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SYSTEMS OF NONLINEAR VARIATIONAL INEQUALITIES ARISING
FROM PHASE TRANSITION PHENOMENA

N. KENMOCHI and M. NIEZGODKA

1. Introduction

We consider an evolution system, consisting of a nonlinear second-order parabolic PDE and
a nonlinear fourth-order parabolic PDE with constraint, which is described as follows:

$\rho(u)_{t}+\lambda(w)_{t}-\Delta u=h(t, x)$ in $Q:=(0,T)\cross\Omega$ , (1.1–1)

$\frac{\partial u}{\partial n}+n_{o}u=h_{o}(t, x)$ on $\Sigma;=(0,T)\cross\Gamma_{1}$ (1.1–2)

$u(0, \cdot)=u_{o}$ in $\Omega$ , (1.1–3)

$w_{t}-\triangle(-\nu\triangle w+\xi+g(w)-\lambda_{o}(w)u)=0$ in $Q$ , (1.2–1)

$\frac{\partial w}{\partial n}=0$ , $\frac{\partial}{\partial n}(-\nu\Delta w+\xi+g(w)-\lambda_{o}(w)u)=0$ on $\Sigma$ , (1.2–2)

$\xi\in\beta(w)$ on $Q$ , (1.2–3)

$w(0, \cdot)=w_{o}$ in $\Omega$ . (1.2–4)

Here $\Omega$ is a bounded domain in $R^{N}(1\leq N\leq 3)$ with smooth boundary $\Gamma=\partial\Omega;\rho$ : $Rarrow$

$R,$ $g:Rarrow R$ and A : $Rarrow R$ are given functions and $\lambda_{o}(r)=\lambda’(r)$ ( $=the$ derivative of A)
for $r\in R;\nu>0$ and $n_{o}\geq 0$ are given constants, and $h$ and $h_{o}$ are given functions on $Q$ and
$\Sigma$ , respectively; $u_{o}$ and $w_{o}$ are initial data; $\beta$ is a given maximal monotone graph in RxR.

The system $(1.1)-(1.2)$ is interpreted as a simplified model for thermodynamical phase
separation in which $w$ represents the order parameter, $\theta=-\frac{1}{u}$ the (Kelvin) temperature and
the free energy functional $F(\theta, w)$ is supposed to be dependent upon the temperature $\theta$ and
to be given by the formula

$F( \theta, w):=\int_{\Omega}f(\theta, w, \nabla w)dx$ , $w\in H^{1}(\Omega)$ , (1.3)

$f( \theta, w, \nabla w)=\{\frac{1}{2}(\nu_{o}+\nu_{1}\theta)|\nabla w|^{2}+\tau(\theta)+\theta(\hat{\beta}(w)+\hat{g}(w))+\lambda(w)\}$ ,

where $\hat{\beta}$ is a proper l.s. $c$ . convex function such that $\partial\hat{\beta}=\beta$ in Rx $R,\hat{g}$ is a primitive of $g$

on $R,$ $\lambda$ is the same as above, $\nu_{o}\geq 0,$ $\nu_{1}>0$ are constants and $\tau$ : $Rarrow R$ is a smooth
function.

In some general settings, various models for thermodynamical phase separation phenom-
ena have been proposed and studied for instance by Luckhaus-Visintin [11] and Alt-Pawlow
$[1,2]$ . However, in their models the constraint (1.2-3) is not taken account of.
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To illustrate our system $(1.1)-(1.2)$ , for instance, consider a binary system of alloys with
components $A$ and $B$ ocuppying $\Omega$ ; let $w;=w_{A}$ and $w_{B}$ be the local concentrations of $A$

and $B$ , respectively, such that
$w_{A}+w_{B}=const.$ ;

suppose that the free energy functional $F(\theta, w)$ of the Ginzburg-Landau type is of the form
(1.3). Then, according to the thermodynamics approach of DeGroot-Mazur [5] and Alt-
Pawlow $[1,2]$ , we can derive from (1.3) with transformation $u:=-1/\theta$ , the mass and energy
balance equations:

$\rho(u)_{t}+\lambda(w)_{t}+[\frac{1}{2}\nu_{o}|\nabla w|^{2}]_{t}+\nabla\cdot q=h(t, x)$ in $Q$ , (1.4)

$w_{t}+\nabla\cdot j=0$ in $Q$ , (1.5)

where $\rho(u)=\tau(\theta)-\theta\tau’(\theta),$ $q$ is the energy flux due to heat and mass transfer, $j$ is the mass
flux of the component $A$ and $h$ is a given heat source. Now suppose further that the fluxes
$q$ and $j$ are described by the following constitutive relations:

$q=\nabla(\frac{1}{\theta})(=-\nabla u)$ in $Q$ , (1.6)

$j=-\nabla(\frac{\mu}{\theta})(=\nabla(u\mu))$ in $Q$ , (1.7)

where
$\frac{\mu}{\theta}=\frac{\delta}{\delta w}[\int_{\Omega}\frac{f(\theta,w,\nabla w)}{\theta}dx]$ (1.8)

and $\frac{\delta}{\delta w}$ denotes the functional derivative with respect to $w$ . Since $f(\theta, w, \nabla w)$ includes the
non-smooth term $\hat{\beta}(w)$ , the right hand side of (1.8) is here understood in the multivalued
sense

$\frac{\delta}{\delta w}[\int_{\Omega}\frac{f(\theta,w,\nabla w)}{\theta}dx]$

$=$ { $- \nabla\cdot(\frac{\nu_{o}}{\theta}+\nu_{1})\nabla w+\xi+g(w)+\frac{\lambda’(w)}{\theta};\xi\in L^{2}(\Omega),$ $\xi\in\beta(w)a.e$ . on $\Omega$ }, (1.9)

Now, combine $(1.4)-(1.5)$ with $(1.6)-(1.9)$ . Then we obtain

$\rho(u)_{t}+\lambda(w)_{t}+[\frac{\nu_{o}}{2}|\nabla w|^{2}]_{t}-\triangle u=h$ in $Q$ , (1.10)

and
$w_{t}-\Delta(-\nabla\cdot(\nu_{1}-\nu_{o}u)\nabla w+\xi+g(w)-\lambda’(w)u)=0$ in $Q$ , (1.11)

$\xi\in\beta(w)$ in Q. (1.12)

Therefore, if $\nu_{o}=0$ and $\nu_{1}=\nu$ , or if in (1.10) the term $[ \frac{\nu}{2}\iota|\nabla w|^{2}]_{t}$ is experimentally allowed
to be neglected and in (1.11) the coefficient $(\nu_{1}-\nu_{o}u)$ of $\nabla w$ replaced by a positive constant $\nu$ ,
then system $(1.1- 1)-(1.2- i),$ $i=1,3$ , is regarded as a simplified form of (1.10)-(1.12). System
$(1.1)-(1.2)$ consists of these equations and initial-boundary conditions (l.l-i), $i=2,3$ , and
(1.2-i), $i=2,4$ .
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The aim of this paper is to study a weak formulation for system $(1.1)-(1.2)$ in the varia-
tional sense, taking advantage of subdifferential techniques in Hilbert spaces.

2. Main results

Throughout this note, for a general (real) Banach space $X$ we denote by . $|_{X}$ the norm in
$X$ and by $X^{\star}$ the dual space of $X$ .

For simplicity we use the notations:

$(v, w)$ $:= \int_{\Omega}$ vwdx for $v,$ $w,$ $\in L^{2}(\Omega)$ ,

$(v, w)_{\Gamma}$ $:= \int_{\Gamma}vwd\Gamma(x)$ for $v,$ $w\in L^{2}(\Gamma)$ ,

$a(v, w)$ $:= \int_{\Omega}\nabla v\cdot\nabla wdx$ for $v,$ $w\in H^{1}(\Omega)$ .

Moreover we put
$H$ $:=L^{2}(\Omega)$ , $V$ $:=H^{1}(\Omega)$ ,

$H_{o}$ $:= \{z\in H;\int_{\Omega}zdx=0\}$ , $V_{o}$ $:=V\cap H_{o}$ ,

and denote by $\pi$ the projection from $H$ onto $H_{o}$ , i.e.

$\pi(z)(x):=z(x)-\frac{1}{|\Omega|}\int_{\Omega}z(y)dy$ , $z\in H$ .

Also, $H_{o}$ is a Hilbert space with $|z|_{H_{0}}=|z|_{H}$ as well as $V_{o}$ with $|z|_{V_{o}}=|\nabla z|_{H}\cdot$, we use
sometimes symbol $(\cdot, \cdot)_{0}$ for the inner product in $H_{o}$ and ( $\cdot,$

$\cdot\rangle_{0}$ for the duality pairing between
$V_{o}^{\star}$ and $V$ .

As usual, identifying $H$ with its dual, we have

$V\subset H\subset V^{\star}$

with dense and compact embeddings. Similarly, identifying $H_{o}$ with its dual, we have

$V_{o}\subset H_{o}\subset V_{o}^{\star}$

with dense and compact embeddings. Also, we denote by $J_{o}$ the duality mapping from $V_{o}$

onto $V_{o}^{\star}$ which is defined by the formula

$\langle J_{o}z, \eta\rangle_{0}=\mathfrak{a}(z, \eta)$ for all $z,\eta\in V_{o}$ .

Therefore, in particular, if $z^{\star}$ $:=J_{o}z\in H_{O1}$ then $z\in H^{2}(\Omega)$ and $z$ is the unique solution of
the Neumann problem

$-\triangle z=z^{\star}$ in $\Omega$ , $\frac{\partial z}{\partial n}=0$ on $\Gamma_{\}}$ $\int_{\Omega}zdx=0$ . (2.1)

Accordingly, if $\eta\in H^{2}(\Omega)$ and $\frac{\partial\eta}{\partial n}=0a.e$ . on $\Gamma$ , then $J_{o}[\pi(\eta)]=-\Delta\eta$ .
Now, we denote by (P) the system $(1.1)-(1.2)$ mentioned in section 1 and discuss it under

the following assumptions $(A1)-(A6)$ :
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(A1) $\rho$ : $Rarrow R$ is an increasing Lipschitz continuous function with Lipschitz continuous
inverse $\rho^{-1}$ : $Rarrow R$ ; we denote by $C_{\rho}$ a common Lipschitz constant of $\rho$ and $\rho^{-1}$ .

(A2) $\lambda,$ $\lambda_{o}$ : $Rarrow R$ are Lipschitz continuous functions and $\lambda_{o}=\lambda’$ ; we denote by $C_{\lambda}$ a
common Lipschitz constant of $\lambda$ and $\lambda_{o}$ .

(A3)
$ofgg:Rarrow R$

is a Lipschitz continuous function; we denote by $C_{g}$ the Lipschitz constant

(A4) $\nu$ is a positive constant and $n_{o}$ is a non-negative constant.

(A5) $\beta$ is a maximal monotone graph in $R\cross R$ with bounded and non-empty interior
int. $D(\beta)$ of the domain $D(\beta)$ in $R$ ; we put int. $D(\beta)=(\sigma_{\star}, \sigma^{\star})$ for-oo $<\sigma_{\star}<\sigma^{\star}<\infty$

and hence $\overline{D(\beta)}=[\sigma_{\star}, \sigma^{\star}]$ , and we may assume that $\beta$ is the subdifferential of a non-
negative, proper, l.s. $c$ . and convex function $\hat{\beta}$ on $R$, since the range $R(\beta)$ of $\beta$ is the
whole R.

(A6) $0<T<\infty,$ $h\in L^{2}(0,T;H),$ $h_{o}\in W^{1,2}(0, T;L^{2}(\Gamma))$ and $u_{o}\in H,$ $w_{o}\in V$ with
$\hat{\beta}(w_{o})\in L^{1}(\Omega)$ .

We introduce
$K(\hat{\beta})$ $:=\{z\in H;\hat{\beta}(z)\in L^{1}(\Omega)\}$

and
$K_{m}(\hat{\beta})$ $:= \{z\in K(\hat{\beta});\frac{1}{|\Omega|}\int_{\Omega}zdx=m\}$ for each $m\in R$ .

We next give the weak formulation for (P).

Definition 2.1. A couple $\{u, w\}$ of functions $u$ : $[0, T]arrow V$ and $w$ : $[0, T]arrow H^{2}(\Omega)$ is
called a (weak) solution of (P), if the following conditions $(wl)-(w4)$ are satisfied:

(w1) $u\in L^{2}(0, T;V)\cap L^{\infty}(0, T;H),$ $\rho(u)\in C_{w}([0, T];H),$ $C_{w}([0, T]_{1}\cdot H)$ being the space of
all weakly continuous functions from $[0, T]$ into $H,$ $\rho(u)’(=\frac{d}{dt}\rho(u))\in L^{1}(0, T;V^{\star}),$ $w\in$

$L^{2}(0,T;H^{2}(\Omega))\cap L^{\infty}(0, T;V),$ $w^{J}\in L^{2}(0, T;V^{\star})$ and $\lambda(w)’\in L^{1}(0_{1}T;V^{\star})$ ;

(w2) $\rho(u)(0)=\rho(u_{o})$ and $w(0)=w_{o}$ ;

(w3) for $a.e$ . $t\in[0, T]$ and all $z\in V$ ,

$\frac{d}{dt}(\rho(u(t))+\lambda(w(t)))z)+a(u(t), z)+(n_{o}u(t)-h_{o}(t), z)_{\Gamma}=(h(t), z)$ ; (2.2)

(w4) for $a.e$ . $t\in[0, T]$ ,
$\frac{\partial}{\partial n}w(t)=0$ $a.e$ . on I’, (2.3)

and there is a function $\xi\in L^{2}(0, T;H)$ such that

$\xi\in\beta(w)$ $a.e$ . in $Q$ (2.4)
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and

$\frac{d}{dt}(w(t), \eta)+\nu(\triangle w(t))\triangle\eta)-(g(w(t))+\xi(t)-\lambda’(w(t))u(t), \Delta\eta)=0$ (2.5)

for all $\eta\in H^{2}(\Omega)$ with $\Delta\partial n\partial a.e$ . on $\Gamma$ , and $a.e$ . $t\in[0,T]$ .

When it is necessary to indicate the data $h,$ $h_{o},$ $u_{o},$ $w_{o}$ , we denote problem (P) by $(P;h,$ $h_{o}$ ,
$u_{o},$ $w_{o}$).

Remark 2.1. Let $\{u, w\}$ be any solution of (P). Then it follows from (2.5) in (w4) that

$\frac{d}{dt}(w(t), 1)=0$ for $a.e$ . $t\in[0, T]$ ,

whence
$\int_{\Omega}w(t, x)dx=\int_{\Omega}w_{o}dx$ for all $t\in[0, T]$ .

Therefore, putting
$m$ $:= \frac{1}{|\Omega|}\int_{\Omega}w_{o}dx$, (2.6)

we observe that $w(t)-m\in V_{o}$ for all $t\in[0,T]$ .

Our main results of this paper are stated as follows:

Theorem 2.1. Assume that $1\leq N\leq 3$ and (A $1$ ) $-(A\theta)$ hold, and assume with notation
$(2.\theta)$ that

$m\in int.D(\beta)$ , i.e. $\sigma_{\star}<m<\sigma^{\star}$ .

Then $(P)$ has one and only one solution $\{u, w\}$ . Moreover, the solution $\{u, w\}$ has the
following bounds:

$|u|_{L^{\infty}(0,T;H)}+|u|_{L^{2}(0,T;V)}+|w|_{L^{\infty}(0,T;V)}+|\hat{\beta}(w)|_{L\infty(0,T;L^{1}(\Omega))}+|w’|_{L^{2}(0,T;V\star)}$

$\leq R_{o}(|u_{o}|_{H)}|w_{o}|_{V}, |\hat{\beta}(w_{o})|_{L^{1}(\Omega)},$ $|h|_{L^{2}(0,T;H)},$ $|h_{o}|_{L^{2}(0,T,L^{2}(\Gamma))}$), (2.7)

where $R_{o}$ : $R_{+}^{5}arrow R$ is a function which is bounded on each bounded subset of $R_{+}^{5};$

$|w|_{L^{2}(0,T;H(\Omega))}+|\rho(u)’|_{L^{1}(0,T;V^{\star})}+|\lambda(w)’|_{L^{1}(0,T;V^{\star})}$

$\leq R_{1}(\frac{1}{\delta}, r(\delta),$ $|u_{o}|_{H},$ $|w_{o}|_{V},$ $|\hat{\beta}(w_{o})|_{L^{1}(\Omega)},$ $|h|_{L^{2}(0,T;H)},$ $|h_{o}|_{L^{2}(0,T;L^{2}(\Gamma))}$ ), (2.8)

where $R_{1}$ : $R_{+}^{7}arrow R+is$ a function which is bounded on each bounded subset of $R_{+}^{7},$ $\delta$ is
an arbitrary number satisfying

$0<\delta<1$ , $\sigma_{\star}<m-\delta<m+\delta<\sigma^{\star}$ , (2.9)

and
$r( \delta)=\sup\{|r’|;r’\in\beta(m-\delta)\cap\beta(m+\delta)\}$ . (2.10)
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Remark 2.2. In estimates (2.7) and (2.8), the dependence of the solution $\{u, w\}$ upon
functions $\rho,$

$\lambda,$

$g$ and $\beta$ is not explicitly indicated. However, as will be able to be easily
checked, the functions $R_{o}$ and $R_{1}$ are chosen so as to be independent of them, as long as the
Lipschitz constants $C_{\rho},$ $C_{\lambda},$ $C_{9}$ and the length $\sigma^{\star}-\sigma_{\star}$ of $D(\beta)$ vary in a bounded subset of
$R+\cdot$

Theorem 2.2. Assume that $1\leq N\leq 3$ and $(Al)-(A5)$ hold. Let $\{h_{n}\},$ $\{h_{on}\},$ { $u_{onJ}$ and
$\{w_{m}\}$ be bounded sequences in $L^{2}(0, T;H),$ $W^{1,2}(0, T;L^{2}(\Gamma)),$ $H$ and $V$ , respectively, and
assume that $\{\hat{\beta}(w_{on})\}$ is bounded in $L^{1}(\Omega)$ . Further suppose that as $narrow\infty$

$h_{n}arrow h$ in $L^{2}(0,T;H)$ , $h_{on}arrow h_{o}$ in $L^{2}(0, T;L^{2}(\Gamma))$

and
$u_{on}arrow u_{o}$ in $H$, $w_{on}arrow w_{o}$ in $V$

Then we have the following statements (i) and (ii):
(i) Suppose that

$\sigma_{\star}<m_{n};=\frac{1}{|\Omega|}\int_{\Omega}w_{on}dx<\sigma^{\star}$ for all $n$ , (2.11)

and
$\sigma_{\star}<m:=\frac{1}{|\Omega|}\int_{\Omega}w_{o}dx<\sigma^{\star}$.

Let $\{u_{n}, w_{n}\}$ be the solution of $(P_{n}):=(P;h_{n}, h_{on}, u_{on}, w_{m})$ for each $n$ and $\{u, w\}$ be the so-
lution of $(P):=(P,\cdot h, h_{o}, u_{o}, w_{o})$ . Then, as $narrow\infty$ ,

$u$. $arrow u$ in $L^{2}(0, T;H)$ ,

$\rho(u_{n})arrow\rho(u)$ weakly in $H$ and uniformly in $t\in[0, T]$ ,

$w_{n}arrow w$ in $L^{2}(0, T;V)$ and $weakly^{\star}$ in $L^{\infty}(0, T;V)$

and
$w_{n}^{J}arrow w’$ weakly in $L^{2}(0,T;V^{\star})$ .

(ii) Suppose that (2.11) hlods and

$m=\sigma_{\star}$ or $\sigma^{\star}$ ,

Then, for the solution $\{u_{n}, w_{n}\}$ of $(P_{n})$ , we have as $narrow\infty$ ,

$w$. $arrow m$ in $C([0,T];H)$

$u_{n}arrow u$ in $L^{2}(0,T;H)$ and weakly in $L^{2}(0, T;V)$

and
$\rho(u_{n})arrow\rho(u)$ weakly in $H$ and uniformly in $t\in[0, T]$ ,

where $u\in C([0, T];H)\cap W_{loc}^{1,2}((0, T];H)\cap L_{loc}^{\infty}((0, T];V)\cap L^{2}(0,T;V)$ is the unique solution
of

$\frac{d}{dt}(\rho(u(t)), z)+a(u(t), z)+(n_{o}u(t)-h_{o}(t), z)_{\Gamma}=(h(t), z)$
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for all $z\in V,$ $a.e$ . $t\in[0, T]$ , (2.12)

$u(0)=u_{o}$ .

Remark 2.3. In (i1) of Theorem 2.2, moreover if $h\in L^{\infty}(Q),$ $h_{o}\in L^{\infty}(\Sigma),$ $u_{o}\in L^{\infty}(\Omega)$ and
$m\in D(\beta)$ , then the pair $\{u, w\}$ , with the solution $u$ of (2.12) and $w=m$, is the solution of
(P) in the sense of Definition 2.1. In fact, under such restrictions on the data we see that
$u\in L^{\infty}(Q)$ and hence $\xi$ $:=k-g(m)+\lambda’(m)u\in\beta(m)$ on $Q$ for a certain constant $k$ . Thus
condition (w4) of Definition 2.1 is satisfied.

3. Sketch of proofs

(1) (Uniqueness) The uniqueness of the solution of (P) can be proved by using Gronwall’s
inequality with the help of the following embedding inequalities:

$|z|_{L^{q}(\Omega)}\leq C_{o}|\nabla z|_{H)}$ $|z|_{L^{q}(\Omega)}\leq\delta|\nabla z|_{H}+C_{\delta}|z|_{V_{o^{\star}}}$

for all $z\in V_{o}$ and $1\leq q<6$ , where $C_{o}$ is a positive constant, and 6 is an arbitrary positive
constant with a constant $C_{\delta}$ dependent only on 6.

(2) (Existence) For the construction of a solution of (P) we consider the approximate problem
(P) $(=(P_{\mu};h, h_{o}, u_{o}, w_{o}))$ , with parameter $0<\mu\leq 1$ , to find a pair of functions $u_{\mu}$ : $[0, T]arrow$

$V$ and $w_{\mu}$ : $[0, T]arrow H^{2}(\Omega)$ fulfilling the following conditions $(w1)_{\mu^{-}}(w4)_{\mu}$ :

$(w1)_{\mu}u_{\mu}\in W^{1,2}(0, T;H)\cap L^{\infty}(0, T;V),$ $w_{\mu}\in W^{1,2}(0,T;H)\cap L^{\infty}(0, T;V)\cap L^{2}(0, T;H^{2}(\Omega))$ ;

$(w2)_{\mu}u_{\mu}(0)=u_{o}$ and $w_{\mu}(0)=w_{o}$ ;

$(w3)_{\mu}$ for $a.e$ . $t\in[0,T]$ and all $z\in V$ ,

$(\rho(u_{\mu})’(t)+\lambda(w_{\mu})’(t), z)+a(u_{\mu}(t), z)+(n_{o}u_{\mu}(t)-h_{o}(t), z)_{\Gamma}=(h(t), z)$ ; (3.1)

$(w4)_{\mu}$ for $a.e$ . $t\in[0,T]$ ,
$\frac{\partial w_{\mu}(t)}{\partial n}=0$ $a.e$ . on $\Gamma$ , (3.2)

and there is a function $\xi_{\mu}\in L^{2}(0, T;H)$ such that

$\xi_{\mu}\in\beta(w_{\mu})$ $a.e$ . on $Q$ (3.3)

and
$(w_{\mu}’(t), \eta)-\mu$( $w_{\mu}’(t)$ , A $\eta$) $+\nu(\Delta w_{\mu}(t), \triangle\eta)$

$-(g(w_{\mu}(t))-\lambda’(w_{\mu}(t))u_{\mu}(t)+\xi_{\mu}(t), \triangle\eta)=0$ (3.4)

for all $\eta\in H^{2}(\Omega)$ with $\frac{\partial\eta}{\partial n}=0a.e$ . on $\Gamma$ and $a.e$ . $t\in[0, T]$ .
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Besides we reformulate $(P)_{\mu}$ as a system of evolution equations including subdifferential
operators. For this purpose, let us introduce convex functions $\varphi$ on $H_{o}$ and $\psi^{t},$ $t\leq t\leq T$ ,
on $H$ as follows:

$\varphi(z)$ $:=\{\begin{array}{l}\frac{\nu}{2}|\nabla z|_{H}^{2}+\int_{\Omega}\hat{\beta}(z+m)dxifz\in V_{o}and\hat{\beta}(z+m)\in L^{1}(\Omega)\infty otherwise\end{array}$ (3.5)

where
$m:= \frac{1}{|\Omega|}\int_{\Omega}w_{o}dx$ ,

and
$\psi^{t}(z)$ $:=\{\begin{array}{l}\frac{1}{2}|\nabla z|_{H^{+}}^{2\underline{n}_{2^{A}}}|z|_{L^{2}(\Gamma)}^{2}-(h_{o}(t),z)_{\Gamma}ifz\in V\infty otherwise\end{array}$ (3.6)

We then consider the subdifferential $\partial\varphi$ of $\varphi$ in $H_{o}$ and the subdifferential $\partial\psi^{t}$ of $\psi$ in $H$ . It
is easy to see that

(i) $z^{\star}\in\partial\varphi(z)$ if and only if $z^{\star}\in H_{o},$ $z\in V_{o}\cap(K_{m}(\hat{\beta})-m)$ and

$(z^{\star}, v-z)_{0} \leq\nu a(z, v-z)+\int_{\Omega}\hat{\beta}(v+m)dx-\int_{\Omega}\hat{\beta}(z+m)dx$

for all $v\in V_{o}\cap(K_{m}(\hat{\beta})-m)$ ;

(ii) $\partial\psi^{t}$ is singlevalued, and $z^{\star}=\partial\psi^{t}(z)$ if and only if $z^{\star}\in H,$ $z\in V$ and

$(z^{\star}, v)=a(z, v)+(n_{o}z-h_{o}(t), v)_{\Gamma}$ for all $v\in V$.

For each $\mu\in(0,1$], problem $(P)_{\mu}$ has at most one solution and we have:

Lemma 3.1. Let $\sigma_{\star}<m<\sigma^{\star}$, and $\lambda_{1}(r);=\lambda(r+m)$ and $g_{1}(r)$ $:=g(r+m)$ for $r\in$ R.
Then a pair $\{u_{\nu}, w_{\mu}\}$ of functions is a solution of $(P)_{\mu}$ if and only if the pair $\{u_{\mu}, v_{\mu}\}$ with
$v_{\mu}:=w_{\mu}-m$ is a solution of the problem ($Py_{\mu}$ defined below:

(P) Find a pair $\{u_{\mu}, v_{\mu}\}$ of fvnctions satisfying the following conditions $(w1)_{\mu}’-(w4)_{\mu}’$ :

$(w1)_{\mu}’u_{\mu}\in W^{1,2}(0, T;H)\cap L^{\infty}(0, T;V)$ and $v_{\mu}\in W^{1,2}(0, T;H_{o})\cap L^{\infty}(0, T;V_{o})$;

$(w2)_{\mu}’u_{\mu}(O)=u_{o}$ and $v_{\mu}(0)=v_{o}$ $:=w_{o}-m$ ;

$(w3)_{\mu}’$ for $a.e$ . $t\in[0,T]$ ,

$\rho(u_{\mu})’(t)+\lambda_{1}(v_{\mu})’(t)+\partial\psi^{t}(u_{\mu}(t))=h(t)$ ; (3.7)

$(w4)_{\mu}’$ for $a,e$ . $t\in[0, T]$ ,

$(J_{o}^{\star}+\mu I)v_{\mu}’(t)+\partial\varphi(v_{\mu}(t))+\pi[g_{1}(v_{\mu}(t))-\lambda_{1}’(v_{\mu}(t))u_{\mu}(t)]\ni 0$ . (3.8)
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We can prove Lemma 3.1 by using the following lemma which is concerned with the
Lagrange multipliers of elliptic variational inequalities.

Lemma 3.2. Let $\sigma_{\star}<m<\sigma^{\star}$ and $\ell$ be any element of H. Consider the following two
problems $(M_{m})$ and ($M_{m}f$ :

$(M_{m})$ Find a function $z_{m}\in K_{m}(\hat{\beta})\cap V$ such that

$\nu a(z_{m}, z_{m}-\eta)+\int_{\Omega}\hat{\beta}(z_{m})dx\leq(\ell, z_{m}-\eta)+\int_{\Omega}\hat{\beta}(\eta)dx$ for all $\eta\in K_{m}(\hat{\beta})\cap V$ .

$(M_{m})$ Find a function $z_{m}\in K_{m}(\hat{\beta})\cap H^{2}(\Omega),$ $\gamma_{m}\in R$ and $\xi_{m}\in H$ such that

$-\nu\triangle z_{m}+\xi_{m}=l+\gamma_{m}$ in $\Omega$

and
$\xi_{m}\in\beta(z_{m})$ $a.e$ . on $\Omega$ , $\frac{\partial z_{m}}{\partial n}=0$ $a.e$ . on F.

Then ($M_{m}y$ has a solution $\{z_{m}, \xi_{m}, \gamma_{m}\}$ and the function $\chi_{m}$ is the unique solution of $(M_{m})$ .
Moreover, $\gamma_{m}$ can be chosen so that

$|\gamma_{m}|\leq 4M^{5}(1+|\ell|_{H})$ , (3.9)

where $M= \max\{\frac{1}{\delta}, r(\delta), \sigma^{\star}-\sigma_{\star}, |\Omega|, \frac{1}{|\Omega|}\}$ for 6 and $r(\delta)$ satisfying (2.9) and (2.10); $z_{m}$

satisfies that
$(-\triangle z_{m}, \xi_{m})\geq 0$ (3.10)

and
$\nu|\Delta z_{m}|_{H}\leq|p|_{H}+|\gamma_{m}||\Omega|^{\frac{1}{2}}$ . (3.11)

For the detail proof of Lemma 3.2 we refer to [9; Proposition 5.1]. Thanks to the additional
term $\mu v_{\mu}’$ problem $(P_{\mu})’$ , hence $(P_{\mu})$ , is uniquely solved in the Hilbert spaces $H$ and $H_{o}$ by
applying time-dependent subdifferential techniques evolved in $[4, 10]$ . In fact, we have the
following result.

Proposition 3.1. In addition to all the conditions of Theorem 2.1, assume that $u_{o}\in V$ .
Then, for each $\mu\in(0,1$], problem $(P)_{\mu}$ has one and only one solution $\{u_{\mu}, w_{\mu}\}$ . Moreover,
the solution $\{u_{\mu}, w_{\mu}\}$ satisfies the bounds of the following type:

$|u_{\mu}|_{C([0,T],\cdot H)}+|\nabla u_{\mu}|_{L^{2}(0,T;H)}+|w_{\mu}’|_{L^{2}(0,T,V^{\star})}$

$+\mu|w_{\mu}’|_{L^{2}(0,T;H)}^{2}+|w_{\mu}|_{L\infty(0,T;V)}+|\hat{\beta}(w_{\mu})|_{L^{\infty}(0,T;L^{1}(\Omega))}$

$\leq\tilde{R}_{o}(|u_{o}|_{H}, |w_{o}|_{V}, |\hat{\beta}(w_{o})|_{L^{1}(\Omega)}, |h|_{L^{2}(0,T;H)}, |h_{o}|_{L^{2}(0,T;L^{2}(\Gamma))})$ ,

where $R_{o}$ : $R_{+}^{5}arrow R+is$ a function which is independent $of\mu$ and bounded on each bounded
subset of $R_{+}^{5}$ ;

1 $w_{\mu}|_{L^{2}(0,T;H^{2}(\Omega))}+|\rho(u_{\mu})’|_{L^{1}(\cdot\star}0,T,V)+|\lambda(w_{\mu})’|_{L^{1}(0,T,V^{\star})}$
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$\leq\tilde{R}_{1}(\frac{1}{6}, r(\delta)$ , I $u_{o}|_{H},$ $|w_{o}|_{V},$ $|\hat{\beta}(w_{o})|_{L^{1}(\Omega)},$ $|h|_{L^{2}(0,T;H)},$ $|h_{o}|_{L^{2}(0,T;L^{2}(\Gamma))}$),

where $\tilde{R}_{1}$ : $R_{+}^{7}arrow R_{+}$ is a function which is independent of $\mu$ and bounded on each bounded
subset of $R_{+}^{7},$ $\delta$ is an arbitrary number satisfying (2.9) and $r(\delta)$ is a constant given by (2.10).

By the above proposition we obtain a solution $\{u, w\}$ of (P), passing to the limit in $\muarrow 0$ ,
and see that the solution satisfies estimates (2.7) and (2.8).

(3) (Proof of Theorem 2.2) The assertions of Theorem 2.2 follow easily from estimates for
the solution of (P) in Theorem 2.1.

Remark 3.1. In this paper the domain $D(\beta)$ of $\beta$ is supposed to be bounded in R. However
this is not essential for the assertions of Theorems 2.1 and 2.2. For instance, our results can
be extended to the case when int. $D(\beta)\neq\#$ and there are constants $k_{\beta}>0$ and $k_{\beta}’>0$ such
that

$|\beta(r)|\geq k_{\beta}|r|-k_{\beta}’$ for all $r\in D(\beta)$ ;

note that under this condition we may assume that

$\hat{\beta}(r)\geq\hat{k}_{\beta}|r|^{2}$ for all $r\in D(\hat{\beta})$ ,

where $\hat{k}_{\beta}>0$ is a certain constant.

Application. As a typical example of maximal monotone graphs $\beta$ in $R\cross R$ arising in the
context of phase separation (cf. [3]), we consider an increasing smooth function $\beta^{c}$ : $(0,1)arrow$

$R$ defined by
$\beta^{c}(w)$ $:=c \log\frac{w}{1-w}$

with positive real parameter $c$ . Also, as an example of non-smooth $\beta$ , we consider the
subdifferential $\beta^{0}$ of the indicator function of the interval $[0_{1}1]$ in $R$ , which is the limit of $\beta^{c}$

as $carrow 0$ in the sense of maximal monotone graphs in $R\cross$ R.
By virtue of Theorem 2.1, problem (P) with $\beta=\beta^{c}(c\geq 0)$ has one and only one

solutioon $\{u^{c}, w^{c}\}$ , provided that $u_{o}\in H,$ $w_{o}\in V$ with $0<m<1$ and $\log\frac{w}{1-w_{o}}\in L^{1}(\Omega)$ ,
$h\in L^{2}(0, T;H)$ and $h_{o}\in W^{1,2}(0, T;L^{2}(\Gamma))$ . Moreover, it easily follows from the estimates
(2.7),(2.8) and the uniqueness of solutions to (P) that as $carrow 0$ , the solution $\{u^{c}, w^{c}\}$

converges to the solution $\{u^{0}, w^{0}\}$ in the similar sense as in (i) of Theorem 2.2.
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