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\S Introduction

The aim of this exposition is two-fold. The first is to present a short review of
some recent works on the geometric construction of the space of conformal blocks
in the theory of conformal field theory (abbreviated as CFT) in terms of certain
D-modules on the moduli spaces of curves.

The second is to sketch our recent study [SU] of “abelian” CFT jointly with
Prof.Kenji Ueno in the same principle as the above, cf.[S].

The construction of the spaces of conformal blocks is due to [BF] in the case of
minimal series representations of the Virasoro algebra and to [TUY] in the case of
integrable representations of affine Lie algebras. Both works realize the space of
conformal blocks as fibers of certain D-modules on the dressed moduli spaces of
curves by the method of localization.

Projective connections on those modules are neatly explained in [BK] by a kind
of (heat equation” which reformulates Hitchin’s approach [H].

The contents are as follows. In \S 1 we briely review the method of localization.
Then we treat the case of Virasoro algebra in \S 2 and the case of abelian CFT in
\S 3. Finally in \S 4 we comment on the factorization property.

\S 0 Notations
$T_{Y}$ denotes the tangent sheaf of a smooth scheme $Y$ .
$Vir$ denotes the Virasoro algebra:

$Vir:= C((z))\frac{d}{dz}\oplus C\cdot c$ $C((z))=C[[z]][z^{-1}]$

with the commutation relation

$[f(z) \frac{d}{dz},g(z)\frac{d}{dz}]$ $;=(fg’-f’g) \frac{d}{dz}+\frac{1}{12}{\rm Res}_{z=0}(f’’’gdz)\cdot c$

for $f(z),g(z)\in C((z))$ and $c$ is a central element. For more details on $Vir,$ $cf.[KR]$ .
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$\hat{u}(1)$ denotes the (completed) affinization of the one-dimensional Lie algebra
$u(1)$ $:=C$ :

$\hat{u}(1)$ $:=C((z))\oplus C\cdot K$ ,

where $K$ is a central element and its Lie bracket is defined to be

$[f(z),g(z)]={\rm Res}_{z=0}(f’gdz)\cdot K$.

(The oscillator algebra in [KR])
We introduce “N-point variants” of the above algebras :

$Vir_{N}$ $:= \bigoplus_{i=1}^{N}C((z_{i}))\frac{d}{dz:}\oplus C\cdot c$

$\hat{u}_{N}(1)$ $:= \bigoplus_{:=1}^{N}C((z_{i}))\oplus C\cdot K$.

Here $c$ and $K$ are again central elements and the Lie brackets are given by

$[(f_{i}(z_{i}) \frac{d}{dz:}), (g_{i}(z_{i})\frac{d}{dz_{i}})]=\sum_{i=1}^{N}(f(z_{i})g’(z_{i})-f’(z_{i})g(z_{i}))\frac{d}{dz_{i}}$

$+ \frac{1}{12}\sum_{i=1}^{N}{\rm Res}_{z_{i}=0}(f_{i}’’’(z;)g_{i}(z;)dz;)\cdot c$

$[(f_{i}(z_{i})), (g_{i}(z;))]= \sum_{i=1}^{N}{\rm Res}_{z’=0}(f_{i’}(z_{i})g_{i}(z_{i})dz_{i})\cdot K$ .

Finally let us recall the Fock space representations which have two complex pa-
rameters $\lambda,$ $w$ :

$F_{\lambda,w}$ $:=U(\hat{u}(1))/I(\lambda, w)$

$U(\hat{u}(1)):=the$ universal enveloping algebra of $\hat{u}(1)$

$I(\lambda, w)$ $:=the$ left ideal of $U(\hat{u}(1))$ generated by $C[[z]],$ $z^{0}-w$ and $K-\lambda$ .

These are $\hat{u}(1)$-modules and becomes $Vir_{N}$-modules by the so-called Sugawara
construction cf.[KR].

Put $F_{0}$ $:=F_{0,0}$ for later use and put

$F_{\lambda,\tilde{w}}$ $:=\otimes_{i=1}^{N}F_{\lambda,w_{*}}$

for $\lambda,$
$w_{1},$ $\cdots w_{N}\in C$ and $\vec{w}=(w_{1}, \ldots w_{N})$ . These are naturally $\hat{u}_{N}$ (l)-modules.
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\S 1 Localization
1.1 First we recall the definition of a ring of twisted differential operators (ab-
breviated as a $tdo$),$cf.[B],[K]$ .

Let $X$ be a smooth scheme.
A tdo on $X$ is a filtered ring ($=sheaf$ of rings) $(D, F)$ , which satisfies the following

conditions:
(1) $\bigcup_{i}F_{i}D=D$ , $F_{-1}D=0$ .
(2) $F\cdot D/F_{i-1}D\simeq S^{i}(T_{X})$ compatibly with the multiplications on the both sides.
We will sometimes write $F_{1}D=D\leq i$ .
If $\mathcal{L}$ is a line bundle on $X$ , then the sheaf $D_{\mathcal{L}}$ of differential operators acting on

the (local) sections of $\mathcal{L}$ is a basic example of tdo.

1.2 Let $Y$ be a smooth scheme, $D$ a tdo on Y. By the action of a Lie algebra $\mathfrak{g}$

on $(Y, D)$ , we mean a Lie algebra homomorphism $\alpha$ : $\mathfrak{g}arrow D\leq 1(Y)$ , where we put
$\mathcal{F}(Y)=\Gamma(Y, \mathcal{F})$ for a sheaf $\mathcal{F}$ .

If we have an action of $\mathfrak{g}$ on $(Y, D)$ , then we have an algebra homomorphism
$\alpha$ : $U(g)arrow D(Y)$ and also a g-action on $Y$ , i.e., $\mathfrak{g}arrow D\leq 1(Y)arrow T_{Y}(Y)$ .

DEFINITION (Localization functor)
Assume that we are given an action of $g$ on $(Y, D)$ . Then the following corre.

spondence
$M D\otimes_{U(\mathfrak{g})}M$

defines a functor
$\Delta$ : (g-modules) (D-modules).

This is a right-exact functor.

LEMMA. Let $\mathfrak{g}_{p}$ be the stabilizer at a point $p\in Y(=Ker(\mathfrak{g}arrow D\leq 1(Y)arrow D_{p}\leq 1))$ .
Then we have

$\Delta(M)\otimes \mathcal{O}_{Y}/m_{p}\simeq M/\mathfrak{g}_{p}M$.
The right hand side is the space of coinvariants.

\S 2 The case of Virasoro algebra

2.1 We fix non-negative integers $g,$ $N$ with $3g-3+N\geq 0$ . A scheme (or a stack)
means a C-scheme (or a C-stack) in what follows.

Let $\mathcal{M}_{g,N}$ be the moduli space of N-pointed smooth projetive algebraic curves
over $C$ of genus $g$ , and $\overline{\mathcal{M}}_{g,N}$ its natural compactification, i.e., the moduli space of
N-pointed stable curves of genus $g$ . These are smooth stacks of dimension $3g-3+N$
and $\overline{\mathcal{M}}_{g,N}$ is also proper over $C,$ $cf.[DM],[Kn]$ .

Consider the morphism

$\pi:\overline{C}=\overline{\mathcal{M}}_{g,N+1}arrow\overline{\mathcal{M}}=\overline{\mathcal{M}}_{g,N}$
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which forgets the $(N+1)$-th point and is the “univesal” curve. By restriction this
gives rise to the universal curve

$\pi:C=C_{g,N}arrow \mathcal{M}=\mathcal{M}_{g,N}$ .

In general, we will denote the determinant line bundle $detR\pi_{*}(\mathcal{F})$ by $d(\mathcal{F})$ for a
family of curves $\pi$ : $Xarrow S$ and a coherent sheaf $\mathcal{F}$ on $X,$ $cf.[KM]$ .

Retuming to our situation, we put

$\lambda_{j}=detR\pi_{*}(\omega_{c/\mathcal{M}}^{\otimes j})$ .

Then $\lambda_{j}=\lambda_{1-j}$ (Serre duality) and $\lambda_{0}=\lambda_{1}=:\lambda_{H}$ is the (so-called) Hodge line
bundle.

We are going to apply the localization procedure not for $\mathcal{M}_{g,N}$ but for the fol-
lowing dressed moduli space $Y=\mathcal{M}_{g,N}^{(\infty)}$ .

$\mathcal{M}_{g)N}^{(\infty)}$ is the moduli space of dressed N-pointed curves, which is introduced by
Beilinson and Kontsevich, cf.[KNTY]. A dressed N-pointed curve ( $C;x_{1},$ $\cdots$ $x_{N}$ ; $t_{1},I$

$\ldots t_{N})$ consists of a N-pointed $(C;x_{1}, \cdots x_{N})$ and isomorphisms of C-algebras
$t_{i}$ : $\hat{\mathcal{O}}_{C,x:}\simeq C[[z]](1\leq i\leq N)$ (formal local parametrizations).

The obvious projection $\mathcal{M}_{g,N}^{(\infty)}arrow \mathcal{M}_{g,N}$ makes $\mathcal{M}_{g,N}^{(\infty)}$ into a $Aut_{\mathbb{C}-alg}(C[[z]])-$

torsor over $\mathcal{M}_{g)N}$ . The pull-back by this projection gives rise to a family of curves
over $\mathcal{M}_{g,N}^{(\infty)}$ and the determinant line bundle $\lambda_{j}$ .

We have similar notions for the stable moduli.

2.2 PROPOSITION $([BS$ \S 4] $)$ . There is an action of the Lie algebra $Vir_{N}$ on
$(\mathcal{M}_{g,N}^{(\infty)}, D_{\lambda_{H}})$ (with central charge 1).

The proof of this fact uses a construction of the Virasoro algebra associated
to a pointed curve and a theorem on the integration of trace algebras : $D_{\lambda_{H}}^{\leq 1}=$

$R^{0}\pi_{*}(frA_{\mathcal{O}})$ where $trA_{\mathcal{O}}$ is a certain complex of Lie algebras cf.[BS,\S 1,2].

It is easy to produce the associated action of $Vir_{N}$ on $\mathcal{M}_{g,N}^{(\infty)}$ :
$\mathcal{O}_{\mathcal{M}_{g,N}^{(\infty)^{\otimes}}}^{\wedge}Vir_{N}/Cc\simeq\dot{\pi}_{*}(T_{\pi})$ .

REMARK There is an operation of multiplying a tdo by a complex number $c\in$ C.
For example, $cD_{L}=D_{cL}=D_{L^{\theta c}}$ for a line bundle $L$ and $c\in Z$ .

Thus we dispose the following functor:

$\Delta$ : ( $Vir_{N}$-modules with central charge $c$ ) $arrow$ ( $D_{c\lambda_{H}}$ -modules).

2.3 As an illustration of the localization technique, we recall the beautiful results
by Beilinson-Feigin [BS,\S 4], [BFM,\S \S 7,8].
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Let $M$ be a finitely generated $Vir_{N}$-module which satisfies the condition :
$(\otimes_{i=1}^{N}C[[z_{i}]]z_{i}\partial_{z_{i}})m$ is finite-dimensional for any $m\in$ M. (Then we say $M$ is
integrable with respect to $(\otimes_{i=1}^{N}C[[z;]]z;\partial_{z}:).)$

For such an $M$ with central charge $c,$ $\Delta(M)$ is a coherent $D_{c\lambda_{H}}$ -module and
descends to $\mathcal{M}_{g,N}^{(1)}$ , where (1) means that we consider local coordinates up to the
first order instead of formal local parameters for the case of $(\infty)$ .

Among such representations are the Verma module $M_{c,h}$ and its irreducible quo-
tient $L_{c,h}$ . ( $c$ and $h$ are eigenvalues of the operators $c$ and $L_{0}$ on the vacuum
vector.)

2.4 THEOREM. The following are equivalent.
(1) $L_{c,h}$ is lisse, $i.e.$ , the characteristic variety of $L_{c,h}SS(L_{c,h})$ is included in the

orthogonal complement of $\{L_{-1}, L_{-2}, \cdots\}$ in th$e$ dual space $Vir^{*}$ .
(2) $N_{c,h}=Ker(M_{c,h}arrow L_{c,h})$ is generated by two singular vectors and $N_{c,h}\subset$

$M_{c,h’}$ implies $(c, h)=(c, h’)$ .
(3) $L_{c,h}$ is in the minimal series, $i.e.$ ,

$\{\begin{array}{l}c=1-\frac{6(p-q)^{2}}{pq}h=\frac{(pm-qn)^{2}-(p-q)^{2}}{4pq}\end{array}$ $(1<p<q, 1\leq m<q, 1\leq n<p)$

The meaning of lisse-ness is clear from the following:

2.5 THEOREM. If $M$ is a lisse $Vir_{N}$ -module, then $\Delta(M)$ is a vector bundle with a
($t$ wisted) integrable connection.

\S 3 The case of $U(1)$-current algebra

We would like to treat the case of $U(1)$-current algebra using the localization
technique as in \S 2. Unlike the minimal series representations for Virasoro algebra,
Fock space representations (cf.\S O) produce non-coherent D-modules on the moduli
spaces of curves.

We consider “dressed” invertible sheaves on a curve and “dress” the relative
Picard scheme over $\mathcal{M}_{g,N}^{(\infty)}$ . Then, by a theorem on tdo’s by Beilinson-Kazhdan, we
can produce the modules of conformal blocks for our abelian CFT. This generalizes
the earlier work [KNTY].

3.1 Recall the situation in 2.1. We have the universal family of curves $\pi$ : $Carrow \mathcal{M}$

and $\pi$ : $\overline{C}arrow\overline{\mathcal{M}}$.
The relative Picard group (of degree d) $Pic_{C/\mathcal{M}}^{d}$ is also a smooth algebraic stack,

which is projective over $\mathcal{M}$ and is moreover a (relative) abelian scheme of dimension
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$g$ over $\mathcal{M}$ . Put $P=Pic_{C/\mathcal{M}}^{g-1}arrow p\mathcal{M}$ . We have the (universal) Poincar\’e bundle $\mathcal{P}$

on $C\cross {}_{\mathcal{M}}P$ and dispose the determinant line bundle $\mathcal{L}=d(P)=\det R\pi_{*}(P)$ on $\mathcal{P}$ ,
where $\pi$ is the projection $CX_{\lambda 4}Parrow P$. $cf.[Sz]$ . It is known that $\mathcal{L}=\mathcal{O}(-\Theta)$ holds
where $\Theta$ is the theta divisor on $P$ .

We also dispose the relative Picard group $\overline{P}=Pic_{\frac{g}{c}}^{-}/\frac{1}{\mathcal{M}}$ , which is a (relative)

semi-abelian scheme over M. The Poincar\’e bundle extends to $\overline{\mathcal{P}}$ over $\overline{C}\cross_{\overline{\Lambda t}}\overline{P}$ and
we have the determinant line bundle L.

Consider the following fiber product :

$P^{(\infty)}=Px_{\mathcal{M}_{g,N}}\mathcal{M}_{g,N}^{(\infty)}arrow p\mathcal{M}_{g,N}^{(\infty)}$ .

In order to localize representations of the Lie algebra $\hat{u}_{N}(1)$ , we have to consider
the (dressing’ of invertible sheaves on a curve. A dressed invertible sheaf on a
dressed N-pointed curve $(C;x_{1}, \cdots x_{N};t_{1}, \cdots , t_{N})$ is an invertible sheaf $L$ (or a
line bundle) equipped with $t_{i}$ -linear isomorphisms $v_{i}$ : $\hat{L}_{x_{i}}\simeq C[[z]]$ $(1 \leq i\leq N)$ .

Denote by $P^{(\#)}$ the moduli space of dressed invertible sheaves over dressed N-
pointed curves. Thus $P^{(\#)}$ is a $G_{m}(C[[z]])^{N}$-torsor over $P^{(\infty)}$ .

3.2 PROPOSITION. There exists an action of $\hat{u}_{N}(1)$ (with central charge 1) on
$(P^{(\#)}, D_{r^{*}L})$ . Namely there is a Lie algebra homomorphism: $\theta$ : $\hat{u}_{N}(1)arrow D_{r\mathcal{L}}^{\leq_{*}1}$ .

The homomorphism $\theta$ factors through $D_{r\mathcal{L}/\lambda 4(\infty)}$ by the construction, for which
we do the same thing as for 2.2. Moreover we know that $Ker\theta=\pi_{*}\mathcal{O}_{C}(*\sum s_{i})$ .

Thanks to this fact, we dispose the following functor:

$\Delta$ : $(\hat{u}_{N}(1)- modules)arrow$ ( $D_{r\mathcal{L}}$-modules)

3.3 We define the module of conformal blocks in the following way. Put (cf.\S O)

$\mathfrak{M}=\Delta(F_{0}^{\otimes N})$ .

’Yt $=(r_{*}\mathfrak{M})^{\prod_{:=1}^{N}e_{m}(\hat{\mathcal{O}}_{\epsilon;})}$

$\mathcal{O}_{P^{(\infty)}}$-module $\mathfrak{R}$ has a structure of $D_{\mathcal{L}}$-module inherited from that of $D_{r\cdot L}$ -module
on $9X$ .

We define the module of conformal blocks to be the direct image $p_{*}\mathfrak{R}$ , which has
a priori a structure of $p_{*}D_{\mathcal{L}}$ -module.

Before explaining how a structure of twisted D-module on $p_{*}\mathfrak{R}$ is deduced, we
define the “dual” of $p_{*}\mathfrak{R}$ .

Recall that the completion $F_{\lambda^{\uparrow},w}$ of the Fock space $F_{\lambda,w}$ with respect to the degree
equals the topological dual of $F_{-\lambda,w}$ considered as a left $\hat{u}(1)$-module via the anti-
automorphism of $U(\hat{u}(1))$ which $is-id$ on $\hat{u}(1)$ . We use the notation $F_{\lambda,w}^{*}$ for the
same space considered as a right module.
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There is a natural pairing called “expectation value” :

$F_{\lambda,w}^{*}xF_{\lambda,w}arrow C<I>$

or
$F_{-\lambda,w}^{\dagger}xF_{\lambda,w}arrow C$.

This gives rise to:

$\mathcal{O}_{P(\#)}\otimes F_{-\lambda,w}^{\dagger}x\mathcal{O}_{P(\#)}\otimes F_{\lambda,w}arrow \mathcal{O}_{P^{\langle\#)}}$

We define the dual of $\mathfrak{M}$ to be the orthogonal space to it :

$\mathfrak{M}^{\dagger}$

$:=$ { $u\in \mathcal{O}_{P(\#)}\otimes(F_{0,0^{\wedge}}^{\uparrow\otimes N});f\cdot u=0$ for all $f\in Ker\theta$ }

This has a structure of $D_{f}*c-1$ -module.
We set

$\mathfrak{R}^{\dagger}$ $:=(r_{*}\mathfrak{M}^{f})^{\prod_{:=1}^{N}G_{m}(\hat{o}_{*\iota})}$ ,

which is naturally a $D_{\mathcal{L}}-1$ -module.
Then $p_{*}\mathfrak{R}^{\uparrow}$ is called as the module of conformal (co-)blocks.

So far $p_{*}\mathfrak{R},$ $p_{*}\mathfrak{R}\dagger$ have only the module structure over $D_{L},D_{L}-1$ respectively.
The following result shows that they have twisted D-module structure.

3.4 PROPOSITION [BK]. $p_{*}D_{L}$ (resp. $p_{*}D_{c-1}$ ) is a $tdo$ . Moreover we bave :
$p_{*}Dc-1=D\neq\lambda_{H}$ ’ where $\lambda_{H}$ is the Hodge line bun$dle$, cf.2.1.

The filtration for tdo structure comes from the spectral sequence with respect to
the filtration as to the order of operators along the base space of $p$ .

We refrain from giving the exact statement of the following:

3.5 SCHOLIE. $p_{*}D_{\mathcal{L}}-1=D\neq\lambda_{H}$
” is compatible with the $Su$gawara construction

and embodies the heat $eq$uation.

This implies that $p_{*}\mathfrak{R}^{\uparrow}$ satisfies the gauge condition and the equation of motion
in the sense of [KNTY,\S 7], where the case of $N=1,$ $g\geq 2$ is considered. But
it doesn’t obey the modular transformation property and doesn’t characterize the
$\tau$-function (or $\theta$-function), cf.3.6.

3.6 (Pl\"ucker embedding”
The determinant line bundle $\mathcal{L}$ is known to equal $\mathcal{O}(-\Theta)$ for the theta divisor $\Theta$

on $Pic_{C/\mathcal{M}}^{g-1},$ $cf.[Sz]$ . We relate $\mathcal{L}$ or its inverse to the structure of the modules of
conformal blocks.
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Let us calculate a fiber of the determinant line bundle $\mathcal{L}^{-1}$ . Let

$\mathcal{X}=(C;x_{1}, \ldots , x_{N};t_{1}, \ldots t_{N;}L;v_{1}, \ldots v_{N})$

be a point of $P^{(\#)}$ . Then the fiber at X of $r^{*}\mathcal{L}^{-1}$ is isomorphic to $d(\omega_{C}\otimes L^{-1})$ $:=$

$\det R\Gamma(C, \omega_{C}\otimes L^{-1})$ where $\omega_{C}$ denotes the dualizing sheaf of the curve $C$. From
the exact sequence

$0 arrow\omega_{C}\otimes L^{-1}arrow\omega_{C}\otimes L^{-1}(m\sum_{:}x_{i})arrow\oplus_{i=1}^{N}\oplus_{k=-1}^{-m}Cz_{i}^{k}dz:arrow 0$

we have

$d( \omega_{C}\otimes L^{-1})=d(\omega_{C}\otimes L^{-1}(m\sum_{i}x_{i}))\cdot\wedge^{\max}(\oplus_{i=1}^{N}\oplus_{k=-1}^{-m}Cz_{i}^{k}dz_{i})^{-1}$
.

Note that the data $t_{i}’ s$ and $v;s$ are necessary here.
Recall that $p_{0^{\dagger}}$ is realized as a semi-infinite form module, which is obtained from

the vector space $C((z))$ by semi-infinite wedge product, cf.[KNTY,\S 1].

In our situation, the isomorphisms $v;s$ induce an embedding:

$H^{0}(C, L^{-1} \otimes\omega_{C}(*\sum x_{i}))arrow\bigoplus_{i=1}^{N}C((z_{i}))$ .

Then, it defines a line in $(F0^{\dagger\otimes N})^{\wedge}$ by the semi-infinite wedge product.
This leads to the following natural embedding

$r^{*}\mathcal{L}^{-1}-\mathfrak{M}^{*}$

of $D_{r\mathcal{L}}-1$ -modules as well as the natural embedding

$\mathcal{L}^{-1}-\mathfrak{R}$ .

Hence we have
$p_{*}\mathcal{L}^{-1}rightarrow p_{*}9t$.

We have similar construction for the (duals’.

The basic problem is to understand the structure of $p_{*}\mathfrak{R}$ or $p_{*}\Re^{*}$ . This can
be done by the above embedding of $p_{*}\mathcal{L}$ or $p_{*}\mathcal{L}^{-1}$ and the consideration of theta
structures, cf.[SU]. As to the chracterization of the $\theta$-function mentioned in 3.5, we
may say that the action of the theta group replaces that of the modular group.
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\S 4 Comments on factorization property

4.1 “Line bundles on moduli”
To formulate the factorization property for our D-modules of conformal blocks,

we need to know the boundary behaviour of the basic line bundle $\mathcal{L}$ .
Consider the diagram:

$p\downarrow\overline{P}_{g}$

$\supset$

$P_{\downarrow}^{b}$ $\sigma^{*}P^{b}\downarrow$ $’arrow\varpi$

$P_{g-1}$

$\overline{\mathcal{M}}_{g,N}$ $\supset$ $D_{0}$ $\simeq\overline{\mathcal{M}}_{g-1,N+2}/6_{2}arrow\sigma$ $\overline{\mathcal{M}}_{g-1,N+2}/6_{2}$

Here $D_{0}$ is the open dense subset corresponding to smooth curves of the irreducible
divisor of $\overline{\mathcal{M}}_{g,N}$ whose general point represents an irreducible curve with only one
node. The left square is cartesian and cv has a structure of $C^{*}$-bundle.

Then we have

4.2 PROPOSITION.
$\sigma^{*}\mathcal{L}_{g}|_{D_{O}}\simeq\varpi^{*}\mathcal{L}_{g-1}$ .

This results is analogous to the theorem of Beilinson and Manin [BM] which
states that the restriction of the Hodge line bundle to $D_{0}$ is again the Hodge line
bundle of the genus less by one.

4.3 It is implicit (or semi-explicit) in [TUY] that The so-called factorization
property of the conformal blocks (in the non-abelian CFT) can be formulated in
terms of nearby-cycle functor. Thus the above result may be viewed as a preliminary
to formulate the factorization property of the conformal blocks along the boundary
$D_{0}$ .

In [SU], we develop necessary techniques for this purpose such as the nearby
cycle functor for twisted D-modules, correspondence with monodromic D-modules
on the total sspace of line bundles, etc.

We have to care about the compactification of our Picard schemes and D-modules
on (singular) algebraic stacks,cf.[OS].
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