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81. Introduction.

There are three types of hypersurface simply elliptic singularity. They are represented

in C? as follows: . '
E¢:a(z —2)(x — \2) —zy? =0,

Er:zy(e —y)z—Ay) —2* =0 (A #0,1),
Es:y(y —a2*)(y — A2”) — 2" =0.

Let # : X — S be its ( global ) semi-universal deformation. Let S’ — S be the
universal covering of S. Let 7' : X’ — S’ be the pull back of 7: X — S.

The period mapping P : '\ D — E ( D is a discriminant set, E is a C affine half
space, and P is a multi-valued holomorphic mapping ) is defined by Kyoji Saito by use of
the theory of the primitive form.

Let W be the monodromy group which describes the multi-valuedness of P. Then W

acts on B properly discontinuous and there exists uniquely the holomorphic isomorphism:
©:B/W = S\ D

which commutes the following diagram:

X « X E

i ! AR

S « S o S\D £/
N V4
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where D' := {z € S'|77(z) has a simply elliptic singularity}.

Problem: Describe the map ¢. In other words, describe the deformation parameters
( the coordinates of S’ ) as the W invariants on E.

We call this problem the “Jacobi’s inversion problem”. We remark that W contains
the discrete Heisenberg group, thus W invariants can be described by some theta functions.

To solve this problem, we recall the “flat structure” defined by K.Saito.

First, we embed the space S’ into the C linear space V; with inner product. This
embedding is constructed by the theory of the primitive form.

Secondly we construct the space E and the group W by use of the extended affine
root system, and we embed E/ W into the C linear space V, with inner product. This
embedding is constructed by the theory of Coxeter transformation for the extended affine
root system.

Then the map ¢ is induced from the linear isomorphism ¢ : V5 — V; which preserves

the inner products:

S — EB/W
N N
‘/rl (—' V2 .

We call these linear structures for S'; E / W, the flat structures.

Therefore, if we know both the linear functions on S’ and ones on E / W, we can solve
the Jacobi’s inversion problem up to linear isomorphism.

The linear function on S’ was already described by M.Noumi. Thus we reduce the
problem to the following one.

Problem: Describe the linear functions on E / W. In other words, describe the special
W invariants on E which corresponds to the linear functions.

In this article, we shall explain our approach to this problem by use of the generalized
Jacobi form defined by Wirthmiiller. Also we give the explicit calculation of the flat
structure for the extended affine root system of type G5. If we can calculate the cases of

type Ej, then they give an answer to the above problem.
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§2. Flat structure.

We introduce some notations.

h: a Cartan subalgebra for a simple Lie algebra.
be:=bh®r C.

be:=Homg(hg, C).

R(C bg): set of roots.

I :he x he — C Killing form.

Q(R):Z— span of the image of R by the isomorphism:
be — be
induced from the Killing form.

E:=H x hg x C. The symbol e(z) denotes exp(2my/—1z).

Definition 2.1. A holomorphic function @ on H X b x C is an element of Sy,, if it
satisfies the conditions:

1) (1,2 + A+t + IO N7 + 2107, 2)) = o7, 2,8) YA, 1€ Q(R),

2) o(rw(z),t) = o(r, 2,t) Yw e W,

3) ¢(7,2z,t + a) = e(—ma)p(r,2,t) Va € C.

Put

(2.1) S:=P Sm.
m=0
Naturally S is a I'(H, Ox )-graded algebra, and the grading is defined by m.

Theorem 2.2. ([B-S1][B-S2][L][K-P})

S is a polynomial algebra over I'(H,On), freely generated by ! + 1 homogeneous

elements O, ... 0 of degree m;(i =0,...,0) (mg <my < ... <my).
Put,

(2.2) Derg := the module of C-derivations of the algebra S,

(2.3) Q% := the module of 1-forms for the algebra S.
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_They are dual S-free modules by the natural pairing: <, > with the dual basis:

0 e O
4 Ders = S— S——
(24) rs 37@16:90 00,’
{
(2.5) Q% = Sdr & @ sde,
1=0

using a generator system ©;’s of Theorem 2.2. Derg and Q% have the graded S-module

structure in a natural way. There is a natural lifting map:
(2.6) Qs — Qf,

so that the form I induces a'S-bilinear form:

(2.7) Iy : QL x 0L - 8.

The values of Iy lie in S, since the form I is invariant with respect to the group action in
Def. 2.1. We remark that this symmetric tensor fw € Ders @ Derg is degree 0.

In the rest of this paper, we assume that m;_; < mjy.

Then in the S- graded module Derg, the lowest degree vector fields become a free
I'(H, Og)- module of rank 1 generated by %.

Multiplying a function h € T'(H, O};) , if necessary, we can take a highest degree

generator ©; which satisfies

0% .
(2.8) ———Iw(d@l,d@l) = 0.
567

By (2.8), 5% 1s normalized up to a constant factor.

Hereafter we fix ©g,---, ©; such that ©, satisfies the condition (2.8). We can define

o
{f”'a—el 20}’

(2.10) F = {w € Q5L o w= 0} ,
50,

(2.9) T:
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where L s means the Lie derivative with respect to the vector field aiel. By the above

29,

generators 7,0, -+, O, we can represent T, F as follows:
(2.11) T =T(H, On)[Oo,---,0;-1],
l
(2.12) F =Tdr & @ Td6;.
i=0

We define a 7" bilinear form,

J T FxF — T,

9 ~
(2.13) w1 X Way — 5%;[((.01,(4)2).

The value 3—2)—1I~(w1,w2) belongs to T by the condition (2.8). Then the next important fact

was shown by the Coxeter transformation theory for the extended affine root system.

Proposition 2.3. ( Saito [S])

The T bilinear form J* is non-degenerate and integrable.
This means that there exist generators ©; € S,,, of the algebra S over T'(H, O)
which satisfy the following equations:

(2.14) J*(d©;,d0,) = const, J*(dr,dOy) = const (3,7,k =0,---,1).

The vector space V = Cr & @520 CO; has an intrinsic meaning and Hom(V,C) is just
the flat structure introduced in §1. We call these new generators ©; € Sm; of the algebra

S, the flat theta invariants.
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§3. Jacobi form.

Definition 3.1. A Jacobi form of weight k, index m ( k,m € Z ) is a holomorphic function
¢ : H x g x C — C satisfying

1) (7,2 + A+ ur,t+ IO N7 + 21N, 2)) = o(7, 2,1) YA, € Q(R),

2) w(r,w(2),t) = o(r,2,1) Yw € W, |

3) o(1,z,t+ a) = e(—ma)p(T,2,t) Va € C,

4) ¢ (gjjg, et + ;éjﬁ)) = (e + d)* (T, z,t) forall <Z Z) € SL(2,Z),

5) ¢ has a Fourier development of the form

e(=mt) 3 e(n)g"ba(2) (g =e(r)

with ¢(n) =0 if n < 0.

The vector space of all functions ¢ is denoted by Ji m. Put

Jon = @ Jk,m, M, = @ Jk,O-

k,meZ keZ

Theorem 3.2. (Wirthmiiller)
Jex 18 a polynomial algebra over M,, freely generated by |41 Jacobi forms g, -, @1,

where ¢; is of weight k;, index m;.

Proposition 3.3.

FOIMHO € Jk,m ) (b € ']k’,m';
fVV(d(n—Zk@)? d(n_% ¢))/T’_2k~2k € Jk-{-k'—l—Z,m—{—m’;

where (1) := ¢M/* T[22 (1 — "), (¢ =e(7)).

We take 0 = ¢ = ;. Then

¢ = INW(CZ(U_%’LPI), d(n—?k’(pl))/n*?kz—?kz



190

is a Jacobi form of weight 2k; 4+ 2, index 2my. Since Jy o = {0} by the basic theory of
modular forms, any function multiplied by ¢} does not appear when ¢ is represented by
the polynomial of g, - -, ¢; over M,. This means that we can give the normalized lowest

degree vector field aiel introduced in (2.8) as

9
A(n=?kipy)’

By this fact and Prop 3.2, we can calculate the tensor J* represented by

T 000, T gy, TRy

In §4, we give the explicit calculation for the type G2. If we calculate the cases of the

type E), then this gives an answer to the problem in §1.

84. Jacobi form of type G,

We define a C-bilinear form <, > on C? by
< z,w >= 223wy + 225Wq — 21Wq — ZoWq

where z = (21, 29), w = (w;y,wy) € C2.

Definition 4.1. A Jacobi form of weight k, index m ( k,m € Z ) and type G4 is a
holomorphic function ¢ : H x C? x C — C satisfying

1) o(r,z + A+ prt+ < ANA>T+H2< N z2>) =¢(1,2,t) VA, pe Z?,

2) ¢ (2, t + 5555) = (er + DFplr, 2,1),

3) o(1,2z,t 4+ a) = e(—ma)e(r,2z,t) Ya € C,

4) o(1,—z1 — 22, 22,t) = (7, 21, 22, 1),
o(7,21,—21 — z2,t) = (T, 21, 22, ),
QD(T, —R1, —Z22, t) = 99(7—7 21,22, t)7

5) ¢ has a Fourier development of the form

e(—mt) Zc(n,rl,rg)qnglﬁ 2 (g=e(1),(1=e(21),(2 = e(22) )
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with ¢(n,r1,m2) =0 if n < 0.

The vector space of all functions ¢ is denoted by Ji . Put

Jox = @ -Jk,ma M*:@Jk,o-

k,m€EZ keZ

Theorem 4.2. (Wirthmiiller) The ring J., is a polynomial algebra over M, on three
generators

ag € Jo1, az € J_21, as € J_gp2.

These generators are unique up to constant multiplication. We can calculate the

leading term of the Fourier development of these generators.

Proposition 4.3. The leading term of the Fourier development of the above generators

is as follows:

(41) Cag = e(~t)[18 +f + g] ( mod ¢C{q,(1,(2})

(4.2) | - ap =e(—t)[-64 f +g] ( mod ¢C{q,(1,(})
(4.3) ag = e(—2t)[(f = )] ( mod ¢C{q,(1,¢2})
where

(4.4) F={+0GM + 6

(4.5) | =G GG+ G

Remark. The above functions f,g coincides with the characters of the highest weight

representation of the Ay type simple Lie algebra.

Theorem 4.4. The relationship between the flat theta invariants and the Jacobi forms is

as follows:

(4.6) O =P11(7)ay + Pra(7)az,
(4.7) ©1 =Py1(7)ao + Paa(r)as,
i . < n N 1
(4.8) O =P31(7)03 + Psa(7)000s + Pas(r)0F + ———n'%aq,

*47r\/—177
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where
(4.9) Pu(r) 1= 5gn(n) 2 Qu(0),
(4.10) Pyy(7) = — 2637r5 ()’ Qa2(7)?,
(411) Poa(r) 1= — 5 n(r) 2 Qalr),
(419) Pi(r) = s Qu(7),
(4.13) Py (7) = \2377(7)4621(7)»
(4.14) Pys(r) = 2dnl(:)/n(r),
(4.15) Py3(7) = \/8:77(7)4Q2(7),
and
(4.16) n(r) =g T[(1-q"), (g=-e(r))
‘ 1
(4.17) 2(7) := 60 e — s
g2\7) m,nez,(%’:n)#(o,o) (mT +n)
1
(4.18) 3(7) = 140 T
’ mn€z, (;n)#(o gy (M7 1)
(4.19) Q1(7) = 93(7) \/’\/_(2 ,
(4.20) Q2(7) := (T()Tl)z - E\/—“(Zfr) :
such that ~
92(7)
(4.21) Q1(7)Q2(7) = 377@8,
. _92(7)
(4.22) Q(T)Qi(r+1) = _377(7.)8 ’

Q1(7), Q2(7) is determined uniquely by the condition (4.21),(4.22).

Proof. We can calculate the following differential relations:

3

g d2(7) a6,

1 9
(4.23) I(dao,dao) = —-2—7[_—292(7")(1,0&2 — ﬁgg('r)ag —
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(428)  I(dao,d(n(r)ia)) = ~ —ga(rn(r) el ~ —gs(T)n(r) e,
®25)  I(dao, (7)) = —5 5an(r)n(r) 2asc,

(026)  I(dn(r)a) din(r) an)) = 2 ) ans — segan(In(r) e,
(427)  I(d(n(r)as), d(n(r)2as)) = —2xn(r) ®agas,

(438)  I(dn(r) as), din(r)2ae)) = = Sn(rPadas.

Thus we obtain the algebraic equations and differential equations satisfied by P;;(7). By

use of the following differential relations:

129 F(25)) - (29))
oo {GR) e (G
oy d (gg<r>+ 37 V/=1(2m ) (r >12)
| \gs(r) — /T2 (2
ey | [9s(r) [T
TV o (W)_ -21—7\/—1(%)677(7)“)
we can solve the equations satisfied by P;;. Q.E.D.

Corollary 4.5.

The modular property of the flat theta invariants is as follows:

(4.32) Oo(1 +1,2,t) = e(—1/12)04(7, 2, 1),

(4.33) O1(T4+1,2,t) = —e(1/12)0¢(7, 2, 1),

(4.34) Ou(r +1,2,t) = —Oa(, 2, 1),

(4.35) éo(—"l; E,t L < ZZ,TZ >) _ \/_—_1?_(1/3)(:)1(7_’2715)’
(4.36) (:)1(—; —j—,t 4+ = ’;’Z 2y = e(\l//::; Oo(T, 2,1),
(4.37) éz(—%,f,wr S2E2) - 6, ~606,
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Proof. By the equations:

(4.38) Qi) (T +1) =~ 395((:))8 ,
1. 92(7)
(1.39) Q)@ (—7) = —e(1/D T
g2(7)
(4.40) Qar)Qa(r +1) = —e(=1/3)3 T3,
1o el g92(7)
(4.41) Q2(7)Qx( T) = —e( 1/3)377(7.)8’
(4.42) Pyy(7 4+ 1) = Psa(7),
(4.43) sz(—%) = 77 Pyy(7) + 7,
(4.44) n(—i—) = <\/T_—1>_ n(t),
we have (4.32)-(4.37). Q.E.D.

Corollary 4.6. Let (1) := d%n(ﬂ/n(r). Then (1) satisfies the following differential
equation:

(1.45) 92(r) = 20%(r) + geamg ().

Proof. Since the differential equations (2.14) are overdetermined, thus we obtain (4.45) as

the integrable condition. Q.E.D.
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