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Abstract
We investigate singular points of the invariant density for a class of multi-

dimensional maps with finite range structure. In particular, we concentrate on
maps with countably many discontinuity points which do not satisfy Renyi’s
condition and do not necessarily satisfy the Markov property. Such maps
occuI from number theory quite naturaUy. Under some conditions, we show
that indifferent periodic points must be singular points of the invariant density.

1 Introduction
We consider $mdti- d\dot{m}$ensiond piecewise smooth maps which are flmost expandin$g$ .
These maps generally do not have the Markov property, but they have a simuilar
structure,which we call a “finite range structure”(FRS) and leads to a nice countable
state symboIic dynamics[22]. Many examples of such maps come $hom$ number theory
(see section 4). The maps we study are typically only C’-smooth, and they need
not satisfy Renyi’s condition( uniformly bounded distortion for all iterates).

In [4], sufficient conditions for the existence of absolutely continuous invariant
measures were given for systems with FRS. Before [4], analyses of absolutely con-
tinuous invariant measures appealed to Renyi’s condition and to the Markov prop-
erty$(e.g.[1],[2],[3],[6],[8],[9],[11],[15],[19],[23][25])$ , both of which may fail(with in-
teresting consequences, as we will see) for systems with FRS. If Renyi’s condition
holds, then the invariant density obtamed is bounded. However without this con-
dition, the invariant density of the $ffi\dot{u}te$ measure may be unbounded (see section
$4).We$ study singularities of the invariant density (see the definition in section 3)
md relate them to the existence of non-hyperbolic periodic orbits.We also provide
a sufficient condition for the validity of Rohhn’s entropy formula.

We now establish some notation and recapitulate some definitions. We say a
map $T$ on a bounded domain $X\subset R^{d}$ has a “finite range structure“(FRS) if there
exists a countable partition $Q=\{X_{a}\}_{a\in I}$ of $X$ and a collection of finitely many
subsets of $X,$ $\{U_{0}, U_{1}, \ldots , U_{N}\}$ such that
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1. each $X_{a}$ is a measurable, connected subset with piecewise smooth boundary
and $intX_{a}\neq\emptyset$ ,

2. each $U_{k}$ has positive Lebesgue measure,

3. for each $X_{a},T|_{X_{*}}$ is injective, of class $C^{1}$ with $\det DT|_{X_{*}}\neq 0$ ,

4. if $intX_{a_{1}}\cap int(T^{-1}X_{a},)\cap\ldots\cap int(T^{-(n-1)}X_{a}.)\neq\#$, let $X_{a_{1}\ldots a}$. $=X_{a_{1}}\cap$

$T^{-1}X_{a_{2}}\cap\ldots\cap T^{-(n-1)}X_{a}.$ . Then $T^{n}X_{a_{1}\ldots a}$. $=U_{k}$ for some $k\in\{0,1, \ldots, N\}$ .
Remark A Here a partition means a collection of disjoint sets. In 2, $U_{k}$ can inter-

sect $U_{j}$ for $j\neq k$ , and in particular one of the $U_{k}$ can be equal to $X$ . In 3,
$\det DT|_{\partial X_{*}}=0$ is possible. When we say a function is $C^{1}$ on $X_{a}$ , we mean it
agrees on $X_{a}$ with a C’ function defined on a neighbourhood of $X_{a}$ in $R^{d}$ .

If there exists a constant $C(>1)$ such that

$\frac{\sup ae\in X_{a_{1}..\cdot.\cdot u}|\det DT^{n}(x)|}{\inf ae\in x_{a_{1}.*}.|\det DT^{n}(x)|}<C$

for ffi $n>0$ and ffi $X_{a_{1}\ldots a}.$ , then we say $T$ satisfies Renyi’s condition. If int $(X_{a}\cap$

$TX_{b})\neq\emptyset$ implies $X_{a}\subset TX_{b}$ , then we say $T$ has the Markov property.
In section 3, we explain that indifferent periodic points must be singular points

of the invariant density, and we discuss the characterization of non-singular points.
In section 4, we apply our theorems to examples on which precise discussions are
shown in [21]. In section 5, we consider Rohhn’s entropy formula. Proofs of our
results of section 3 and of section 5 are given in [21].

2 Notation and preliminary results
We cffi $X_{a_{1}\ldots a}$. a cylinder of rank $n$ with respect to T. $\mathcal{L}^{n}$ denotes the family of $g$

cylinders $X_{a_{1}\ldots a}$. of rank $n$ and $\mathcal{L}\equiv\bigcup_{\iota=1}^{\infty}\mathcal{L}^{n}$. For constant $C>1,X_{a_{1}\ldots a}$. is cffied
a $R(C.T)$-cylinder of rank $n$ if

$\frac{\sup_{r\in X_{**}}..\cdot.\cdot.|\det DT^{n}(x)|1}{dae\in x_{a_{1}.*}.|\det DT^{n}(x)|}<C$ .

$R(C.T)$ denotes the set of all $R(C.T)- cy1\dot{m}$ders. We say that a cylinder $X_{a_{1}\ldots a}$. satis-
fies the local Renyi condition for $C$ if for $aU$ cylinders $X_{b_{1}\ldots b_{n}}$ such that $X_{b_{1}\ldots b-a_{1}\ldots a}$. $\in$

$\mathcal{L}^{m+n},$ $X_{b_{1}\ldots b_{n}a_{1}\ldots a}$. $\in R(C.T)$ . We say that $T$ satisfies the local Renyi condition if
there exists a constant $C(>1)$ such that $R(C.T)$ is not empty and for all $X_{a_{1}\ldots a}.\in R(C_{-}’$

satisfies the local Renyi condition for $C$ . We call the constant $C$ a local Renyi con-
stant. For $x\in X$ and $n\in N$ , we define

$C(n, x) \equiv\frac{\sup_{y\in x_{**\cdot tae)}}..\cdot.\cdot|\det DT^{n}(y)|1}{\inf_{y\in x_{\epsilon_{1}.*\cdot tae)}}|\det DT^{n}(y)|}$,
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where $X_{a_{1}\ldots a}.(x)$ is the unique cylinder of rank $n$ containin$gx$ . As $C(n, x)$ is constant
on $X_{a_{1}\ldots a}.(x)$ , we sometimes denote by $C(a_{1}\ldots a_{\mathfrak{n}})$ the constant. For point $x\in X$ ,
if there exists a constant $C>1$ such that for $\forall n>0,$ $\exists i_{n}(>n)$ so that $C(i_{*}, x)<C$ ,
we call the point $x$ a limit point of $R(C.T)$-cylinders. For $C>1$ , we define

$D_{i}^{(C)}\equiv$ { $X_{d_{1}\ldots d}:\in \mathcal{L}^{:};X_{d_{1}\ldots d_{j}}\not\in R(C.T)$ for all $j=1,2,$ $.,i$}

$D_{i}^{(C)} \equiv\bigcup_{x_{a_{1}\ldots a_{i}\in \mathcal{D}^{(.G)}}}X_{d_{1}\ldots d:}$

,

$B_{i}^{(C)}\equiv\{X_{b_{1}\ldots b:}\in \mathcal{L}^{i};X_{b_{1}\ldots b:-1}\in v_{:-1}^{(G)},x_{b_{1}\ldots b}:\in R(C.T)\}$ ,

aeld
$B_{i}^{(C)} \equiv\bigcup_{bX_{b_{1\cdots:}}\in d_{:}^{G)}}X_{b_{1}\ldots b}:$

.

In particular, for $i=0$ we define $D_{0}=X$ . We sometime write $\psi_{a}$ for $(T|_{X_{*}})^{-1}$ and
$\psi_{a_{1}\ldots a}$. for $(T^{n}|_{X_{a_{1}\ldots*}}.)^{-1}$ .

Theorem 2.1 Let $T$ : $Xarrow X$ have a $FRS$ and satisfy the local Renyi $\omega ndition$

, and let $Q=\{X_{a}\}_{a\in I}$ satish the generator condition, $i.e_{r}_{m=0}^{\infty}T^{-m}Q=\epsilon(\epsilon$ is
the partition into points). Assume that the local Renyi constant $C(>1)$ satisfies the
following:

1. (transitivity condition) for all $j\in\{0,1, .., N\}$ , there exists a cylinder $X_{a_{1}\ldots a_{j}}.\in$

$R(C.T)$ such that $X_{a_{1}\ldots a_{j}}.\subset U_{j}$ and $T^{j}X_{a_{1}\ldots a_{j}}.=X$ ,

2. $\Sigma_{n=0}^{\infty}\lambda(D_{n}^{(C)})<\infty$ , where $\lambda$ is the normalized Lebesgue measure.

Then there exists a finite , ergodic invariant measure $\mu$ which is equivalent to $\lambda$ , and
with respect to $\mu T$ is exact.

(cf $[4],[20]$ ).

Remark B If we replace the condition 2 by the weaker condition

$narrow\infty hm\lambda(D_{n}^{(C)})=0$

, then we still have an ergodic invariant measure which is equivalent to $\lambda$ . This
measure need not be finite (although it will be $\sigma- finite$ ) $(see[4])$ .

Remark C The finite measure $\mu$ of Theorem 2.1 does not depend on $C$ (in par-
ticular the invariant density of $\mu$ does not depend on C) (cf [24]).
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3 $S$ ingularities of the invarinant density
In this section, we assume that $T$ satisfies all assumptions of Theorem 2.1. We say
a point $x_{0}\in X$ is an indifferent periodic point if there exists a $p>0$ such that
$T^{p}x_{0}=x_{0}$ and $|\det DT^{p}(x_{0})|=1$ . A point $x\in X$ is cffied a singular point of a
measurable function $f$ if $\forall\epsilon>0$ the essential supremum of $|f|$ on $B_{*}(x)$ is infinite,
where $B,(x)$ is a e-neighbourhood of $x$ .
Theorem 3.1 Suppose $x_{0}$ is an indifferent periodic point, and

(M) $x_{0} \not\in(\bigcup_{j=0}^{N}\partial U_{j}\backslash \bigcup_{a\in I}\theta X_{a})$ .

Then $x_{0}$ is a singular point of the invariant density of $\mu$ .

Remark D If $T$ satisfies the Markov property, then $\partial U_{j}\subset\bigcup_{a\in I}\partial X_{a}$ for every $j$

and so the condition (M) is automatically satisfied.

The following results are needed to prove Theorem 3.1.

Proposition 3.1 If $x_{0}$ is an indifferent periodic point, then for the local Renyi
constant $C,$ $x_{0} \in\bigcap_{n=0}^{\infty}D_{*}^{(C)}$ .

Lemma 3.1 If $x_{0}$ is an indifferent periodic point, then $hm_{narrow\infty}C(n, x_{0})=\infty$ .

Lemma 3.2 If $x_{0}$ is any point such that $hm_{narrow\infty}C(n, x_{0})=\infty$, then for the local
Renyi constant $C$ , there exists a number $N_{0}(C)$ such that $T^{n}x_{0} \in\bigcap_{n=0}^{\infty}D_{n}^{(C)}$ for all
$n\geq N_{0}(C)$ . In particular, if $x_{0}$ is a periodic point, then $x_{0} \in\bigcap_{n=0}^{\infty}D_{n}^{(C)}$ .

Let $S$ be the set of $aU$ singular points of the invariant density of $\mu$ , and $P$ be the
set of $aU$ periodic points for $T$ . We remark that a point $x_{0}$ in $P$ with period $p$

satisfies $|\det DT^{p}(x_{0})|\geq 1$ . In fact, the generator condition does not allow the case
that $|\det DT^{p}(x_{0})|<1$ . Now we ask, is the converse of Theorem 3.1 true? Some
examples in the next section show that the answer is no! A singular point of the
invariant density is not necessarily a periodic point (Examples 7,8). A singular point
of the invariant density which is periodic is not necessarily an indifferent periodic
point(Examples 5,6,7,8). In general, it is unclear how to characterize singular points
of the invariant density. For limit points of $R(C.T)$ -cylinders, we can obtain the
following answer:

Theorem 3.2 A limit point $x$ of $R(C.T)$ -cylinders is a singular point of the invari-
ant density of $\mu$ if and only if

$\sum_{n=0}^{\infty}\sum_{X_{1}\ldots a.\in \mathcal{D}}|\det D\psi_{d_{1}\ldots d}.(x)|=\infty$
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For some class of one-dimensional piecewise $C^{2}$-smooth Bernoulli maps, it is possible
to characterize completely the singular points of the invariant density by indifferent
fixed points, that is, Renyi’s condition holds iff there is no indifferent fixed point
(Thaler [18]). However, under $C^{2}$-smoothness, the existence of an indifferent fixed
point leads to art infinite ergodic absolutely continuous invariant measure([17]). On
the other hand, in our setting the invariant measure which we obtain is a finite
measure. In fact, our one-dimensional example in section 4 which satisfies all as-
sumptions of Theorem 2.1 does not have $C^{2}$-smoothness on any neighborhood of an
indifferent fixed point(Examples 3,7). $h$ a1I multi-dimensional examples of the next
section, at a singular point $x_{0}$ of the invariant density the derivative has at least
one eigenvalue of modulus one, and $\sup_{n>0}C(n, x_{0})$ is inffiute. So we can ask, for
example

Question 1 Can a repeUing periodic point (i.e.,all eigenvalues of the derivative have
modulus strictly greater than one) of a piecewise $C^{1}$ map satisfying conditions
of Theorem 2.1 , be a singular point of the invariant density?

The following result is a possible tool for approaching Question 1 when the domain
of $T$ is $one- d\dot{m}$ensiond.

Corollary 3.1 (One dimensional case) Let $T^{p}x_{0}=x_{0},$ $|(T^{p})’(x_{0})|>1$ and as-
sume that there exists $\epsilon>0$ such that $T$ restricted to $a$ e-neighborhood of $x_{0}$ is of
class $C^{2}$ . Then $\sup_{n>0}C(n, x_{0})\equiv C_{0}<\infty$ . If $C_{0}\leq C$ , then conditions of Theorem
3.2 are satisfied , and so

$\sum_{n=0}^{\infty}\sum_{X_{d_{1}\ldots d}.\in \mathcal{D}}.|\det D\psi_{d_{1}\ldots d}.(x_{0})|<\infty$

iff $x_{0}$ is a non-singular point of the invariant density of $\mu$ .

We use Corollary 3.1 for analyze Example 3.

Remark E A possible class of maps satisfying the conditions of Corollary 3.1 are
piecewise expanding maps which have smoothness of the class $1+\alpha$ at the
endpoints. Such behavior occurs for Lorenz-type maps.

Question 2 For a repeUing periodic point, is $\sup,.>0C(n, x_{0})$ finite? (In the case
of direct product of one-dimensional maps,there is a partial answer (Corollary
3.1)).

Question 3 When $P$ consists of repeUing periodic points, can the invariant density
have singular points?
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4 Examples and applications
In this section, we will first show some examples which satisfy the assumptions
of Theorem 3. $1,md$ thus have ergodic fimte invariant measures with unbounded
densities whose singular points are indifferent periodic points. Examples 1, 2, and
4 are number theoretical two-dimensional maps. Example 3 is a one-dimensional
map which does not relate to number theory. This is also one of examples for which
we can verify the condition of Theorem 3.2 to use this result. As we mentioned in
section 3, this example suggests that the appearance of indifferent periodic points
does not necessarily lead to infiniteness of our invariant measure without (piece-wise)
$C^{2}$-smoothness. In the case of two-dimensional map, even if $C^{2}$-smoothness is valid,
$hom$ Example 4 we can say the same fact as in the case of one-dimensional map.
Next we will show some $tw\infty d\dot{m}$ensiond examples which suggest that the singular
points of the invariant densities are not necessarily indifferent periodic points. All
of examples 5,6, and 7 have singularities of invariant densities at periodic points
with period $p$ which are not indifferent, but at these points the derivative of p-th
powers have at least one eigenvalue of modulus one. The last example, 8 shows that
singular points of the invariant density are not necessarily periodic.

Example 1 (A skew product two-dimensional map which is related to
Diophantine approximation in inhomogeneous linear class)

Let $X=\{(x_{1}, x_{2})\in R^{2} : 0\leq x_{2}\leq 1, -x_{2}\leq x_{1}\leq-x_{2}+1\}$ . Define $T$ on $X$ by

$T(x_{1}, x_{2})=(1/x_{1}-[(1-x_{2})/x_{1}]-[-(x_{2}/x_{1})], -[-(x_{2}/x_{1})]-(x_{2}/x_{1}))$ .

The invariant density of the ffiute invariant measure of $T$ is :

$h(x_{1}, x_{2})= \frac{1}{2\log 2(1-x_{1^{2}})}$

([5]), so the singular points of the density $h(x_{1}, x_{2})$ are $(1, 0)$ and $(-1,1)$ . These
points are periodic points with period 2 and are indifferent.

Remark $Fh$ this exanple, the local Renyi constant is unique. In fact, under
the assumptions of Theorem 3.1, the appearance of the indifferent periodic
points gives us to the following condition for the local Renyi constant $C:C\leq$

$\inf${ $C(n,$ $x):n>0,$ $x$ is an indiffrent periodic point}.

Example 2 (A real two-dimensiond map which is related to a complex
continued fraction expansion)

Let $X=\{z=x_{1}\alpha+x_{2}\overline{\alpha} : -(1/2)\leq x_{1}, x_{2}\leq 1/2\}(\alpha=1+i)$ and define $T$ on $X$

by $Tz=1/z-[1/z]_{1}$ , where $[z]_{1}$ denotes $[x_{1}+1/2]\alpha+[x_{2}+1/2]\overline{\alpha}$ for a complex
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number $z=x_{1}\alpha+x_{2}\overline{\alpha}$. Let the index set $I$ be ; $I=\{n\alpha+m\overline{\alpha} : m, n\in Z\}\backslash \{0\}$. $T$

induce a continued haction expansion of $z\in X$ ,

$z= \frac{1}{a_{1}+\frac{1}{a+\ldots*-\underline{1}\overline{+}}}$

,

where each $a$: is contained in $I$ .( Figure (1)). $T$ has indifferent periodic $points\pm 2$ ,
$\pm 2i$ , and the invariant density which was obtained by S.Tariaka([16]) has singularities
at these points and no others.(Figure(2)). He showed by his own method that
finiteness and ergodicity of the invariant measure. On the other hand, $T$ satisfies
all assumptions of Theorem 2.1 and 3.1.Further dynamical properties (for example
weak Bernoulh property) are discussed in [20]. So about this example, we omit
further details.

Example 3 (A one-parameter family of maps on the interval $[0,1]$ )

Let $X=[0,1]$ and for $\alpha$ with $0<\alpha<1$ define

$f_{\alpha}(x)=\{\frac{W}{(1/2)^{1/\alpha}}\frac{/\infty 1}{1-(1/2)^{1/\alpha}}\frac{x}{(1-W)^{l},-1^{+^{\alpha}}}onX=[0,(1/_{1}2_{/})_{\alpha^{1/\alpha}}onX_{1}^{0}=[(1/2),1]^{)}$

In the case of a direct product of one-dimensional maps, if one of the Invariant
densities of the maps gives an infinite invariant measure, the direct product has
an infinite invariant measure, too. The next example is defined by using a one-
dimensional map with an infinite invariant measure, but the map itself has a finite
invariant measure with unbounded density.

Example 4 (Two-dimensional map which is related to Brun’s algorithm, $Bl$

map”)

First, we define a one-dmensional map $T_{1}$ : $[0,1]arrow[0,1]$ by

$T_{1}(x)=\{\frac{1}{x}1\frac{x}{1-W,-}onX_{1}=[0,1/2)onX^{0}=[1/2,1]$

(Figure (3)).
Now,we define Brun’s map $T$ . Let $X=\{(x_{1}, x_{2})\in R^{2}; \leq x_{2}\leq x_{1}\leq 1\}$ , and let

for $i\in\{0,1,2\},X_{i}=\{(x_{1}, x_{2})\in X;x_{i}+x_{1}\geq 1\geq x_{i+1}+x_{1}\}$, where we put $x_{0}=1$

aeld $x_{3}=0$ . $T$ is defined by

$T(x_{1}, x_{2})=\{\begin{array}{l}(T_{1}(x_{1}),arrow x1-W_{1}^{-)}(T_{1}(x_{1}),lx\bigwedge_{1})(_{W}\lrcorner_{1}^{x}T_{1}(x_{1}))\end{array}$
$onX_{2}^{1}onX_{0}onX$
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(Figure(4)). Note that $T(0,0)=(0,0)$ and $|\det DT(0,0)|=1$ , so $(0,0)$ is the indif-
ferent fixed point for $T$ , and $T$ is a piecewise $C^{2}$-map. This map is one of examples of
Markovian MCF algorithm with the weak convergence property (Lagarias [7]), and
Schweiger determined the unique absolutely continuous invariant measure which is
ergodic. This invariant measure is finite and the invariant density $h(x_{1}, x_{2})$ is the
following([12], [13],[14]);

$h(x_{1}, x_{2})= \frac{1}{2x_{1}(1+x_{2})}$

So $(0,0)$ is the only singdar point of $h(x_{1}, x_{2})$ . In fact, $T$ satisfies $g$ assumptions
of Theorem 2.1 and 3.1.

Example 5 (A modiflcation of Brun’s map with a finite partition)

Now we define a modification of Brun’s map such that two pieces of the partition
touch at the fixed point $0$ . The domain $X$ is the same as in Example 4. We devide $X_{0}$

into two pieces $X_{\alpha}=\{(x_{1}, x_{2})\in X_{0};x_{1}\geq 2x_{2}\}$ and $X_{\beta}=\{(x_{1}, x_{2})\in X_{0};x_{1}<2x_{2}\}$,
aeld define $T^{\cdot}$ on the se pieces by

$T^{\cdot}(x_{1}, x_{2})=\{\begin{array}{l}(T_{1}(x_{1}),arrow l1^{2}-W_{1}^{-)}(T_{1}(x_{1}),\frac{2x-x}{1-W_{1}})\end{array}$ $onX_{\beta^{\infty}}onX$

On $X_{1}$ and $X_{2},$ $T^{\cdot}$ is defined as in Example 4. This changing in the definition of
$T^{\cdot}$ ffiows us to have the non-indifferent fixed point $0$ . $h$ fact $|\det DT^{\cdot}(0,0)|=2$ .

We remark that the dynamical properties of $T^{\cdot}$ in which we are interested are not
changed essentialy[21], and still the fixed point $0$ is a singular point of the invariant
density.

Example 6 (A modiflcation of Brun’s map with a countable partition)

Let the domain $X$ be as in Example 4, and let devide $X_{0}$ into countably many
pieces,

$X_{\alpha_{h}}= \{(x_{1}, x_{2})\in X_{0};\frac{2x_{1}}{k+2}\leq x_{2}<\frac{2x_{1}}{k+1}\}(k>0)$ .
On each $X_{\alpha_{k}}$ , define $T(x_{1}, x_{2})=t_{\overline{1}^{\lrcorner}}^{l}-,$ $\frac{k(k+1)ae’/2-ae_{1}}{1-\approx l}$). On $X_{1}$ and $X_{2}$ , the definition
of $T$ are the saene as in Example 4.

Example 7 (A product of one-dimensional maps with a contable parti-
tion)

Let $X=[0,1]^{2}$ , and define $T$ on $X$ by

$T(x_{1}, x_{2})=(T_{1}(x_{1}),T_{2}(x_{2}))$ ,

where
$T_{1}(x_{1})= \frac{x_{1}(2-\sqrt{x_{1}})^{2}}{4(1-\sqrt{x_{1}})^{2}}-[\frac{x_{1}(2-\sqrt{x_{1}})^{2}}{4(1-\sqrt{x_{1}})^{2}}]$
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and $T_{2}(x_{2})=2x_{2}-[2x_{2}]$ . (Here $[x]$ denotes the Gauss part of $x.$ ) $T(O, O)=$
$(0,0),$ $|\det DT(0,0)|=2$ , so $(0,0)$ is a non-indifferent fixed point. First we re-
mark the properties of $T_{1}$ . $T_{1}(0)=0,$ $(T_{1})’(0)=1$ and $T_{1}’’(0)=\infty$. $0$ is an in-
different fixed point of $T^{1}$ , and on any neighbourhood of $0,$ $T_{1}$ is only of class $C^{1}$ ,
not of class $C^{2}$ . $h$ fact $T_{1}$ has a finite invariant measure with a unbounded density
$h(x_{1})=1/\sqrt{x_{1}}$(Thaler $[17]$ ) $.The$ indifferent fixed point $0$ is exactly the singular point
of the invariant density $h(x_{1})$ . Since the invariant measure of $T_{2}$ is the Lebesgue
measure, the invariant density $h(x_{1}, x_{2})$ of $T$ is given by $h(x_{1}, x_{2})=1/\sqrt{x_{1}}$ , and this
gives us a fimite invariant measure. Hence this example shows that a periodic point
which is a singular point of the invariant density is not necessarily indifferent and
singular points of the invariant density are not necessarily periodic.

Example 8 (A product of one-dimensional maps with countably many
cyIinders in $D_{1}$ )

Let $X=[0,1]^{2}$ , and we define a product of the one-dmensional map $f_{\alpha}(0<\alpha<1)$

in Example 3 and the Gauss transformation which is related to the simple continued
haction expansion, that is $T$ is defined by

$T(x_{1}, x_{2})=\{(\frac{W(}{(1/2)^{1/\circ}}\frac{1/\alpha 1^{\frac{1}{l}-}}{1-(1/2)^{1/\alpha}},\frac{1}{W}-l)\frac{x_{1}}{(1-r_{1}),-1^{+^{\alpha}}},l)$ $onX_{(1,l)}^{(0,l)}onX(l\in N)$

where $X_{(0,l)}= \{(x_{1}, x_{2})\in X;0\leq x_{1}<\frac{1}{2^{1/\alpha}}, \frac{1}{l+1}\leq x_{2}\leq\frac{1}{l}\}$ and $X_{(1,l)}=\{(x_{1}, x_{2})\in$

$X;( \frac{1}{2})^{1/\alpha}\leq x_{1}\leq 1,$ $\frac{1}{l+1}\leq x_{2}<\frac{1}{l}$ }.
$T$ has an invariant density $h_{1}(x_{1})h_{2}(x_{2})$ , where $h_{1}(x_{1})$ is the invariant density of

$f_{\alpha}$ and $h(x_{2})$ is the invariant density of the Gauss transformation,(it is well-known
that $h_{2}(x_{2})= \frac{1}{\log 2(1+ae_{2})}.)$ We have already known $hom$ Theorem 3.1 that $h_{1}$ gives a
finite invariant measure and at the indifferent fixed point of $f_{\alpha};0,$ $h_{1}$ is unbounded.On
the other hand, the Gauss transformation satisfies Renyi’s condition,so $h_{2}(x_{2})$ is
bounded $hom$ above and below. As a result, we can obtain a $fi_{I}\dot{u}te$ ergodic invariant
measure whose density is unbounded on $\{0\}\cross[0,1]$ .

5 Rohlin’s entropy formula

When Renyi’s condition is satisfied Rohlin $s$ entropy formula is true ([13]). $h$

our setting, the invariant densty has singular points, however the entropy formula
is still true under some conditions

Theorem 5.1 (Rohlin’s entropy formula) Let $T$ satisfy all assumptions of The-
orem 2. $1.Assume$ further

1. $\log|\det DT()|\in \mathcal{L}^{1}(X, \lambda)$
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2. $\# D_{1}<\infty$

3. there is a constant $K>0$ such that

$\sup_{X_{*}\in l_{1}}(\sum_{n=0}^{\infty}\sum_{X_{d_{1}\ldots d}.\in \mathcal{D}}.\cdot..|\det D\psi_{d_{1}\ldots d}.(x)|)<Kr\in\tau*x^{i_{d_{1}}d_{d}}.\cap X_{*}$

4. there is a number $l>0$ such that $\sup aeC(n, x)=O(n^{l})$ .
Then $h(T)= \int_{X}\log|\det DT(x)|d\mu(x)$ .

Remark $G$

If $\frac{d\mu}{d\lambda}|_{B_{1}}$ is bounded fiom above, then the condition 3 is valid. We can verify the
condition 3 explicitly for our new class of examples (Examples $1,2,3$ ),$so$ we can apply
the theorem for these examples(Cf.[20]).

Lemma 5.1 Under the assumptions 1,2, and 3, we have

$H(Q) \equiv-\sum_{a\in I}\mu(X_{a})\log\mu(X_{a})<\infty$ .

Lemma 5.2 Under the assumptionsl, 2, and 3, we have

$\log|\det DT()|\in \mathcal{L}^{1}(X, \mu)$ .

Lemma 5.3 4 allows us to have

$n arrow\infty 1\dot{m}\frac{1}{n}\log\frac{1}{\lambda(X_{a_{1}\ldots a}.(x))}=\lim_{narrow\infty}\frac{1}{n}\log|\det DT^{n}(x)|$ .

6 Appendix
Let define for $C>1$ ,

$B_{1}^{\langle G)}=$ { $X_{b}\in \mathcal{L}^{1}$ ; $X_{b}\in R(C.T)$ and $X_{b}$ satisfies the local Renyi condition}
$D_{1}=\mathcal{L}^{1}\backslash B_{1}^{(C)}$ .

$B_{2}^{(C)}=\{X_{b_{1}b_{2}}\in \mathcal{L}^{2};X_{b_{1}}\in D_{1}^{(C)}, X_{4}\in B_{1}^{(C)}\}$

$D_{2}^{(C)}=\{X_{d_{1}d}, \in \mathcal{L}^{2};X_{d_{1}}, X_{d_{2}}\in D_{1}^{(C)}\}$,
and inductively define

$B_{n}^{(C)}=\{X_{b_{1}\ldots b}$. $\in \mathcal{L}^{n};X_{b_{1}\ldots b_{*-1}}\in \mathcal{D}_{n-1}^{(C)}, X_{b}$. $\in B_{1}^{(C)}\}$
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$\theta_{n^{C)}}=\{X_{d_{1}\ldots d}$. $\in \mathcal{L}^{n};X_{d_{1}\ldots d:}\in \mathcal{D}_{:}^{(C)}fori=1,2, ..n\}$ .
Notice that

$\mathcal{B}_{n}^{(C)}\subset\{X_{b_{1}\ldots b}$. $\in \mathcal{L}^{n};X_{b_{1}\ldots b_{-1}},\in D_{n-1}^{(C)}, X_{b_{1}\ldots b}$. $\in R(C.T)\}$ .
Under the above new definition of $\mathcal{D}_{n}$ and $B_{n}$ , still we have Theorem 2.1 and Theorem
3.1. Here we show sketch of the proof(see [4]).

Let $T_{R}$ : $\bigcup_{i=1}^{\infty}B_{i}arrow\cup^{\infty_{=1}}B$: be the jump transformation, that is, $T_{R}x=T^{j}x$ for
$x\in B_{i}$ . The index set of the partition with respect to $T_{R}$ is $J= \bigcup_{n=1}^{\infty}\{(a_{1}\ldots a_{n})\in$

$I^{n};X_{a_{1}\ldots a}$. $\in \mathcal{B}_{n}\}$ . So each cylinders with respect to $T_{R}$ have sequences of symbols
in $J,$ $(\alpha_{1}\ldots\alpha_{n}),$ $\alpha_{1}\in J$.

Theorem 6.1 $(cq4 ])$ Let $T$ satisfy all assumptions of Theorem 2.1 under the
new definitions of $D_{n}$ and $\mathcal{B}_{n}$ . Then $T_{R}$ still satisfies all conditions for the existence
of a finite ergodic invariant measure with a bounded density, that is the following
conditions are valid:

1. (generator condition) the partition for $T_{R}$ with the index set $J$ is a generating
partition,

2.
$X$

(transitivity condition) each $U_{j}$ contains a cylinder $X_{\alpha_{1}\ldots\alpha_{j}}$. such that $T_{R^{j}}X_{\alpha_{1}\ldots\alpha_{j}}$.
3. Renyi’s condition.

For 1, we have to show that the $\sigma$-algebra generated by cyIinders with respect to
$T_{R}$ coincides with the one with respect to $T$ . Under the new definition, we have
still $D_{n}=B_{n+1}\cup D_{n+1}$ , and $D_{n}= \bigcup_{k=1}^{\infty}B_{n+k}(mod 0)$ , so it is alnost the same as
in [4] to show that every cylinder with respect to $T$ is a disjoint union of cylinders
with respect to $T_{R}$ . To show this, we used only the “local Renyi condition”. $h$

fact, if $X_{al\cdots a}$. $\in D_{n}$ , we can show inunediately. If $X_{a_{1}\ldots a}$. $\not\in \mathcal{D}_{n}$ , then still there
is a maximal number $k_{0}\in[1, n]$ such that $X_{a_{1}\ldots a_{k}}$ is a cylnder with respect to
$T_{R}$ . If $X_{a_{k_{0}+1}\ldots a}$. $\not\in D_{n-k_{0}}$ , then there is a $l$ with $0<l<n$ such that $X_{a_{t_{0+1}}\ldots a_{l}}\in$

$B_{l-th+1)+1}$ and the local Renyi condition allows us to have $X_{a-1\ldots a_{l}}\in \mathcal{L}_{Tp},$ $i.e.,X_{a_{1}\ldots a_{l}}$

is a cylinder with respect to $T_{R}$ . This contradicts to the maximality of $k_{0}$ . So
$X_{a_{k.+1}\ldots a_{*}}\in D_{\iota-k_{0}}$ . Thus $X_{a_{b_{0}+1}}\ldots a$. $= \bigcup_{k=1}^{\infty}B_{n-4+k}\cap X_{a_{k_{0}+1}\ldots a}$ . and hence $X_{a_{1}\ldots a}$. $=$

$X_{a_{1}\ldots a_{0}}. \cap T^{-k_{1}}(\bigcup_{k=1}^{\infty}B_{n-4+k}\cap X_{a_{h_{1+l}}\ldots a}.)$ . For 2 and 3, it is immediate to show the
ergodicity of $T$ with respect to $\lambda$ , T-invariance of $\mu$ and finiteness of $\mu$ as in [4].
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(Figure Z)
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(Figure 3)
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