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1. Introduction

This paper investigates the computation of quotient of two multivariate polynomials

by neglecting higher degree terms of didident and divisor. If a multivariate polynomial

is exactly divisible by another then the power-series division allows us to calculate the

quotient, and in the power-series division we can neglect the unnecessary higher degree

terms. However, so long as the authors know, no literature tells us which terms are

unnecessary when the divident and divisor are multivariate polynomials. So, in the first

half of this paper, we clarify it.

If the “size” of quotient is much smaller than the sizes of divident and divisor, the

power-series method with the higher degree terms discarded will be more efficient than

the conventional division method. In order to see how the power-series division method

is useful in practical calculations, we test this method in the fraction-free Gaussian elim-
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ination algorithm in the second half of this paper.

2. Multivariate power-series division

Number of terms of two exactly divisible polynomials that are essential for the power

series division (significant terms) is different when the division is done with respect to

the total degree and when it is done recursively with respect to individual variables. In

the second case it may depend on the order of the variables. The first case is treated in

Lemma 2 of Ref. 1. The case of the recursive division will be discussed here.

Definitionl

Let $\deg(P, u)$ be the highest power of the variable $u$ occurring in the polynomial $P$ .

Let $1p(P, u)$ be the lowest power of the variable $u$ occurring in the polynomial $P$ .

Let $1c(P, u)$ be the coefficient of the lowest power of the variable $u$ occurring in P. $0$

Example: $P=x^{3}y^{4}z^{2}+2xy^{2}z^{2}+z^{3}+z^{2}$ . Then $\deg(P, x)=3,1p(P, z)=2,1c(P, z)=$

$x^{3}y^{4}+2xy^{2}+1,1p(1c(P, z),$ $x$ ) $=0$ , etc. $0$

Theoreml Let $A$ and $B$ be polynomials in $n$ variables $u_{0},$ $u_{1},$ $\ldots,$ $u_{n-1}$ . Let $A$ be exactly

divisible by $B$ . Let the power series division $A/B$ be done recursively in the above order

of variables (GAL: ORDER $u_{0},$ $u_{1},$ $\ldots,$ $u_{n-1}$ ). Let $B_{0}=B$ and $B_{i}=1c(B_{i-1}, u_{i-1})$ ;

$i=1,$ $\ldots,$
$n-1$ ( $B_{i}$ is a polynomial in $u_{i},$ $\ldots,$ $u_{n-1}$ ). Then to calculate the ratio $C=A/B$

by means of the recursive power-series division, it is sufficient to know only those terms

$T$ of $A$ and $B$ for which

$\deg(T, u_{i})\leq\deg(A, u_{i})-\deg(B, u_{i})+1p(B_{i}, u_{i}),$ $\subset=0,$ $\ldots$ , $n-1$ . (1)

In other words, in GAL one can introduce the following declarations:

DECL POWSER: $u_{i}<=\deg(A, u_{i})-\deg(B, u_{i})+1p(B_{i}, u_{i})$ (2)



14

Proof: Let us write

$A= \sum_{n=N_{1}}^{N_{2}}a_{n}u_{0}^{n},$ $B= \sum_{m=M_{1}}^{M_{2}}b_{m}u_{0}^{m},$ $C= \sum_{k=N_{1}-M_{1}}^{N_{2}-M_{2}}c_{k}u_{0}^{k}$ .

Here $a_{n},$
$b_{m}$ and $c_{k}$ are polynomials in $u_{1},$ $\ldots,$ $u_{n-1}$ . Obviously,

$a_{N_{1}+\kappa}-\Sigma^{\kappa}b_{M_{1}+j^{C}N_{1}-M_{1}+\kappa-j}J$

$c_{N_{1}-M_{1}+\kappa}= \frac{j=1}{b_{M_{1}}}$ , $\kappa=0,$
$\ldots,$

$\triangle$ , (3)

where $J_{\kappa}= \min(\kappa, M_{2}-M_{1})$ and $\triangle=N_{2}-M_{2}-(N_{1}-M_{1})$ . To determine all the

$\triangle+1$ coefficients $c_{k}$ , the knowledge of $a_{N_{1}},$ $a_{N_{1}+1},$ $\ldots,$ $a_{N_{2}-M_{2}+M_{1}}$ and $b_{M_{1}},$ $b_{M_{1}+1},$
$\ldots$ ,

$b_{M_{1}+\min(\Delta,M_{2}-M_{1})}$ is sufficient according to Eq. (3). All other terms of $A$ and $B$ can

be truncated. Therefore, the maximum power of $u_{0}$ that must be kept in $A$ and $B$ is

$m_{A}=N_{2}-M_{2}+M_{1}$ and $m_{B}=M_{1}+ \min(\triangle, M_{2}-M_{1})$ , respectively. It is easy to check

that always $\max(m_{A}, m_{B})=m_{A}$ . Therefore, it is sufficient to truncate in $A$ and $B$ all

terms with the power of $u_{0}$ larger than

$m_{A}=\deg(A, u_{0})-\deg(B, u_{0})+1p(B, u_{0})$ . (4)

Using this common truncation cutoff for both $A$ and $B$ may mean that we keep some

redundant terms in $B$ but it is not feasible to have separate truncation cutoffs for $A$ and

$B$ in a computer algebra system. Thus we have proved Eq. (1) for the leading variable

$u_{0}$ .

To prove it for all other variables, we will follow the recursive division. Equation (3)

represents again polynomial division, this time with leading variable $u_{1}$ . Let us call the

divisions in Eq. (3) the 1st level divisions while the original division $C=A/B$ is the 0th

level division. Generally, during the $(i+1)th$ level division with the leading variable $u_{i+1}$ ,

one calculates certain coefficients $\gamma_{e_{0}e_{1}\cdots e;}$ that contribute to $C$ in the following way:

$C=\gamma_{e_{0}e_{1}\cdots e_{i}}(u_{i+1}, u_{i+2}, \ldots, u_{n-1})u_{0^{0}}^{e}u_{1}^{e_{1}}\cdots u_{i^{i}}^{e}+\cdots$ (5)
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Coefficients $\gamma$ are obtained by divisions similar to that in Eq. (3):

$\gamma_{e_{0}e_{1}\cdots e}.(u_{i+1}, u_{i+2}, \ldots, u_{n-1})=\frac{\alpha(u_{i+1},u_{i+2},\ldots,u_{n-1})}{B_{i+1}}$ (6)

In Eq. (6), the leading variable is $u_{i+1},$ $\alpha$ plays the same role as $A$ in the 0th level division,

$B_{i+1}$ plays the role of $B\equiv B_{0}$ , and $\gamma_{e_{0}e_{1}\cdots e_{i}}$ that of $C$ . Therefore, we can apply the result

of Eq. (4), which means that in Eq. (6) one can truncate all terms of $\alpha$ and $B_{i+1}$ with the

power of $u_{i+1}$ larger than

$m_{e_{O}e_{1}\cdots e;}=\deg(\alpha, u_{i+1})-\deg(B_{i+1}, u_{i+1})+1p(B_{i+1}, u_{i+1})$ , (7)

From Eq. (6) we have

$\deg(\alpha, u_{i+1})-\deg(B_{i+1}, u_{i+1})=\deg(\gamma_{e_{0}e_{1}\cdots e:}, u_{i+1})$ . (8)

From Eq. (5) we have

$\deg(\gamma_{e_{0}e_{1}\cdots e;}, u_{i+1})\leq\deg(C, u_{\{+1})$ . (9)

Obviously,

$\deg(C, u_{i+1})=\deg(A, u_{i+1})-\deg(B, u_{i+1})$ . (10)

Combining Eqs. (7-10) gives

$m_{e_{0}e_{1}\cdots e:}\leq\deg(A,u_{i+1})-\deg(B, u_{i+1})+1p(B_{i+1}, u_{i+1})$ . (11)

To obtain correct results for all $(i+1)th$ level divisions, we have to make the cutoff at the

maximum of all $m_{e_{0}e_{1}\cdots e_{i}}$ which is just the right-hand side of Eq. (11) because the equality

in Eq. (9) must hold for at least one combination of exponents $e_{O}e_{1}\cdots e_{i}$ . This completes

the proof. $0$

3. Application to Determinant Calculation

Let $M$ be the following $N\cross N$ matrix
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$M=\{\begin{array}{llll}M_{1,1} M_{1,2} M_{1,N}M_{2,1} M_{2,2} M_{2,N}\vdots \vdots \ddots \vdots M_{N,1} M_{N,2} M_{N,N}\end{array}\}$ .

We will calculate the determinant $D=|M|$ by the fraction-free Gaussian elimination

method. For $k=2,$ $\cdots,$ $N-1$ and $k\leq i,j\leq N$ , let

$D(i,j)^{(k)}=|\begin{array}{llll}M_{1,1} M_{1,k-1} M_{1,j}\vdots \ddots \vdots \vdots M_{k-1,1} M_{k-1,k-1} M_{k-1,j}M_{i,1} M_{i,k-1} M_{i,j}\end{array}|$ .

Then, in the fraction-free Gaussian elimination algorithm applied for calculating the de-

terminant $D$ , one uses the following recursion formula:

$D(i,j)^{(k+1)}=(D(k, k)^{(k)}D(i,j)^{\langle k)}-D(i, k)^{\langle k)}D(k,j)^{\langle k)})/D(k-1, k-1)^{\langle k-1)}$ .

This is a situation when we know in advance that two polynomials are exactly divisible.

In addition to that, the numerator is being calculated just before the division. Therefore,

in GAL one can declare the truncation rules (2) according to Theorem 1, which will result

in automatic truncation of all insignificant terms during the calculation of the numerator

and automatic use of the power series division. This should substantially decrease, at least

for some types of matrices, the intermediate expression swelling, and as a consequence

also decrease the execution time. In this section we compare the CPU times necessary for

the calculation of the determinants of various matrices without and with the use of the

truncation.

Procedure DETG uses the plain fraction-free Gaussian elimination algorithm without

any truncation. DETGI and DETGIE are two variations of the same algorithm that
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implements the declarations of Eq. (2) for all variables occurring in the matrix. They

differ only in how $\deg(D(i,j)^{\langle k)},$ $u_{l}$ ) is calculated. DETGI uses the procedure VDEG $()$

separately for each $u_{l}$ . DETGIE calculates the degrees with respect to all variables

simultaneously using the procedure EMAXMIN$()$ . The upper bound of the degree of the

numerator to be used in Eq. (2) is then

$\max(\deg(D(k, k)^{(k)},$ $u_{l}$ ) $+\deg(M(i,j)^{(k)},$ $u_{l}$ ) $,$

$\deg(D(i, k)^{(k)},$ $u_{l}$ ) $+\deg(D(k,j)^{(k)},$ $u_{l}$ ) $)$ .

As will be seen below, DETGIE gives shorter execution times than DETGI when the

number of variables occurring in the matrix is large (at least 7 or 8). Finally DETG2

introduces an auxiliary total degree variable $T$ by means of the substitution

$u_{i}rightarrow u_{i}T$ ,

$T$ is made the leading variable of the 0th level division and the truncation is done with

respect to $T$ only.

Execution times in milliseconds for various types of matrices are in the following tables:

Table I. Matrices from the file MATRXI.DATA: “Random” matrices with relatively large

differences in the number of variables occurring in individual matrix elements and in their

complexity. $N$ is the order of the matrix and $n$ is the total number of variables occurring

in all matrix elements.
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Table II. Matrices from the file $M2.DATA$ : “Special” matrices: $M_{1,1}$ is given by a long

expression containing all 8 variables while all other elements contain at most one variable

of power 1 with the exception of a single element equal to the square of a variable. $N$

and $n$ are as in Table I.

Table III. Matrices from the file $M3.DATA$ : “Regular” matrices given by the formula

$M_{ij}=x_{i}x_{j}+(1+x^{2}:)\delta_{1j}$ . $N$ and $n$ are as in Table I.

Table IV. Modified matrices from the file $M3.DATA$ : “Regular” matrices given by the
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formula $M_{ij}=x_{i}x_{j}+\delta_{ij}$ . $N$ and $n$ are as in Table I.

Generating the truncation rules (2) represents some overhead processing that can in

cases when few truncations occur cancel or even exceed the gains obtained by truncation.

It seems that for general matrices such as those of Table I, the efficiency of procedures

DETGI or DETGIE is better or at least comparable with that of DETG. In some special

cases, DETG2 can be even more efficient than $DETG1/DETGlE$ , but on the other hand

it can fail in some cases when $DETG1/DETGlE$ is rather efficient. Although more

calculations are needed to devise a general strategy, on the basis of our preliminary results

it seems that one could proceed as follow: use DETG for matrices of small order and with

simple expressions with very few variables for all elements. Use DETGI in other cases

when the number of variables is less than 8, otherwise use DETGIE. If $DETG1/DETGlE$

fails try DETG2. If determinants of a large number of matrices of the same class are to

be calculated, try all the above procedures on a representative sample of the matrices and

chose the one with the best results.
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The matrices of Table IV represent a rather degenerate case. Although they differ

only in the value of a coefficient in their diagonal elements from the matrices of Table

III, the resulting determinants differ considerably. The diagonal elements of the matrices

of Table III are equal to 1+2 $x_{i}^{2}$ while those of the matrices of Table IV are equal to

$1+x_{i}^{2}$ . The determinants of the first class of matrices are given by expressions several

pages long, while the determinants of the matrices of Table IV are equal to the simple

expression $1+ \sum_{i=1}^{n}x^{2}:$ . Moreover the off-diagonal elements of these matrices do not change

at all during the Gaussian elimination. The diagonal elements at the end of the Gaussian

elimination process are $M_{kk}=1+ \sum_{i=1}^{k}x_{i}^{2}$ . Because the elements remain so simple during

the whole process, there is almost no truncation. That explains the times of Table IV.

4. Conclusion

Tables I, III and IV show that the power-series division method is not useful for the

fraction-free Gaussian algorithm. In the case of determinant calculation, on an average,

the quotient is a larger-sezed polynomial than the divisor. We think this is the reason

why the power-series division is not useful in our test. If the divisor is a much larger

polynomial than the quotient, we will obtain a much better result, as the result in Table

II shows. Therefore, when we use the power-series division method, we must select the

problems carefully. In fact, we already know that, in the case of GCD calculation, the

method is very useful as ref. 1 shows.
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