{p}=F^{-p}$ .

We say that $\psi$ is strict or strictly compatible with the filtrations if the following
holds :

$\psi(F^{p}E_{1})=F^{p}E_{2}\cap Im\psi$ $(\forall p)$

For a filtered complex $(K, F)$ , one has a spectral sequence :
$E_{0}^{p,q}=Gr_{F}^{p}K^{p+q}\Rightarrow H^{p+q}(K)$

$E_{1}^{p,q}=H^{p+q}(Gr_{F}^{p}K)$

We say that $(K, F)$ is strict if every $d^{i}$ : $(K^{i}, F)arrow(K^{i+1}, F)$ is strict. Then it is
known that $(K, F)$ is strict iff the above spectral sequence degenerates at $E_{1}$ -terms
[DI,II (1.3.2)].
C.2 It is necessary to extend the above notions to exact categories.

An additive category $C$ is called exact if it is a full subcategory of an abelian cate-
gory $\overline{C}$ and is stable by extensions in $\overline{C}$. The notion of exact category is independent
of the embedding.

A morphism $\psi$ : $E_{1}arrow E_{2}$ is said to be strict if $Ker\psi,$ $Coker\psi$ belong to $C$ .
A decreasing filtration of an object $E$ in $C$ is, by $definitio\underline{n}$ , a family of strict

monomorphisms $u_{ij}$ : $F^{j}Earrow F^{i}E(i<j)$ (i.e. $Cokeru_{ij}$ in $C\in C$ ) which satisfy
$u_{ij}\cdot u_{jk}=u_{ik}(i<j<k)$ .

Then it can be verified that the strictness of a morphism $\psi$ of filtered objects in
an abelian category $\mathcal{A}$ is equivalent to that of the morphism $\psi$ in the exact category
$F(\mathcal{A})$ of filtered objects in $\mathcal{A}$ .

The definition of strictness of a filtered complex is extended to that of a complex
$(E, d)$ in $C;(E, d)$ is said to be strict if

(1) every $d^{i}$ : $E^{i}arrow E^{i+1}$ is strict, and
(2) $Imd^{i-1}arrow Kerd^{i}$ is an strict monomorphism $(\forall i)$ .

The second condition assures $t1_{1}at$ the cohomology $\underline{o}bjectH^{i}(E)$ is in $C$ , in which
case we say that $(E, d)$ is weakly strict relative to $C$ .
C.3 We should be careful when we treat several filtrations, for it is known that
$Gr_{F_{1}^{1}}^{i}Gr_{F_{2}^{2}}^{i}Gr_{F_{3}^{3}}^{i}$ depends on the order of filtrations in general. It is convenient to
introduce the following notion of a nice $fan\dot{u}ly$ of filtrations.

Let $F_{I}=(F_{i})_{i\in I}$ be a family of filtrations indexed by a finite set $I$ on an object
$A\in \mathcal{A}$ . The category of such an I-filtered object $E=(A, F_{I})$ is denoted by $F_{I}(\mathcal{A})$ .
Put

$F^{\nu}E$ $:= \{\bigcap_{j\in J}F_{j}^{\nu_{j}}A\}_{J\subset I}$ $(\nu=(\nu_{i})_{i\in I}\in Z^{I})$ ,
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where $J$ runs through the subsets of $I$ .
$F_{I}$ is said to be compatible if $F^{U}E$ is “short exact” for $\forall\nu\in \mathbb{Z}^{I}$ . $(F^{\nu}E\in S_{I}^{c}(A)$

in the notation of [Sl,\S l].) The condition “short exact” means that $3^{n}$-lemma holds
where $n$ is the cardinality of $I$ . If $n=2,3^{2}=9$-lemma means the exactness of the
following square$(=2)$ diagram:

$F_{1}^{\nu_{1}}\cap F_{2}^{\nu_{2}}(A)arrow F_{1}^{\nu_{1}}(A)arrow*$

$\downarrow$ $\downarrow$ $\downarrow$

$F_{2}^{\nu_{2}}(A)$ $arrow$ $A$ $arrow*$

$\downarrow$ $\downarrow$ $\downarrow$

$*$ $arrow$ $*$ $arrow*$

We leave to the reader the task of formulating 3“-lemma for $n\geq 3$ .
We extend the strictness to multi-filtered complexes ; ( $E\in CF_{I}(A)$ is said to

be strict if the induced filtrations on $H^{k}((E)$ are compatible, namely, $H^{k}F^{\nu}(E)$

is “short exact”.
Then that $\psi$ : $Earrow E’$ is strict is equivalent to the strictness of the complex

$[Earrow\psi E‘]$ or to that $Ker\psi,$ $Coker\psi$ are “short exact”.
The following criterion is practically convenient [Sl,\S l].

Theorem. Assume for simplicity that there exist inductive limits in A. Let $E=$
$(A, F_{I})$ be an I-filtered object with the condition :

$\bigcup_{p}F_{i^{p}}A=A,$ $F_{i^{p}}=0$ $(p>>0)$ .

Take an element $i\in I$ and put $I’=I\backslash \{i\}$ .
(i) $E$ is compatible iff $Gr_{F_{i}}^{p}(A, F_{I’})$ are compatible for $\forall p$ and the following are
surjective:

$F^{\nu}F_{i^{p}}(A, F_{I’})arrow F^{\nu}Gr_{F;}^{p}(A, F_{I’})$ $(\forall p, \forall\nu\in Z^{I’})$ .
(ii) Let $E=(A^{\cdot}, F_{I})$ be a complex of I-filtered objects and assume that $F_{I}$ on each
term satisfies tlie above condition and is compatible. Then $E$ is strict iff $(A, F_{i})$

and $Gr_{F_{i}}^{p}(A, F_{I’})(\forall p)$ are strict.
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\S Complements 2–Relative monodromy filtrations-

We recollect here basic notions and facts related to relative monodromy filtra-
tions, cf.[SZ],[S1,1.3],[S2,\S 1],[K1],[Wei1 $II,1.6$], $etc$ .

C.2.0 Recall the definiton of a N-filtration $W=W(N)$ for a nilpotent endo-
morphism $N$ acting on an object $E$ of an exact category $C,cf.C.1.1$ . It is a finite
increasing filtration $W$ such that

1) $NW_{i}E\subset W_{i-2}E$ , 2) $N^{i}$ : $Gr_{i}^{W}E\simeq Gr_{-i}^{W}E$ .

It is unique if it exists and it exists in an abelian category.
For such a filtration $W$ , we put

$PGr_{i}^{W}E=P_{N}Gr_{i}^{W}E:=Ker(N^{i+1} : Gr_{i}^{W}Earrow Gr_{-i-2}^{W}E)$

for $i\geq 0$ if this belongs to C. $T1_{1}en$ one has

$Gr_{i}^{W}E\simeq\oplus_{m\geq\max\{0,-i\}}PGr_{i+}^{W_{2m}}E$ $(\forall i)$

(the primitive decomposition).

C.2.1 Let $L$ be a finite filtration on an object $E\in C$ . Assume that a nilpotent
endomorphism $N$ respects $L$ .
Definition An N-filtration relative to $L$ (or relative monodromy filtration or
relative weight filtration) is a finite increasing filtration $W$ on $E$ such that

1) $NW_{i}E\subset W_{i-2}E$ , 2) $N^{k}$ : $Gr_{i+}^{W_{k}}Gr_{i}^{L}E\simeq Gr_{i-k}^{W}Gr_{i}^{L}E$ .

A priori, this notion has nothing to do with weight or monodromy.
It is unique if it exists. One has an inductive formula (if it exists) :

1) $W_{-i+k}L_{k}E=W_{-i+k}L_{k-1}E+N^{i}W_{i+k}L_{k}E$ $(i>0)$

2) $W_{i+k}L_{k}E=Ker(N^{i+1}$ : $L_{k}Earrow L_{k}/W_{-i-2+k}L_{k}E$ $(i\geq 0)$

If $Gr_{i^{L}}E=0$ for $i\neq n$ , then the N-filtration $W$ for $(E, L)$ exists and $W=$

$W(N)[n]$ .
Note that the construction of N-filtration is functorial and if $u:((E_{1}, L),$ $N$ ) $arrow$

$((E_{2}, L),$ $N$ ) induces $\tilde{u}$ : $(E_{1}, L, W)arrow(E_{1}, L, W)$ , then $\tilde{u}$ is strict.

C.2.2 Some results on relative N-filtrations
First recall the inductive criterion for the existence of relative N-filtration due

to Steenbrink-Zucker:
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Proposition [SZ,2.20]. Assume that $C$ is an abelian category and that the N-
filtration for $(L_{k-1}E, L)$ exis$ts$ .

Then the N-ffltration for $(L_{k}E, L)$ exists if an$d$ on$ly$ if

$N^{i+1}$ : $Ker(N^{i+1} : Gr_{k}^{L}Earrow Gr_{k}^{L}E)arrow L_{k-1}E/N^{i+1}L_{k-1}E+W_{k-i-2}L_{k-1}E$

is zero for $i\geq 0,$ $i.e$ .

$N^{j}L_{k}E\cap L_{k-1}E\subset N^{j}L_{k-1}E+W_{k-j-1}L_{k-1}E$ $(j\geq 1)$

Another important fact on relative monodromy filtration is Kashiwara’s canon-
ical splitting:

Proposition [K,3.2.9] $(cf.[S2,1.5])$ . $Assume$ that the N-ffltration $W$ for $(E, L)$

exists an$d$ that the primitive parts $P_{N}Gr_{i+k}^{W}Gr_{k}^{L}E$ belong to $C$ .
Then there exists a canonical splitting

$Gr_{i}^{W}E \simeq\bigoplus_{k}Gr_{i}^{W}Gr_{k}^{L}E$ .

Moreover, if we write the section by $s_{i,k}$ : $Gr_{i}^{W}Gr_{k}^{L}Earrow Gr_{i}^{W}L_{k}E$ an$d$ denote by
$s_{i,k}’$

:
its restriction to the primitive part $s_{i,k}|_{PGr^{W}Gr_{k}^{L}E}$ , then we have tlie following

1)
$Im(s_{i+k,k})= \sum_{0\leq m\leq i+2m}N^{m}Im(s_{i+k+2m,k}’)$

2) $Im(s_{i+k,k}’)=pr(W_{i+k}L_{k}E \cap N^{-(i+1)}(\sum_{p}N^{\ell}Im(s_{j+\ell,\ell}’))$
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