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A HAMILTONIAN SYSTEM ON THE FUCHSIAN MODULI SPACE

KATSUNORI IWASAKI\dagger

1. Introduction.

The purpose of the present talk is to define a completely integrable Hamiltonian system
on the moduli space of Fuchsian differential equations on a Riemann surface of arbitrary
genus. This Hamiltonian system is a generalization of the celebrated Painlev\’e equation
and is a quitely interesting system of nonlinear partial differential equations which contains
as special solutions a broad class of classical special functions such as hypergeometric
functions of several variables. It also seems very interesting in connection with correlation
functions in the quantum field theory.

The present talk is divided into two parts. The first part is the topological part in
which we shall consider the moduli space of monodromy representations. By the Poincar\’e-
Lefschetz duality, the moduli space of monodromy representations carries a natural Poisson
structure. We shall further give it a local system structure topologically, which, together
with the Poisson structure, defines a Hamiltonian dynamical system on it.

The second part is the analytic part in which we shall consider the moduli space of
Fuchsian differential equations. By the Riemann-Hilbert correspondence, the local system
structure on the moduli space of monodromy representations pulls back to one on the
moduli space of Fuchsian differential equations and defines the monodromy preserving fo-
liation on it. This foliation is an analytic and hence concrete realization of the Hamiltonian
dyanmical system defined topologically before.

Many authors have already considered the monodromy preserving deformation. How-
ever, we would like to consider it from a different point of view, regarding it as something
like a non-linear de Rham-Hodge theory.

2. Toplogical part –moduli of monodromy representations.

First we are going to the topological part of the theory, in which we shall consider
the moduli space of monodromy representations. Let $C$ be a closed oriented surface of
genus $g\geq 0,$ $G$ a complex semi-simple Lie group with nontrivial discrete center $Z(G)$ ,
$\mathbb{P}G=G/Z(G)$ its projectivization. Let $B(m)$ be the space of mutually distinct ordered $7n$

points in $C$ . Given $p=(p_{1}, \ldots,p_{m})\in B(m)$ , put $C_{p}=C\backslash \{p_{1}, \ldots,p_{m}\}$ .
Consider the set $R(p)$ of all representations of the fundamental group $\pi_{1}(C_{p})$ into the

Lie group $PG$ up to conjugacy $\sim$ . The set $Hom(\pi_{1}(C_{p});PG)$ is given the compact-open
topology and $R(p)=Hom(\pi_{1}(C_{p});PG)/\sim is$ given the quotient topology. This topological
space is a quitely interesting object to be studied. Furthermore, consider the disjoint union
$R(m)= \bigcup_{p\in B(m)}R(p)$ . We have the natural projection $R(m)arrow B(m)$ . The space $R(m)$
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is naturally a local system over $B(m)$ , whose characteristic homomorphism is given by a
natural action of the braid group $\pi_{1}(B(m))$ on $R(p)$ .

As we shall see below, the moduli space of monodromy representations with fixed local
momodromy data admits a natural Poisson structure. Here a Poisson manifold $P$ is a
manifold whose structure sheaf $\mathcal{O}_{P}$ admits a Lie algebra structure $\{\cdot, \cdot\}$ such that, for any
germ $f$ at $p\in P,$ $\{f, \cdot\}$ acts on the stalk $\mathcal{O}_{P,p}$ as a derivation. A Poisson manifold is a
manifold on which a Hamiltonian dynamics can be considered.

In order to describe the Poisson structure, we need a more rigorous formulation. For this
purpose, the use of fundamental groupoids is more convenient than that of fundamental
groups. Let $\Pi$ be the fundamental groupoid functor. This means the following : Given a
topological space $X$ , let $\Pi X$ be the fundamental groupoid of $X$ , which is, by definition, the
set of all homotopy equivalence classes of arcs in $X$ . This forms a groupoid in a natural
manner. Given a continuous map $f$ : $Xarrow Y$ , let $\Pi f$ : $\Pi Xarrow\Pi Y$ be the associated
groupoid homomorphism defined by $\Pi f(\gamma)=f\cdot\gamma$ for an arc $\gamma\in\Pi X$ . $\Pi$ is a covariant
functor of the category of topological spaces into that of groupoids.

Let $G$ and $PG$ be as before. Given a topological space $X$ , let $Q_{G}(X)=Hom(\Pi X;PG)$

be the set of all groupoid homomorphisms of $\Pi X$ into $PG,$ $G(X)=Map(X;PG)$ the
group of all maps of $X$ into $PG$ . The group $G(X)$ acts on $Q_{G}(X)$ from the left by
$G(X)\cross Q_{G}(X),$ $(\phi, p)\mapsto\phi\cdot\rho$ . Here $\phi\cdot\rho$ is defined by $\phi\cdot\rho(\gamma)=\phi(p)\cdot\rho(\gamma)\cdot\phi(q)^{-1}$ , where
$\gamma\in\Pi X$ is an arc with initial point $q$ and terminal point $p$ . Put $R_{G}(X)=X(G)\backslash Q_{G}(X)$ .
Given a continuous map $f$ : $Xarrow Y$ , let $R_{G}(f)=G(X)\backslash Hom(\Pi f;PG)$ : $R_{G}(Y)arrow R_{G}(X)$

be the corresponding groupoid homomorphism. One observes that $R_{G}(\cdot)$ is a contravariant
functor of the category of topological spaces into that of sets.

Apply this formalism to our situation. As before, let $C$ be a closed oriented surface
of genus $g\geq 0$ . Given $p=(p_{1}, \ldots,p_{m})\in B(m)$ , let $C_{p}^{*}$ be the real blow-up of $C$ at the
points $p_{1},$ $\ldots,p_{m}$ . The boundary of $C_{p}^{*}$ is homeomorhpic to the disjoint union of $m$ copies
of the unit circle $S^{1}$ : $\partial C_{p}^{*}\simeq S^{1}\cup\ldots\cup S^{1}$ (m-times). The inclusion $\iota$ : $\partial C_{p}^{*}arrow C_{p}^{*}$

induces the morphism $r=R_{G}(\iota)$ : $R_{G}(C_{p})arrow R_{G}(\partial C_{p})$ . Note that $r$ is the ristriction
map of representations on $X$ into those on the boundary $\partial C_{p}^{*}$ . We have $R_{G}(\partial C_{p}^{*})\simeq$

$R_{G}(S^{1}\cup\ldots\cup S^{1})=R_{G}(S^{1})\cross\ldots\cross R_{G}(S^{1})=C(G)\cross\ldots\cross C(G)$, where $C(G)$ denotes the
set of all conjugate classes of elements in $G$ .

Given $\theta=(\theta_{1}, \ldots, \theta_{m})\in C(G)\cross\ldots\cross C(G)$ , let $R(p;\theta)$ be the fiber of the restriction
map $r:R_{G}(C_{p})arrow R_{G}(\partial C_{p})$ over $\theta$ . We shall see that

PROPOSITION. $R(p;\theta)$ carries a natural symplectic structure.

To see this, we consider the tangent space of $R(p;\theta)$ at a point $\rho$ . For symplicity of
notation, put $X=C_{p}$ . Let $\mathfrak{g}$ be the Lie algebra of $G$ , Ad : $Garrow GL(g)$ the adjoint
representation of $G$ . Given $\rho\in R(p;\theta)$ , let $L_{\rho}$ be the flat g-bundle over $X$ associated
to the representation $Ad\cdot\rho$ . The cohomology exact sequence of the pair (X, $\partial X$ ) with
coefHcients in $L_{\rho}$ is

$0=H^{0}(X;L_{\rho})arrow^{j^{*}}H^{0}(\partial X;L_{\rho})$

$arrow^{\delta^{*}}H^{1}(X, \partial X;L_{\rho})arrow^{i^{*}}H^{1}(X;L_{\rho})arrow^{j^{*}}H^{1}(\partial X;L_{\rho})$

$arrow^{\delta^{*}}H^{2}(X, \partial X;L_{\rho})=0$ .
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The tangent map $(dr)_{\rho}$ : $T_{\rho}R_{G}(X)arrow T_{r(\rho)}R_{G}(\partial X)$ admits the natural identification

$(dr)_{\rho}$

$T_{\rho}R_{G}(X)arrow$ $T_{\rho}R_{G}(\partial X)$

$\Vert$ $\Vert$

$H^{1}(X;L_{\rho})arrow^{j^{*}}H^{1}(\partial X;L_{\rho})$ .

Since $R(p;\theta)$ is the r-fiber over $\theta\in R_{G}(\partial X)$ , we have

$T_{\rho}R(p;\theta)=Ker[H^{1}(X;L_{\rho})arrow^{j^{*}}H^{1}(\partial X;L_{\rho})]$

$\cong_{*}\frac{H^{1}(X,\partial X;L_{\rho})}{\delta^{*}H^{0}(\partial X;L_{\rho})}i$

Here the second $equality\cong follows$ from the cohomology exact sequence.
Recall now the Poincar\’e-Lefschetz duality. Since $G$ is semisimple, the Killing form

$g\otimes \mathfrak{g}arrow C$ is nondegenerate. It extends to a bilinear form $L_{\rho}\otimes L_{\rho}arrow C_{X}$ compatible
with the flat structure of $L_{\rho}$ , where $C_{X}$ is the constant system with fiber C. Consider the
palrlng

$H^{1}(X;L_{\rho})\otimes H^{1}(X, \partial X;L_{\rho})arrow^{cupproduct}H^{2}(X, \partial X;L_{\rho}\otimes L_{\rho})$

$arrow^{I\langle illingform}H^{2}(X, \partial X;C_{X})=C$ .

The Poincar\’e-Lefschetz duality asserts that this pairing is perfect. We see that the
orthogonal complement of $Ker[H^{1}(X;L_{\rho}arrow^{j^{*}}H^{1}(\partial X)]$ with respect to this pairing is
$\delta^{*}H^{0}(\partial X;L_{\rho})$ . Hence the Poincar\’e-Lefschetz duality, together with the two way descrip-
tions of the tangent space $T_{\rho}R(p;\theta)$ , yields a non-degenerate skew-symmetric bilinear form
on $T_{\rho}R(p;\theta)$ Thus we have obtained an almost symplectic structure on $R(p;\theta)$ . We can
show that this is integrable and hence a symplectic structure.

Consider the disjoint union $R(m; \theta)=\bigcup_{p\in B(m)}R(p;\theta)$ . Let $R(m;\theta)arrow B(m)$ be the
natural projection. As mentioned before, $R(m;\theta)$ admits a natural local system structure
over $B(m)$ . Moreover, we can show the following:

PROPOSITION. There exists a Poisson stru $ct$ ure on $R(m;\theta)$ such that each fiber of the
projection is a symplectic leaf

Therefore we have arrived at the following situation : The moduli space $R(m;\theta)$ of
monodromy representations with fixed local monodromy data $\theta$ admits a natural Poisson
structure arising from the Poincar\’e-Lefschetz duality, as well as a natural local system
structure over $B(m)$ . This local system structure defines a foliation on $R(m;\theta)$ . One can
ask the following question:

QUESTION. Is this foliation a Hamiltonian dynamical system ? If so, what are the Hamil-
tonians ? Describe this dynamical syst$em$ as concretely as possible.

To consider how we can answer this question is the second step of the theory.
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3. Analytic part –moduli of Fuchsian differential equations.

Alocal system structure of R$(m;\theta)overB(m)isgiveninSection2byapurelytopo\log-$
ical argument. We would like to consider it more deeply and concretely. A basic idea to do
this is to represent this local system structure in another auxiliary space. Such an auxiliary
space $E(m;\theta)$ should be not a topological object but an object with finer structure, i.e.
an analytic object. So we will try to find a diagram

$E(m;\theta)arrow R(m;\theta)$

$\downarrow$ $\downarrow$

$B(m)$ $=$ $B(m)$

and to translate everything on the right-hand side into something on the left-hand side by
pulling back through the horizontal $arrowarrow$ . The analytic structure on the left-hand
side enables us to understand things more clearly.

As is well-known, a closed oriented surface $C$ admits a complex structure, i.e. a structure
of Riemann surface. Fixing a complex structure on $C$ , hereafter we shall regard $C$ as a
Riemann surface. In order to define auxiliary space $E(m;\theta)$ on the left-hand side, we
make use of this complex structure. Explicitly, $E(m;\theta)$ will be a moduli space of Fuchsian
differential equations on the Riemann surface $C,$ $E(m;\theta)arrow B(m)$ will be the natural
projection assigning to each Fuchsian differential equation its regular singular points and
$E(m;\theta)arrow R(m;\theta)$ will be the Riemann-Hilbert correspondence.

Now we shall define the moduli space $E(m;\theta)$ . For simplicity of exposition, hereafter,
we restrict our attention to the simplest case where the Lie group $G$ is $SL(2;C)$ and
$PG=PSL(2;C)$ . In order to define $E(m;\theta)$ , we shall establish notation.

Consider second order differential operators $L$ on $C$ of Schr\"odinger type. This means
that, around any point of $C,$ $L$ can be represented by $L=- \frac{d^{2}}{dx^{2}}+Q$ in terms of a local
coordinate $x$ , where $Q$ is a meromorphic function defined locally. We always assume that
$L$ is of Fuchsian type. Intrinsically we consider $L$ as a differential operator $L$ : $\mathcal{M}(\xi)arrow$

$\mathcal{M}(\xi\otimes\kappa^{\otimes 2})$ , where $\xi$ is a suitable holomorphic line bundle over $C,$ $\kappa$ the canonical line
bundle over $C$ , and $\mathcal{M}(\cdot)$ denotes the sheaf of meromorphic sections. In order that there
exist differential operators $L$ of Schr\"odinger type on $\xi$ , the line bundle $\xi$ must satisfy the
topological constraint on its Chern class: $c_{1}(\xi)=1-g$ . Fix a line bundle $\xi$ satisfying this
constraint. Hereafter we mean by a differential operator a differential operator of the form
mentioned above.

We are ready to define $E(m;\theta)$ . Put $n=m+3g-g$ and assume $n>0$ . Given
$\theta=(\theta_{1}, \ldots, \theta_{m})\in(C\backslash Z)^{m}$ , let $E(m;\theta)$ be the set of all differential operators $L$ with
ordered $m+n$ regular singular points such that, for $i=1,$ $..,$ $m,$ $L$ has characrteristic
exponents $\frac{2}{1}(1\pm\theta_{i})$ at the $i^{th}$ singular point and the last $n$ singulai points of $L$ are
apparent and of ground state. Let $\pi$ : $E(m;\theta)arrow B(m+n)$ be the projection assigning
to each differential equation its ordered singular points. Moreover, let $\varphi$ : $B(m+n)arrow$
$B(m),$ $r=(p_{1}, \ldots,p_{m}, q_{1}, \ldots, q_{n})\mapsto p=(p_{1}, \ldots,p_{m})$ be the projection into the first $m$

components. Put $\varpi=\varphi\cdot\pi$ : $E(m;\theta)arrow B(m)$ . Since apparent singular points have
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no effect on the projective monodromy representation, the projective monodromy map
$PM$ : $E(m;\theta)arrow R(m;\theta)$ is well-defined. We have obtained the commutative diagram

$R(m;\theta)$

THEOREM. $E(m;\theta)$ admits a $nat$ural $st$ruciure of $ai$bebraic variety of pure dimension
$m+2n$ such that $\pi$ and $\varpi$ are rational surjection and the projective $m$onodromy $map$ is
a holomorphic map.

$E(m;\theta)$ may have singularities. Where are singularities of $E(m;\theta)$ ?What kinds of
properties does the smooth part of $E(m;\theta)$ has ? In order to answer this question, consider
the holomorphic line bundles $\xi_{r},$ $(r\in B(m+n))$ over $C$ deflned by $\xi_{r}=\kappa^{\otimes 2}\otimes[\rho_{1}+\ldots+$

$p_{m}-(q_{1}+\ldots+q_{n})]$ , where $r=(p_{1}, \ldots,p_{m}, q_{1}, \ldots, q_{n})$ . Put $h^{i}(r)=\dim H^{i}(C;\mathcal{O}(\xi_{r})),$ $(i=$

$0,1)$ . Since $n=m+3g-3$ , the Chern class of $\xi_{r}$ is $g-1$ . Hence the Riemann-Roch
formula implies the Fredholm alternative $h^{0}(r)=h^{1}(r)$ . Let $A(m)$ be the algebraic subset
of $B(m+n)$ consisting of all points $r$ such that $h^{0}(r)>0$ . If $g=0$ , then $A(m)$ is
empty. If $g=1$ , then $A(m)$ can be written down explicitly by using Abel’s theorem. Put
$X(m)=B(m+n)\backslash A(m)$ . This is a nonempty Zariski open subset of $B(m+n)$ . Let
$\mathcal{E}(m;\theta)$ be the inverse image of $X(m)$ by the projection $\pi$ : $E(m;\theta)arrow B(m+n)$ . The
above commutative diagram now yields the new one:

$R(m;\theta)$

$B(m)$

An answer to the above question is given in the following:

THEOREM. $\mathcal{E}(m;\theta)$ is smooth and hence a $c$omplex manifold. It admits a natural Poisson
$st$ructure. The projection $\varpi$ : $\mathcal{E}(m;\theta)arrow B(m)$ is still surjective. Furthermore, the pro-
jective monodromy $mapPM$ : $\mathcal{E}(m;\theta)arrow R(m;\theta)$ is locally biholomorphic. The Poisson
$st$ructure on $\mathcal{E}(m;\theta)$ coincides with the pull-back of that on $R(m;\theta)$ by the projective
monodromy $map$ .

A key to the theorem is a certain kind of Cousin’s problem associated to the family of
line bundles $\xi_{r},$ $(r\in X(m))$ and the Fredholm alternative $h^{0}(r)=h^{1}(r)$ .
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Since $PM$ is locally biholomorphic on $\mathcal{E}(m;\theta)$ , the local system structure on $R(m;\theta)$

pulls back to one on $\mathcal{E}(m;\theta)$ through $PM$ and defines a foliation on it. This is the mon-
odromy preserving foliation on $\mathcal{E}(m;\theta)$ . Let $\Omega$ be the fundamental two form associated to
the Poisson structure on $\mathcal{E}(m;\theta)$ . Then the monodromy preserving foliation is character-
ized by the following theorem.

THEOREM. The monodromy preserving foliation is the $\Omega$-Lagrangian foliation on $\mathcal{E}(m;\theta)$

which is transverse to each fiber of $\varpi$ : $\mathcal{E}(m;\theta)arrow B(m)$ .
This shows that the monodromy preserving foliation is a Hamiltonian dynamical system

with $B(m)$ as the space of time variables. In terms of local coordinates, this theorem
gives us a system of completely integrable Hamiltonian system. Explicit formulas for the
Hamiltonians, as well as further developments of the theory, may be found in $[1][2]$ .
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