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Abstract

A concept of binary preference structure generating decision principle is proposed
as a device to treat extreme complex decision situations. We argue two types of
binary preference structure generating decision principles: The first is for complexity
management of dynamic environment by constructiong a model of the environment.
The second is the satisfaction decision principle which is for complexity management
by increase of internal complexity.

For the both cases we formulate the decision principles as decision principle func-
tors in the category-theoretic terms to reveal new aspects of the decision principles.
We also identify universal maps for the functors and investigate decision-theoretic
meaning of them.

1 Introduction

Decision making is essential and distinctive behavior of human being and organizations.

It becomes crucial especially when decision making involves extreme complexity in some

sense.

Usually complexity involved with decision making situation is represented by a pay-off

matrix shown in Fig.1.

In Fig. 1 each row corresponds to an action available to the decision maker while each

column represents an action by the environment or the nature. The matrix shows that if

the decision maker and the environment take action $i$ and $j$ , respectively, then the pay-off

for the decision maker is $a_{ij}$ .
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$(\begin{array}{llll}a_{11} a_{12} a_{1j} a_{1n}\cdots \cdots \cdots \cdots a_{i1} a_{\dot{\iota}2} a_{\dot{\iota}j} a_{in}a_{m1} a_{m2} a_{m_{J}} a_{mn}\end{array})$

Fig.1 Payoff Matrix

This is the most usual interpretation of the pay-off matrix and such a decision situation

is often called decision making under uncertainty.

However, the matrix has much variety of interpretation. If we consider that $i$ is an

action taken by a decision maker and that he evaluates it from various viewpoints, $a_{i_{J}}$
. can

be interpreted as evaluation of the action with respect to the j-th attribute. In this case the

matrix represents multiattribute decision making situation. There is (internal) complexity

in the decision situation in the sense that the decision maker is not sure which attribute

he should put emphasis on.

If we assume $i$ an action available to society and $a_{ij}$ evaluation of $i$ by a member $j$ in

the society, the matrix can be interpreted to show group decision situation. Since in the

society there are many people whose value system are very different, a sort of complexity

should exists in it.

Since we consider a pay-off matrix can represent a fairly general situation of complex

decision making, this paper uses the idea and denotes a complex decision situation by

$S=(M, U, g)$ . $M$ is a set of alternatives available to the decision maker and $U$ a set of

uncontrollable variables while $g:M\cross Uarrow R$ is a pay-off function. $R$ denotes the set of all

reals. Hence $g(i, j)$ stands for $a_{ij}$ in the matrix above. We assume the decision makers are

maximizers.

When we tackle a complex decision situation we are forced to introduce a decision prin-

ciple since a simple optimization is meaningless and impossible. In the following sections

we formulate, in a category theoretic framework, a decision principle as a decision prin-

ciple functor and reveal the principle’s characteristics based on the formulation. we also
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identify universal map for the functor and argue the decision theoretic meaning of it. A

universal map constitutes one of the most important materials in category theory since for

a given object it identifies essential approximation of the object, $i,e_{)}$ it gives a minimal (or

maximal) object preserving properties the given object satisfies with [3]. We believe that

investigation on the universal map for the functor provides a new view point from which

we can throw light on essential aspects of the decision principle.

2 Decision Principle Functors

Now let us represent a class of decision situations by

$D=\{S=(M, U, g)|AI\subset M, U\subset U, g:M\cross Uarrow R\}$ ,

where $M,$ $U$ denote super sets of $M$ and $U$ , respectively.

A decision principle is intuitively understood as a way by which the decision maker

determines rational solutions. However, it is quite crucial which decision principle should

be taken for dealing with a particular decision situation rationally. For instance, the well

known “ max-min” decision principle may be applied to a wide class of decision situations,

but not to all the situations since it represents pessimistic attitude of the decision maker to

the situation. That is why we are interested in clarifying the nature of decision principles

in a unified framework [4].

This paper defines a decision principle 6 by a mapping which assigns to each decision

situation an ordered alternative set; $i.e.$ ,

6: $D_{\delta}arrow\wp(M\cross M)$

$S=(\mathbb{J}I, U, g)rightarrow(M, \geq\delta(S))$ .

$D_{\delta}\subset D$ is a set of decision situations which the principle can deal with while $\geq\delta(S)\subset M\cross M$

denotes a preference ordering on $M$ induced by $\delta$ . We assume $\geq_{\delta}$ is a partial ordering.

With a decision principle 6 we can associate a solution function $H_{\delta}$

$H_{\delta}:D_{\delta}arrow\wp(M)$
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$S=(M, U, g)->H_{\delta}(S)$ ,

where we have

$H_{\delta}(S)=$ {$m\in M|m$ is a maximal element with respect to $\geq_{\delta(S)}$ }.

$H_{\delta}(M, U, g)$ is not always a singleton set but possibly a subset of $M$ .

We pointed out that, in general, rational decision principles are, compactly to some

surprising extent, characterized by introducing an associated functor $[5][6]$ :

Let $S=(M, U, g)$ and $S’=(M’, U’, g’)$ be in D. $h=(h_{1}, h_{2}, h_{3})$ is called an affine

modelling morphism if

1. $h_{1},$ $h_{2},$ $h_{3}$ are such that $h_{1}$ : $Marrow M’$ and $h_{2}$ : $Uarrow U’$ while $h_{3}:Rarrow R$ is a positive

affine transformation, $i,e.,$ $h_{3}$ is of the form $h_{3}(r)=pr+q$ for all $r\in R$ , where

$p,$ $q\in R$ and $p>0$ .

2. The diagram is commutative (Refer to Fig.2).

$M\cross$ $U$

$arrow^{g}$
$R$

$h_{1}\downarrow$ $h_{2}|$ $1^{h_{3}}$

$M\ltimes$ $U’$ $R$

$g’$

Fig.2 Modelling Morphism

The affine modelling morphisms are adopted to define domain categories of associated

decision principle functors. That is:
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Let $\mathcal{D}$ be such that
$Ob\mathcal{D}=D$ ,

and

$Mor_{D}(S, S’)=$ { $h=(h_{1},$ $h_{2},$ $h_{3})|h$ is an affine modelling morphism}.

We define a D-composition by

$(h_{1}’, ", h_{3}’)\cdot(h_{1}, h_{2}, h_{3})=(h_{1}’h_{1}, h_{2}’h_{2}, h_{3}’h_{3})$

where the compositions on the righthand side is the usual compositions of functions. Let

$1=(1,1,1)$ be an $\mathcal{D}$-identity. Then it is clear that CP is actually a category.

For a given decision principle $\delta$ how to define a subcategory $\mathcal{D}_{\delta}$ of 7) essentially char-

acterizes $\delta$ ([5] refers this property as the simmilarity condition). The morphisms in the

domain category of the associated functor represent what decision situations the principle

deals with as the similar.

On the other hand, as a codomain category of an associated functor we will define a

category $\mathcal{L}$ by

$Ob\mathcal{L}=$ { $(M,$ $\geq)|(M,$ $\geq)$ is a partially ordered structure},

and
$Mor_{\mathcal{L}}((M, \geq),$ $(M’, \geq’))=$ { $k_{1}|k_{1}$ is a strict order homomorphism}.

$k_{1}$ : $Marrow M’$ is called a strict order homomorphism from $(M, \geq)$ to $(M’, \geq’)$ if

1. $(\forall m, m’\in M)(m\geq m’\Rightarrow k_{1}(m)\geq’k_{1}(m’))$ ,

2. $(\forall m, m’\in M)(m>m’\Rightarrow k_{1}(m)>’k_{1}(m’))$

hold.

We define an $\mathcal{L}$-composition by the usual composition of functions. An $\mathcal{L}$-identity is an

identity function. Then $\mathcal{L}$ is also a category.
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Definition 1 Let 6: $D_{\delta}arrow\wp(M\cross M)$ be a decision principle. A decision principle functor
associated with $\delta$ is a functor $\mathcal{F}_{\delta}:\mathcal{D}_{\delta}arrow \mathcal{L}$ such that

$\mathcal{F}_{\delta}(S)=(M, \geq\delta(S))$ for every $S=(M, U, g)\in ObD_{\delta}$ ,

and
$\mathcal{F}_{\delta}(h)=h_{1}$ for every $h=(h_{1}, h_{2}, h_{3})\in Mor\mathcal{D}_{\delta}$ ,

where $\mathcal{D}_{\delta}$ is a subcategory of 7) such that $Ob\mathcal{D}_{\delta}=D_{\delta}$ ,

This paper especially interested in ways of managing complexity in decision situations.

When tackling complex decision situation the decision maker may not care about precise or

rigid decision; indeed, such decision making is impossible as well as meaningless. He would

rather like to seek a rough but reasonable decision. In order to describe this we introduce

a concept of binary preference structure. Intuitively, in a binary preference structure every

alternative is simply either good or bad; the evaluation is not continuous but discrete.

Formally,

Definition 2 Let $S=(M, U, g)$ and 6 be a decision principle. $\delta(S)=(M, \geq)$ is called a

binary preference structure if

$(\forall m, m’\in M)(m, m’\in H_{\delta}(S)\Rightarrow m\sim\delta(S)m’)$

and
$(\forall m, m’\in M)(m, m’\not\in H_{\delta}(S)\Rightarrow m\sim\delta(S)m’)$.

We call a decision principle 6 a binary preference structure generation decision principle

(hereafter we simply write it by bpsg decision principle) if it generates a binary preference

structure to every decision situation in $D_{\delta}$ .

This paper investigates two ways of generating a binary preference structure on the set

of the alternatives. The first is to eliminate uncertainty contained in the situation by

observing it. This approach may be referred to as complexity management by reduction of

external or world complexity [1]. The second goes to the opposite direction; the external
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complexity is not necessarily adjusted, but the decision maker adopts a simple method to

cope with the external complexity. This attitude is referred to as complexity management

by generating internal complexity [1].

In the following sections we will discuss two types of bpsg decision principles, each of

which corresponds to the decision attitudes above: In section 3 we will argue bpsg decision

principle of the first type while in section 4 we will do the second type.

3 Universal Map for Reduced Decision Principle Func-
$t$ or

When a decision situation $S=(M, U, g)$ is given, a way of dealing with complexity is

to reduce it to $(M, \{u\}, g_{u})$ , where $g_{u}=g|M\cross\{u\}$ , by observing the environment and

collecting information about $S=(M, U, g)$ to identify that the environment is a particular
$u\in U$ . In this case the decision making load is considerably removed. This approach is

what we call complexity management by reduction of external complexity.

This type of decision making is important particularly when the environment the de-

cision maker has to manage dynamically changes [2]. To describe dynamics of environ-

mental change we introduce environmental state transition function $\alpha:Uarrow U$ . That is,

if an initial environment state is $u\in U$ , then the environment deterministic changes by
$\alpha(u),$ $\alpha^{2}(u),$ $\alpha^{3}(u),$ $\cdots$ according to $\alpha$ .

If the observation of the environment is exact, decision making in this case is basically

decision making under certainty and quite simple. However, sometimes complexity stems

from limitation on the capability of observing the environment. That is, even when a

decision situation really happens is $(M, \{u\}, g_{u})$ , the decision maker may mistake it as
$S’=(M, \{u’\}, g_{tl^{l}})$ , where $u\neq u’$ . This possibility makes the problem rather complex.

In this paper we assume that (l)the decision maker knows the whole set of uncertainty $U$

and (2) $he$ can exactly monitor the uncertainty at each moment he observes the environment.

The assumptions seem rather strict. However, later we will derive conditions under which

the second assumption becomes unnecessary.
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Now, we fix $M$ and $U$ and let us define

$D_{M,U}=\{S_{u}=(M, \{u\}, g)|u\in U, g:M\cross\{u\}arrow R\}$ .

It gives a class of the decision situations observed by the decision maker.

3.1 Formulation of Internal Modelling Principle

First we will consider a bpsg dp $\delta$ such that $D_{\delta}=D_{M,U}$ and for each $S_{u}=(M, \{u\}, g)\in$

$D_{M,U}H_{\delta}(S_{u})$ is a singleton set. That is, $\delta$ and $H_{\delta}$ are of the forms

$\delta:D_{M,U}arrow\wp(M\cross M)$

and
$H_{\delta}$ : $D_{M,U}arrow M$ ,

respectively.

In this case for each observed decision situation $(M, \{u\}, g)6$ determines as a solution

such an alternative $m^{*}\in M$ that attains the maximum value of $g(m, u)$ . Since in this case

we can identify $H_{\delta}$ : $D_{M,U}arrow\wp(S)$ such that $(M, \{u\}, g_{u})-\rangle$ $\{m\}$ with a function from $U$

into $M$ such that $u\vdasharrow m$ in an obvious way, we will write $H_{\delta}$ for the function as well.

In general, to manage environmental complexity successfully the decision maker has

to construct a model reflecting the dynamics of the external world (Internal Modelling

Principle [2]). Formally, an internal model of environmental dynamics $\alpha$ is defined by

Definition 3 ([2]) An internal model $of\alpha$ is a mapping $\beta:Marrow M$ such that the diagram

is commutative (Refer to Fig.3).
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$U$
$arrow^{\alpha}$

$U$

$H_{\delta}|$ $I^{H_{\delta}}$

$M$
$\overline{\beta}$

$M$

Fig.3 Internal Model

By our notational convenience we may write the commutative diagram by

$\beta H_{\delta}(S_{u})=H_{\delta}(S_{u’})$

for each $u\in U$ where $u’=\alpha(u)$ .

Lemma 1 If $\beta$ is an internal model of $\alpha$ if and only if for each $u\in U$ we have

$\beta^{t}H_{\delta}(u)=H_{\delta}\alpha^{t}(u)$

for any $t=0,1,2,$ $\ldots$ .

For the proof refer to [2].

The Lemma implies that if an internal model exists, once a solution $m$ is found for an

initial environmental state $u$ then the decision maker can anticipatively generate a solution
$\beta^{t}(m)$ for each environmental state $\alpha^{t}(u)$ for $t=1,2,$ $\ldots$ without real-time observation of

the environment.

One of the authors showed a condition for existence of such an internal model $\beta$ for a

given $\alpha[2]$ . To give the condition we need the following definition.
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Definition 4 Let $f:Aarrow B$ be a function. $Kerf$ is an equivalence relation on $A$ induced

by $f,$ $i.e.$ ,
$(\forall a, a’\in A)((a, a’)\in Kerf\Leftrightarrow f(a)=f(a’))$

We will simply write $f$ for $Kerf$ for notational convenience. Then we have,

Proposition 2 Let $\delta$ be a decision principle such that $H_{\delta}:D_{\delta}arrow M$ ,

$H_{\delta}\alpha\subset H_{\delta}$

holds if and only if there is an internal model $\beta$ of $\alpha$ .

For the proof refer to [2].

The condition implies that the environment does not change so rapidly with respect to

the decision attitude $H_{\delta}$ . We should notice the condition depends on the nature of $\delta$ as

well as on that of $\alpha$ .
Let $D_{\delta}$ be a subcategory of $\mathcal{D}$ such that

$ObD_{\delta}=D_{M,U}$ ,

and

$Mor_{D_{6}}(S_{u}, S_{u’})=$ { $h=(\beta,$ $\alpha|\{u\},$ $h_{3})\in$ Mor $\mathcal{D}$ I $\beta$ is an injective internal model of $\alpha$ },

if $S_{u}=(M, \{u\}, g)$ and $S_{u’}=(M, \{u’\}, g)$ .

Lemma 3 $D_{\delta}$ is a category.

Proof: Let $h=(\beta, \alpha|\{u\}, h_{3})$ and $h’=(\beta’, \alpha’|\{u’\}, h_{3}’)$ be $D_{\delta}$-morphisms from $S_{u}=$

$(M, \{u\}, g)$ to $S_{u’}=(M, \{u’\}, g’)$ and from $S_{u’}=(M, \{u’\}, g’)$ and $S_{u’’}=(M, \{u’’\}, g’’)$ ,

respectively.

It is clear that $h’h=$ ( $\beta’\beta,$ $\alpha’\alpha$ I $\{u\},$ $h_{3}’h_{3}$ ) is a $\mathcal{D}_{\delta}$-morphism from $S_{u}=(M, \{u\}, g)$ to
$S_{u’’}=$ $(M, \{u"\}, g’’)$ : $h’h$ makes the diagram of Fig. 2 commutative. Since both $\beta$ and $\beta’$

are injective, so is $\beta’\beta$ .
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To show $\beta’\beta$ is an internal model of $\alpha’\alpha$ , we will prove $H_{\delta}\alpha’\alpha(u)=\beta’\beta H_{\delta}(u)$ holds for any

$u\in U$ . Indeed, we have $H_{\delta}\alpha’\alpha(u)=H_{\delta}\alpha’(\alpha(u))=\beta’H_{\delta}(\alpha(u))=\beta’\beta H_{\delta}(u)$ . Consequently,
$\beta’\beta$ is an internal model of $\alpha$ . $(1,1|\{u\}, 1)$ is an identity from $S_{u}=(M, \{u\}, g)$ to $S_{u’}=$

$(M, \{u’\}, g’)$ . $\square$

Proposition 4 $\mathcal{F}_{\delta}:\mathcal{D}_{\delta}arrow \mathcal{L}$ such that $\mathcal{F}_{\delta}(M, \{u\}, g)=(M, \geq\delta(M,\{u\},g))$ and $\mathcal{F}_{\delta}(h_{1}, h_{2}, h_{3})=$

$h_{1}$ is a decision principle functor associated with 6.

Proof: It is clear that $\mathcal{F}_{\delta}$ is a function from $Ob(D_{\delta})$ to $Ob(\mathcal{L})$ .

We will show that $\mathcal{F}_{\delta}$ is a function from $Mor(\mathcal{D}_{\delta})$ to $Mor(\mathcal{L})$ . Let $(\beta, \alpha|\{u\}, h_{3})$ be a
$D_{\delta}$-morphism from $S_{u}=(M, \{u\}, g)$ to $S_{u’}=(M, \{u’\}, g’)$ . Then, by definition we have
$\mathcal{F}_{\delta}(\beta, \alpha|\{u\}, h_{3})=\beta$ . We will prove $\beta$ is a strict order homomorphism.

Let $m,$ $m’\in M$ be such that $m\geq s_{u}m’$ and assume $\beta(m)\geq s_{u},$ $\beta(m’)$ does not hold,

$i.e.,$ $\beta(m’)>s_{u},$ $\beta(m)$ . Since $(M, \geq s_{u},)$ is binary and $|H_{\delta}(S_{u’})|=1$ , it follow that $\beta(m’)=$

$H_{\delta}(S_{u’})$ . Since $\beta$ is an internal model of $\alpha$ we have $\beta(m’)=H_{\delta}(S_{u’})=\beta H_{\delta}(S_{u})$ . Since
$\beta$ is injective, we have $m’=H_{\delta}(S_{u})$ . It follows from $m\geq s_{u}m’$ that $m=m’$ because of
$|H_{\delta}(S_{u})|=1$ . It contradicts to $\beta(m’)>s_{u},$ $\beta(m)$ .

Let $m,$ $m’\in M$ be such that $m>s_{u}m’$ . It implies $m=H_{\delta}(S_{u})$ and hence $\beta(m)=\beta H_{\delta}(S_{u})$ .

Since $\beta$ is an internal model of $\alpha$ we have $\beta(m)=H_{\delta}(S_{u’})$ . Since $(M, \geq s_{u},)$ is binary and

$|H_{\delta}(S_{u’})|=1,$ $\beta(m)>s_{u},$ $m”$ for any $m”\in M$ . Hence we have $\beta(m)>s_{u},$ $\beta(m’)$ .

Since $\mathcal{F}_{\delta}(1,1|\{u\}, 1)=1$ holds $\mathcal{F}_{\delta}$ preserves an identity while $\mathcal{F}_{\delta}$ clearly preserves com-

positions. Consequently, $\mathcal{F}_{\delta}$ is a functor. $\square$

3.2 Universal Map for Reduced Decision Principle Functor

In this subsection let us consider a bpsg decision principle 6 such that $D_{\delta}=\mathcal{D}_{M,U}$ and for

each $S_{u}=(M, \{u\}, g)\in D_{M,U}H_{\delta}(S_{u})$ is not necessarily a singleton set, $i.e.,$ $\delta$ determines

several admissible alternatives for each decision situation $(M, \{u\}, g)$ .

Formally, 6 and $H_{\delta}$ are of the forms

6: $D_{\Lambda f,U}arrow\wp(M\cross M)$
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and
$H_{\delta}$ : $D_{M,U}arrow\wp(M)$ ,

respectively.

Let $m\in M$ be arbitrary and set

$K_{m}=\{S_{u}|m\in H_{\delta}(S_{u})\}$ .

Proposition 5 For any $m\in M$ if

$\bigcap_{S_{u}}{}_{\in K_{m}}H_{\delta}(S_{u})\neq\emptyset\Rightarrow\bigcap_{S_{u}}{}_{\in K_{m}}H_{\delta}(S_{\alpha(u)})\neq\emptyset$

holds, then there is $\theta:Marrow M$ such that

$\theta(H_{\delta}(S_{u}))\subset H_{\delta}(S_{\alpha(u)})$

Proof: Let $m\in M$ be arbitrary. (l)Suppose there is $u$ such that $m\in H_{\delta}(S_{u})$ , i.e.,
$K_{m}=\{S_{u}|m\in H_{\delta}(S_{u})\}\neq\phi$ . Since we have $m \in\bigcap_{S_{u}}{}_{\in K_{m}}H_{\delta}(S_{\alpha(u)})$ , by the assumption we

have $\bigcap_{S_{u}}{}_{\in K_{m}}H_{\delta}(S_{\alpha(u)})\neq\phi$ . Let $m’ \in\bigcap_{S_{u}\in K_{m}}H_{\delta}(S_{\alpha(u)})$ be arbitrary and define $\theta(m)=m’$ .

Then we have $m’ \in\bigcap_{S_{u}}{}_{\in K_{m}}H_{\delta}(S_{\alpha(u)})\subset H_{\delta}S_{\alpha(u)}$. (2) If for all $u\in U$ we have $m\not\in H_{\delta}(u)$ ,

$i,e_{f}K_{m}=\{S_{u}|m\in H_{\delta}(S_{u})\}=\phi$ , let us define $\theta(m)=m_{0}$ where $m_{0}\in M$ is arbitrary.

(1) and (2) define a map $\theta:Marrow M$ . Furthermore, for any $m\in H_{\delta}(S_{u})$ we have
$\theta(m)\in H_{\delta}(S_{\alpha(u)})$ , that is, $\theta(H_{\delta}(S_{u}))\subset H_{\delta}(S_{\alpha(u)})$ . $\square$

$\theta$ is called a generalized internal model of $\alpha$ . The assumption of the proposition, similar

to the interpretation of $\beta$ , implies that $\alpha$ does not change so rapidly. The proposition

claims that if $m$ is a solution for $S_{u}$ then $\theta(m)$ is necessarily a solution for $S_{\alpha(u)}$ .

Definition 5 A generalized internal model $\theta$ of $\alpha$ is called to preserve non-solutions if
$\theta([H_{\delta}(S_{u})]^{c})\subset[H_{\delta}(S_{\alpha(u)})]^{c}$ holds, where $X^{c}$ denotes the complement set of $X$ .

If $\theta$ preserves non-solutions, then any non-solution alternative in the original decision

situation equally remains as non-solution in the next decision situation.
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Let $D_{\delta}’$ be a subcategory of $D$ such that

$Ob\mathcal{D}_{\delta}’=D_{M,U}$ ,

$Mor_{D_{\delta}’}(S_{u}, S_{u’})$ $=$ { $h=(\theta, \alpha|\{u\}, h_{3})\in$ Mor $\mathcal{D}$ I
$\theta$ is a generalized internal model of $\alpha and$ preserves non-solutions}.

Then,

Lemma 6 $D_{\delta}’$ is actually a category.

Proof: Let $h=$ ( $\theta,$ $\alpha$ I $\{u\},$ $h_{3}$ ) and $h’=(\theta’, \alpha’|\{u’\}, h_{3}’)$ be $D_{\delta}’$-morphisms from $S_{u}=$

$(M, \{u\}, g)$ to $S_{u’}=(M, \{u’\}, g’)$ and from $S_{u’}=(M, \{u’\}, g’)$ and $S_{u^{ll}}=(M, \{u’’\}, g’’)$ ,

respectively.

It is clear that $h’h=(\theta’\theta, \alpha’\alpha|\{u\}, h_{3}’h_{3})$ makes the diagram of Fig.2 commutative.

Since $\theta$ and $\theta’$ are generalized internal models of $\alpha$ and of, respectively, so is $\theta’\theta$ : Indeed,

by the assumptions we have $\theta(H_{\delta}(S_{u}))\subset H_{\delta}(S_{\alpha(u)})$ and $\theta’(H_{\delta}(S_{u’}))\subset H_{\delta}(S_{\alpha’(u’)})$ . Since it

follows from $\alpha(u)=u’$ that $H_{\delta}(S_{\alpha(u)})=H_{\delta}(S_{u’})$ we have

$\theta’\theta H_{\delta}(S_{u})\subseteq\theta’H_{\delta}(S_{\alpha(u)})=\theta’(H_{\delta}(S_{u’}))\subset H_{\delta}(S_{\alpha’(u’)})=H_{\delta}(S_{\alpha’\alpha(u)})$

and hence $\theta’\theta$ is a generalized internal model of $\alpha’\alpha$ .

Since $\theta$ and $\theta’$ preserve non-solutions, we have $\theta([H_{\delta}(S_{u})]^{c})\subset[H_{\delta}(S_{\alpha(u)})]^{c}$ and
$\theta’([H_{\delta}(S_{u’})]^{c})\subset[H_{\delta}(S_{\alpha’(u’)})]^{c}$ . It implies that $\theta’\theta[H_{\delta}(S_{u})]^{c}\subset\theta’[H_{\delta}(S_{\alpha(u)})]^{c}\subset[H_{\delta}(S_{\alpha’(u’)}]^{c}$ .

Hence, $\theta’\theta$ also preserve non-solutions.
$(1, 1|\{u\}, 1)$ is an identity from $S_{u}=(M, \{u\}, g)$ to $S_{u’}=(M, \{u’\}, g’)$ .

Consequently, $\mathcal{D}_{\delta}’$ is a category. $\square$

Proposition 7 $\mathcal{F}_{\delta}:D_{\delta}’arrow \mathcal{L}$ such that $\mathcal{F}_{\delta}(M, U, g)=(M, \geq_{\delta(M,U,g)})$ and $\mathcal{F}_{\delta}(h_{1}, h_{2}, h_{3})=$

$h_{1}$ is a decision principle associated with 6.

Proof: We will show that $\mathcal{F}_{\delta}$ is actually a functor. It is clear that $\mathcal{F}_{\delta}$ is a function from
$Ob(D_{\delta}’)$ to $Ob(\mathcal{L})$ .
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Now we will prove that $\mathcal{F}_{\delta}$ is a function from $Mor(D_{\delta}’)$ to $Mor(\mathcal{L})$ . Let $(\theta, \alpha|\{u\}, h_{3})$ be a
$D_{\delta}’$ -morphism from $S_{u}=(M, \{u\}, g)$ to $S_{u’}=(M, \{u’\}, g’)$ . Then, we have $\mathcal{F}_{\delta}(\theta, \alpha|\{u\}, h_{3})=$

$\theta$ by definition. We will prove $\theta$ is a strict order homomorphism. Let $m,$ $m’\in M$ be such

that $m\geq s_{u}m’$ .

1. For the case where we have $m>s_{u}m’$ : Since we have $m\in H_{\delta}(S_{u})$ and $m’\not\in H_{\delta}(S_{u})$ ,

it follows $\theta(m)\in H_{\delta}(S_{u’})$ and $\theta(m’)\not\in H_{\delta}(S_{u’})$ because of the condition of $\theta$ . It

implies that $\theta(m)>_{\delta(S_{u},)}\theta(m’)$ .

2. For the case where we have $m\sim s_{u}m’$ : If we have $m,$ $m’\in H_{\delta}(S_{u})$ , it follows
$\theta(m),$ $\theta(m’)\in H_{\delta}(S_{u’})$ by the definition of $\theta$ . It implies that $\theta(m)\sim\delta(S_{u},)\theta(m’)$ .

If we have $m,$ $m’\not\in H_{\delta}(S_{u})$ , it follows $\theta(m),$ $\theta(m’)\not\in H_{\delta}(S_{u’})$ because $\theta$ preserves

non-solutions. Hence we have $\theta(m)\sim\delta(S_{u},)\theta(m’)$ .

Since $\mathcal{F}_{\delta}(1,1|\{u\}, 1)=1$ holds, $\mathcal{F}_{\delta}$ preserves an identity while $\mathcal{F}_{\delta}$ clearly preserves com-

positions.

Consequently, $\mathcal{F}_{\delta}$ is a functor. $\square$

Propositions 4 and 7 claim that internal models of the environment constitute the mor-

phisms of the domain categories of the associated functors. In this sense existence of

internal model is closely related to similarity among the decision situations.

One of typical examples of a bpsg decision principles of this type is a reduced decision

principle, which is defined by:

Definition 6 Let 6: $D_{\delta}arrow\wp(M\cross M)$ be an arbitrary decision principle. A decision prin-

ciple 6*: $D_{\delta}arrow\wp(M\cross M)$ is called a reduced decision principle of $\delta$ if we have

$\delta^{*}(S)=(M, \geq_{\delta^{*}(S)})$ for each $S=(M, U, g)$

where for $m,$ $m’\in Mm\geq_{\delta^{*}(S)}m’$ is defined by

$(m, m’\in H_{\delta}(S))$ or ( $m\in H_{\delta}(S)$ and $m‘\not\in H_{\delta}(S)$ ) or $(m, m‘ \not\in H_{\delta}(S))$ .
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It is obvious that $6^{*}$ is actually a bpsg decision principle.

We can always define a reduced decision principle for a given decision principle. A

relationship between them is described by:

Proposition 8 Let 6: $D_{\delta}arrow\wp(M\cross M)$ be a decision principle and 6*: $D_{\delta}arrow\wp(M\cross M)$

be a reduced decision principle of it. Suppose $\mathcal{F}_{\delta}$ and $\mathcal{F}_{\delta^{*}}$ are their associated functors,

respectively. Then there is a natural transformation $\eta=\{\eta_{S}|S\in ObD_{\delta}\}$ from $\mathcal{F}_{\delta}$ to $\mathcal{F}_{\delta^{*}}$ ,

where $\eta_{S}$ : $Marrow M$ is an identity function if $S=(M, U, g)$ .

Proof: By the definition of $\eta$ it is clear that the diagram is commutative for each $D_{\delta^{-}}$

morphism $k=(k_{1}, k_{2}, k_{3})$ from $S=(M, U, g)$ to $S’=(M’, U’, g’)$ (Refer to Fig. 4).

Let $S=(M, U, g)\in ObD_{\delta}$ . We will show that $\eta_{S}$ is a strict order homomorphism from
$(M, \geq_{\delta(S)})$ to $(M, \geq\delta^{*}(S))$ . Suppose $m\geq\delta^{*}(S)m’$ for $m,$ $m’\in M$ . It implies $m>_{\delta^{*}(S)}m’$

or $m\sim s*(s)m’$ . For the former case we have $m\in H_{\delta}(S)$ and $m’\not\in H_{\delta}(S)$ and hence

$m>_{\delta^{*}(S)}m’$ . For the latter case, we have $m,$ $m’\in H_{\delta}(S)$ or $m,$ $m’\not\in H_{\delta}(S)$ . It follows by

definition that $m\sim\delta^{*}(S)m’$ . $\square$

$\mathcal{F}_{\delta}(S)arrow \mathcal{F}_{\delta^{*}}(S)\eta_{S}$

$k_{1}\downarrow$ $\downarrow k_{1}$

$\mathcal{F}_{\delta}(S’)arrow \mathcal{F}_{\delta^{*}}(S’)\eta_{S’}$

Fig.4 Natural Transformation

For any reduced decision principle $d^{*}:$ $D_{d}arrow\wp(M\cross M)$ of a decision principle $d:D_{d}arrow$

$\wp(M\cross M)$ and for any decision situation $S=(M, U, g)\in D_{d}$ there is a bspg decision
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principle 6: $D_{M,U}arrow\wp(M\cross M)$ such that $\geq_{d^{x}(s)}=\geq\delta(M,\{u\},g)$ holds for some $(M, \{u\}, g’)\in$

$D_{M,U}$ .

Moreover, we have a stronger fact. We need the following definition.

Definition 7 A decision principle 6: $D_{\delta}arrow\wp(M\cross M)$ is called Pareto consistent if for
any $(M, U, g)\in D_{\delta}$ we have

1. $(\forall m, m’\in M)(m\geq_{p(S)}m’\Rightarrow m\geq_{\delta(S)}m’)$

2. $(\forall m, m’\in M)(m>_{p(S)}m’\Rightarrow m>_{\delta(S)}m’)$

where $\geq_{p(S)}$ is the Pareto ordering defined by

$(\forall m, m’\in M)(m\geq_{p(S)}m‘ \Leftrightarrow(\forall u\in U)(g(m, u)\geq g(m’, u)))$

and

$(\forall m, m’\in M)$ [$m>_{p(S)}m’\Leftrightarrow(m\geq_{p(S)}m’$ and $(\exists u\in U)(g(m,$ $u)>g(m’,$ $u)))$ ]

Theorem 9 Let $d:D_{d}arrow\wp(M\cross M)$ be an arbitrary decision principle and $d^{*}:$ $D_{d}arrow$

$\wp(M\cross M)$ be a reduced decision principle of it. Let 6: $D_{M,U}arrow\wp(M\cross M)$ be a bpsg

decision principle and $\mathcal{F}_{\delta}:\mathcal{D}_{\delta}’arrow \mathcal{L}$ be its associated functor. Let $S=(M, U, g)\in D_{d}$ be

arbitrary. If 6 is Pareto consistent then for $B=d^{*}(S)$ there is $A\in D_{M,U}$ such that $(1, A)$

is a universal map of $B$ with respect to $\mathcal{F}_{\delta}$ . (Refer to Fig. 5),

Proof: Let $S=(M, U, g)\in D_{d}$ be arbitrary and set $B=d^{*}(S)=(M, \geq_{d^{*}(S)})$ .

A $B$ $-\mathcal{F}_{\delta}(A)$

$\downarrow\exists k$

$\forall A’$
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Fig.5 Universal Map

Let $A=(M, \{u\}, g’)$ be such that

$g’(m, u)=\{$ $lotherwiseLifm\in H_{d}(S)$

where $L$ and $l$ are reals such that $L>l$ holds. Then, $A$ is clearly in $D_{M,U}$ .

We also have 1: $Marrow M$ is a strict order homomorphism from $(M, \geq d^{*}(S))$ to $(M, \geq_{\delta(A)})$ :

Indeed, If $m>d^{*}(S)m’$ holds, we have $m\in H_{d}(S)$ and $m’\not\in H_{d}(S)$ . It implies that

$g’(m, u)=L$ and $l=g’(m’, u)$ and hence $g’(m, u)=L>l=g(m’, u)$ . Since 6 is Pareto

consistent, it implies $m>_{\delta(A)}m’$ . If $m\sim d^{\wedge}(S)m’$ holds, we have $m,$ $m’\in H_{d}(S)$ or

$m,$ $m’\not\in H_{d}(S)$ . For the former case, by definition it follows that $g’(m, u)=g’(m’, u)=L$ ,

which implies $m\sim\delta(A)m’$ because $\delta$ is Pareto consistent. For the latter case we can apply

the same argument.

Next, we will show $(A, 1)$ is a universal map of $B$ . Let $A‘=(M, \{u’\}, g^{n})\in D_{M,U}$ and
$k_{1}$ : $Marrow M$ be an arbitrary $\mathcal{L}-$ morphism from $(M, \geq_{d^{*}(S)})$ to $\mathcal{F}_{\delta}(A’)=(M, \geq\delta(A’))$ .

First we will show $g”(k_{1}(m), u’)=N$ for each $m\in H_{\delta}(S)$ and $g^{n}(k_{1}(m), u’)=n$ for each
$m\not\in H_{\delta}(S)$ and $N>n:Letm,$ $m^{0}\in H_{d}(S),$ $i.e_{f}m\sim d^{*}(S)m^{0}$ , then since $k_{1}$ : $Marrow M$ is a

strict order homomorphism, it implies that $k_{1}(m)\sim\delta(A’)k_{1}(m^{0})$ . Suppose $g^{n}(k_{1}(m), u’)$ is

different from $g”(k_{1}(m^{0}), u’)$ ; we can assume $g”(k_{1}(m), u’)>g’’(k_{1}(m^{0}), u’)$ without loss of

generahty. Since $\delta$ is Pareto consistent, it implies $k_{1}(m)>_{\delta(A’)}k_{1}(m^{0})$ , which contradicts

to the fact that $k_{1}(m)\sim\delta(A’)k_{1}(m^{0})$ . It yields that $g”(k_{1}(m), u’)=g^{n}(k_{1}(m^{0}), u’)$ and we

can set it as N. The same proof is applicable to the case of $m,$ $m^{0}\not\in H_{d}(S)$ .
Now we show $N>n$ . We have $N=g^{u}(k_{1}(m), u’)$ and $n=g”(k_{1}(m), u’)$ if $m\in H_{d}(S)$

and $m^{0}\not\in H_{d}(S)$ . It follows that $m>_{d^{*}(S)}m^{0}$ . Since $k_{1}$ is a strict order homomorphism,

we have $k_{1}(m)>_{\delta(A’)}k_{1}(m^{0})$ . Suppose $g”(k_{1}(m), u’)=N\leq n=g’’(k_{1}(m^{0}), u’)$ . Since $\delta$ is

Pareto consistent, we have $k_{1}(m)\leq k(m^{0}))$ which is a contradiction.

Let $k_{3}:Rarrow R$ be such that

$k_{3}(r)= \frac{N-n}{L-l}r-\frac{N-n}{L-l}l+n$.
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It is obvious that $k_{3}(l)=n$ and $k_{3}(L)=N$ and $k_{3}$ is a positive affine transformation and

hence a strict order homomorphism.

Now set $k=(k_{1}, k_{2}, k_{3})$ , where $k_{2}$ is the unique function from $\{u\}$ to $\{u’\}$ . Then $k$ is a
$D_{\delta}’$ morphism: Since we have

$k_{3}g’(m, u)=\{\begin{array}{l}k_{3}(L)=g^{n}(k_{1}(m),u^{/})k_{3}(l)=g’(k_{1}(m),u)\end{array}$ $ifm\not\in H_{d}^{d}(S)ifm\in H(S)$

the commutative diagram of Fig.2 holds. $k_{1}$ is a generalized internal model of $k_{2}$ since
$k_{1}$ is a strict order homomorphism from $(M, \geq_{\delta^{*}(S)})$ to $(M, \geq\delta^{*}(A’))$ and hence it preserves

non-solutions.

Finally, since we clearly have $k_{1}=\mathcal{F}_{\delta}(k)\cdot 1$ , the triangle of Fig. 5 is commutative. Suppose
$k‘=(k_{1}’, k_{2}’, k_{3}’)$ also satisfies the conditions. Then, we must have $k_{1}=k_{1}’$ and $k_{2}=k_{2}’$

because of the definition. $k_{3}=k_{3}’$ also holds since $k_{3}$ is of the positive affine transformation.

Hence we complete the proof. $\square$

This theorem insists that any reduced decision principle can be approximated by a Pareto

consistent bpsg dp as far as the induced preference structures are concerned.

4 Universal Map of Satisfaction Decision Principle
Functor

The second way to handle complexity around decision activity and to generate a binary

preference structure is to increase the internal complexity using a simple decision principle.

One of such decision principles is the satisfaction decision principle [4]. Since the principle

contains a parameter called an aspiration level, it seems similar to the linear weighted

sum decision principle. However, the weighting vector of the linear weighted sum decision

principle precisely represents the relative importance of each attribute and it generates a

fine preference structure on the set of alternatives. On the other hand, the aspiration level

simply gives a rough tolerance level and the satisfaction $decisi_{0_{1}}n$ principle only induces a

binary preference structure. Hence we consider the satisfaction decision principle is quite

flexible and more adequate to manage complex decision situation.
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We assume that

1. Each alternative for the satisfaction decision principle is a decision rule, $i,e,$ , a func-

tion $m:Uarrow A$ from a set of uncertainty into some set $A$ of outcomes. A set of

alternative $M$ is, then, $M\subset A^{U}$ .

2. An aspiration level $\tau$ for handling a set of alternatives $M\subset A^{U}$ , is also a function

$\tau:Uarrow A$ such that $\tau\in M$

So we will represent a decision situation for the satisfaction decision principle by

$\hat{g}:[M, \tau]\cross Uarrow R$

where $M\subset A^{U}$ and $[M, \tau]$ denotes a pointed set. Each alternative $m\in M$ is evaluated

by $\hat{g}(m, u)=g(m(u), u)$ by some function $g:A\cross Uarrow R$ . We will simply write $\tau(u)$ for

$g(\tau(u), u)$ . We call $([M, \tau], U,\hat{g})$ a pointed decision situation.

Let $D_{s}$ be such that

$D_{s}=$ {$S=([M,$ $\tau],$ $U,\hat{g})|M\subset A^{U},$ $U\subset U$ , $S$ is a pointed decision situation}.

Contrasting to the cases of Section 3 the satisfaction decision principle does not reduce

the external complexity. Rather, it chooses a satisfactory alternative which necessarily

guarantees admissible performance under any uncertainty. This essential spirit of the prin-

ciple is represented by the definition of $H_{s}$ as follows:

Definition 8 The satisfaction decision principle is a function $s:D_{s}arrow L_{s}$ such that

$s([M, \tau], U,\hat{g})=(M, \geq s([M\rangle\tau],U,\dot{g}))$

where for $m$ and $m’$ in $M$ we define $m\geq_{s(S)}m’$ by

$(m, m’\in H_{s}(S))$ or $(m, m’\not\in H_{s}(S))$ or ( $m\in H_{s}(S)$ and $m’\not\in H_{s}(S)$ )

while
$H_{s}(S)= \bigcap_{u\in U}\{m\in \mathbb{J}I|(g(m, u)\geq\tau(u))\}$

for each $S=([M, \tau], U,\hat{g})$ .
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$(M, \geq_{s(S)})$ is clearly a binary preference structure.

Now let us discuss relationship between the reduced decision principle and the satisfaction

decision principle. Let $d^{*}:$ $D_{\delta}arrow\wp(M\cross M)$ be a reduced decision principle of a decision

principle $d:D_{d}arrow\wp(M\cross M)$ .

Definition 9 $d^{*}$ is called essentially equivalent to the satisfaction decision principle if for
each decision situation $(M, U, g)\in D_{d}$ there is $\tau:Uarrow R$ such that

$d^{*}(M, U, g)=s([M, \tau], U,\hat{g})$

where $\hat{g}(m, u)=g(m(u), u)$ for each $(m, u)\in M\cross U$ ,

Reduced decision principles of some well-known decision principles are essentially equiv-

alent to the satisfaction decision principle while others are not:

Proposition 10 ([4]) The reduced decision principle of the max-min decision principle

is essentially equivalent to the satisfaction decision principle while the reduced decision

principle of the regret decision principle is not.

For the proof refer to [4]. $\square$

By definition the reduced decision principle $d^{*}$ generates the preference structure in two

phases; first $d^{*}$ generates a finer structure by $d$ and then reduces it to a binary preference

structure. On the other hand, the satisfactory decision principle generates a binary prefer-

ence structure to each decision situation straightforward. In this sense the latter is simpler

and more flexible than the former.

For each $S=([M, \tau], U,\hat{g})$ and $S’=([M’, \tau‘], U’, g^{\wedge}’)$ where $M\subset A^{U}$ and $M’\subset A^{U’}$ we

call $h=(h_{1}, h_{2}, h_{3})$ a pointed affine modelling morphism if

1. $h_{1}$ : $Marrow M’,$ $h_{2}:Uarrow U’$ and $h_{3}:Rarrow R’$ .

2. $h_{1}(\tau)=\tau’$ holds.

3. $h_{3}$ is of the positive linear form; $i.e.,$ $(\forall r\in R)(h_{3}(r)=pr+q)$ , where $p,$ $q\in R$ and

$p>0$ .
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4. The diagram is commutative (Refer to Fig.6).

$[M, \tau]$ $\cross$ $U$ $R$

$\hat{g}$

1 $h_{1}$

$h_{2}\downarrow$ $\downarrow h_{3}$

$[M’, \tau’]\cross$ $U’$ $R$

$\hat{g}’$

Fig.6 Pointed Modelling Morphism

Let $\prime D_{s}$ be such that

$ObD_{s}=$ { $S=([M,$ $\tau],$ $U,\hat{g})|M\subset A^{U},$ $U\subset U$ , $S$ is a pointed decision situation}

and

$Mor_{D_{e}}(S, S’)=$ { $h=(h_{1},$ $h_{2},$ $h_{3})|h$ is a pointed affine modelling morphism from $S$ to $S’$ }.

It is clear that $\mathcal{D}_{s}$ is really a category.

We call $(M, \geq, m_{0})$ a pointed binary preference structure if $\geq$ is a binary preference

structure and $m_{0}\in M$ . $h_{1}$ is referred to as a pointed order homomorphism from $(M, \geq, m_{0})$

to $(M’, \geq’, m_{0}’)$ if

1. $h_{1}$ : $Marrow M’$ is a strict order homomorphism.

2. $h_{1}(m_{0})=m_{0}’$ holds.

Let $\mathcal{L}_{s}$ be such that

$Ob\mathcal{L}_{s}=$ { $L=(M,$ $\geq,$ $m_{0})|M\subset A^{U},$ $U\subset U$ , $L$ is a pointed binary preference structure}
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and
$Mor_{L_{s}}(L, L’)=$ { $h_{1}|h_{1}$ is a pointed order homomorphism from $L$ to $L’$ }.

We can also easily check $\mathcal{L}_{s}$ is indeed a category.

Let $\mathcal{F}_{s}$ : $\mathcal{D}_{s}arrow \mathcal{L}_{s}$ be such that

$\mathcal{F}_{S}([M, \tau], U,\hat{g})=(M, \geq s([M,\tau],U,\dot{g}), \tau)$

and
$\mathcal{F}_{s}(h_{1}, h_{2}, h_{3})=h_{1}$ .

Then,

Proposition 11 $\mathcal{F}_{s}$ : $\mathcal{D}_{s}arrow \mathcal{L}_{s}$ is a functor.

The proof is omitted. $\square$

We call $\mathcal{F}_{s}$ a satisfaction decision principle functor.

Let $\mathcal{F}_{s}$ : $D_{s}arrow \mathcal{L}_{s}$ is a satisfaction decision principle functor. Let $\mathcal{D}_{s}^{*}$ be a full subcategory

of $D_{s}$ such that

$Ob\mathcal{D}_{s}^{*}=\{([\{m_{1}, m_{2}\}, m_{1}], \{u\},\hat{g})\in ObD_{s}|\hat{g}(m_{1}, u)>\hat{g}(m_{2}, u)\}$.

An object of $D_{s}$ is a pointed decision situation with two alternatives, one of which is

satisfactory and the other is not.

Let us suppose $\mathcal{F}_{s^{*}}=\mathcal{F}_{s}|D_{s}^{*}:$ $D_{s}^{*}arrow \mathcal{L}_{s}$ . Then we have

Theorem 12 Let $S=([M, \tau], U,\hat{g})\in Ob’D_{s}$ and $B=\mathcal{F}_{s}(S)=([M, \tau], \geq_{s(S)})\in Ob\mathcal{L}_{s}$ . If
we have $H_{s}([M, \tau], U,\hat{g})\neq M$ , there is a universal map $(\gamma, A)$ for $B$ with respect to $\mathcal{F}_{s^{*}}$ .

Proof: Let $S=([M, \tau], U,\hat{g})$ be such that $H_{s}([M, \tau], U,\hat{g})\neq M$ and $B=\mathcal{F}_{s}(S)=$

$([M, \tau], \geq_{s(S)})\in Ob\mathcal{L}_{s}$ . It follows from $H_{s}([M, \tau], U,\hat{g})\neq M$ that there is $m_{-1}\in M$ such

that $m_{-1}\not\in H_{s}([M, \tau], U,\hat{g})$ . Then, there is at least one $u\in U$ such that $\hat{g}(\tau, u)>\hat{g}(m_{-1}, u)$

by definition.



44

A $B$ $arrow \mathcal{F}_{s^{*}}(A)$

$\downarrow\exists k’$

$\forall A’$

Fig.7 Universal Map

Let $A=([\{\tau, m_{-1}\}, \tau], \{u\},\hat{g}’)$ , where we denote $\hat{g}|\{\tau, m_{-1}\}\cross\{u\}$ by $\hat{g}’$ for notational

convenience. Then, $A$ is clearly in $Ob\mathcal{D}_{s}^{*}$ since $\hat{g}’(\tau, u)>\hat{g}’(m_{-1}, u)$ .

Let 7: $Marrow\{\tau, m_{-1}\}$ be the unique strictly order homomorphism, $i.e$ ,

$\gamma(m)=\{\begin{array}{l}\tau ifm\in H_{s}m_{-1}otherwise\end{array}$

Now suppose $A‘=$ $([\{m_{1}, m_{2}\}, m_{1}], \{u‘\}, \hat{g}’’)$ is arbitrary in $Ob\mathcal{D}_{s}^{*}$ and $k_{1}$ is a strict order

homomorphism from $B$ to $\mathcal{F}_{s}(A’)$ . Since $A’$ is in $Ob\mathcal{D}_{s}^{*}$ we have $\hat{g}’’(m_{1}, u’)>\hat{g}^{u}(m_{2}, u’)$ .

Then we have $m_{1}\in H_{s}(A’)$ and $m_{2}\not\in H_{s}(A’),$ $i.e,,$ $m_{1}>_{s(A’)}m_{2}$ . Since $k_{1}$ is strictly order

homomorphic, it should satisfy

$k_{1}(m)=\{\begin{array}{l}m_{1}ifm\in H_{s}(S)m_{2}otherwise\end{array}$

Now let $k_{1}’=k_{1}|\{\tau, m_{1}\}$ . Then we have $k_{1}’(\tau)=m_{1}$ and $k_{1}’(m_{-1})=m_{2}$ since $\tau\in H_{s}(S)$

and $m_{-1}\not\in H_{s}(S)$ . Let $k_{2}’$ be the unique function from $\{u\}$ to $\{u’\}$ . Let $k_{3}’$ : $Rarrow R$ be a

positive affine transformation satisfying

$k_{3}’(r)=\{\begin{array}{l}\hat{g}’’(m_{1},u^{/})\hat{g}’’(m_{2},u’)\end{array}$ $ifr=\hat{g}_{/}(\tau,u)ifr=\hat{g}’(m_{-1}, u)$
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Then $k’=(k_{1}’, k_{2}’, k_{3}’)$ is really a $D_{s}$ -morphism: Indeed, we have $\hat{g}’’(k_{1}’(\tau), k_{2}’(u))=\hat{g}’’(m_{1}, u’)=$

$k_{3}’(\hat{g}’(\tau, u))$ and $\hat{g}’’(k_{1}’(m_{-1}), k_{2}’(u))=\hat{g}’’(m_{2}, u’)=k_{3}’(\hat{g}’(m_{-1}, u))$.

Finally we will show the triangle in Fig. 7 is commutative and such a $k$ ‘ is unique. Let
$m\in M$ . Then

$\mathcal{F}_{s^{*}}(k’)\gamma(m)=k_{1}’\gamma(m)=\{\begin{array}{l}k_{1}’(\tau)=m_{1}=k_{1}(m)k_{1}’(m_{-1})=m_{2}=k_{1}(m)\end{array}$ $ifm\in H(S)otherwise^{s}$

holds and hence the triangle is commutative.

Suppose $k^{n}=(k_{1}’, k_{2}’’, k_{3}’’)$ satisfies the same conditions. The commutativity implies

$k_{1}’\gamma=k_{1}=k_{1}’’\gamma$ .

Since $\gamma$ is surjective, it follows $k_{1}’=k_{1}^{n}$ . $k_{2}’=k_{2}^{n}$ must hold because of the uniqueness of
$k_{2}’$ . Since $k_{3}’$ and $k_{3}^{n}$ are positive affine transformations they are of the form $k_{3}’(r)=pr+q$

and $k_{3}^{n}(r)=p’r+q’$ , where $p,$ $p’,$ $q,$ $q’\in R$ and $p,$ $p’>0$ . The commutative diagram implies
$k_{3}’(r_{1})=pr_{1}+q=p’r_{1}+q’=k_{3}^{n}(r_{1})$ and $k_{3}’(r_{2})=pr_{2}+q=p’r_{2}+q’=k_{3}’’(r_{2})$ , where
$r_{1}=\hat{g}(\tau, u)$ and $r_{2}=\hat{g}(m_{-1}, u)$ and $r_{1}\neq r_{2}$ . Then we have $p(r_{1}-r_{2})=p’(r_{1}-r_{2})$ . It

follows from $r_{1}\neq r_{2}$ that $p=p’$ and so $q=q’$ .
Consequently, $k’$ is the unique morphism satisfying the conditions. It completes the

proof. $\square$

The theorem claims that as far as the resulting preference structures are concerned, the

satisfaction decision principle approximately identifies any decision situation with a decision

situation with two “ essentially different” alternatives, one uncertainty and a positive affine

performance function.

5 Conclusions

We proposed and formulated a concept of binary preference structure generating decision

principle as a way to manage complexity of decision making situations. We also clarified

meaning of internal modelling principle in category theoretic terms.
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The main theorems of the paper show that as far as the resulting preference structure

is concerned, both a reduced decision principle and the satisfaction decision principle ap-

proximately identify a decision situation with two “essentially different” alternatives, one

uncertainty and a positive affine performance function. It rationally supports our intu-

itive understanding that they are flexible and simple enough to apply to complex decision

situations.
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