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ABSTRACT

We consider mathematically the relation between the efficiency of two-mode searching behavior
and the target’s patchy distribution. Two-mode searching includes patch-searching and target-catching.
Four inmitive models are presented: Model 1 constructed by a Wiener process on $\mathbb{H}^{D1}$ ; Model 2 by a time-
discrete Markov process on $\ovalbox{\tt\small REJECT}^{1}$ , that is, on a circle; Model 3 by a time-discrete stochastic process on $\ovalbox{\tt\small REJECT}^{1}$ .
In Moxlel 3, differently from Model 2, the searcher’s present location is assumed to be influenced by the
past passage configuration. Model 4 is different from the others, applied the fractal concept for the
trajectory pattern made by the target. The optimality of the trajectory pattem against the searcher is
analyzed. These different models give a variety of results depending on the characteristics of each model.
We apply our results to a coevolutionary game between the searcher’s searching behavior and the target’s
distribution. Compared with a simple mode searching, the superiority of two-mode searching is shown to
depend seriously on the target’s distribution.

INTRODuCTION

It is well-known that various species of insects behave in a two-mode way to

search the target (e.g., food, mate, or host) distributed patchily in space. Such a
behavior is frequently called “area-concentrated search”. An insect searches a patch of
targets with a relatively large motion which is adaptable to the spatial scale of patch
distribution; then, after finding the frst target; it reduces its scale of motion to search
another target in a relatively near region. Successively, obeying some criteria, the
searcher re-changes its behavior to search another patch. Such a criterion typically
belongs to one of the following three types: (a) fixed-time strategy, i.e., the searcher
stays for a fixed period of time in each patch encountered; (b) fixed-number strategy,
i.e., the searcher stays until it catches a fixed number of targets in each patch
encountered; (c) fixed-giving up time strategy, i.e., the searcher stays in each patch
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encountered as long as the time interval between a catch and the next catch does not
exceed a fixed value. A variety of mathematical models have contributed to the
understanding of such a behavior within the framework of evolutionary strategy.1), 2), 6),

7), 8), 9), 10)

In this paper, we mathematically demonstrate that a two-mode searching is
possible to become an adaptable strategy of searcher in a coevolutionary game between
the searching behavior and the target’s distribution. The searcher is assumed to behave
always to realize the possible highest mean searching efficiency. If the target
distribution is assumed to be directed to make the efficiency as low as possible, this
coevolutionary game can be called a minimax game between the searcher and the
target.11) If the distribution is assumed to be directed to make the mean efficiency as
high as possible, this game can be regarded cooperative. We call the former type of
target “the counter-behaving target“ and the latter “the cooperative-behaving target“.

We deal with three models: Model 1 constructed by a Wiener process; Model 2
by a time-discrete Markov process; Model 3 by a time-discrete stochastic process.
Model 3 can be regarded as a modification ofModel 2 of the quoted paper. The
searcher’s present location is assumed to be influenced by the past passage
configuration, which is an essentially different assumption from that for Model 2.
Model 4 is different from the others, applied the fractal concept for the trajectory pattem
made by the target. The optimality of the trajectory pattem against the searcher is
analyzed.

MODELLING ASSUMPTIONS

Targer Both patches and targets are respectively assumed to be uniformly, that is,
regularly distributed on the space and in the patch, and all identical to each other. We
set $\Delta S$ the distance between the nearest-neighbor patches and $\Delta L$ between the nearest-
neighbor targets and $l$ the length of patch zone (the possible longest distance between
two targets in a patch). Each patch contains $N$ individuals of target. Thus, it is naturally
assumed that $N\Delta L=l$.

We assume a restriction for the target distribution: The area available for the
target distribution is limited. Thus, the larger is the size of patch, the smaller is the
distance between patches. Moreover, the larger is the size of patch, the larger is the
distance between targets for a fixed number of targets in the patch. In this paper, this
restriction is assumed to be given by:
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$\Delta S+N\Delta L=A$ , (H)

where $A$ can be regarded as a share of space per patch. The target must select its
distribution pattern under this restriction.

We also take account of the target size, say $b$ . The existence of a non-zero target

size excludes that the patch size can be zero. That is, when we discuss the effect of the
target size, the size will be seen to play a role in restricting the target’s selection of $\Delta L$:
More precisely $b\leq\Delta L$. The size $b$ may be regarded as a minimal necessary share of

space per target, too.

Searcher. In our model, the searcher’s searching consists of two processes: patch-
searching process and target-catching process. The switching rule between two

processes is as follows: The patch-searching process is terminated when the searcher
encounters a certain point or enters a certain region of the given space. It is regarded as
the moment when the searcher finds a patch and catches a target. On the other hand, the
target-catching process continues from this moment until the searcher’s gain satisfies a
given criterion in this process.

The searching efficiency $E$ is defined as follows:

$E \equiv\frac{M}{T_{1}+T_{2}}$

where $T_{1}$ denotes the time taken in the patch-searching process, $T_{2}$ the time taken in the
target-catching process for catching $M$ targets. A higher efficiency means a better
searching behavior for the searcher. We investigate the optimal stIategy to realize the
highest efficiency for a fixed patch’s quality (distances between nearest-neighbor
patches and between nearest-neighbor targets).
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$\ovalbox{\tt\small REJECT}:_{T^{2}=t_{1}^{\iota}+t_{2}^{2}+1_{3}}I_{:}^{0}\exists_{1^{T_{2}=0_{1}}}^{:_{T=1+t}}!^{:}\dot{i:::::}T_{2^{1}}=tT_{2}$

$\overline{\Phi^{o}\ \Theta E}$

Fig. 1. Scheme of Model 1. For explanation, see the text.

MODEL 1

Model 1 is considered on a one-dimensional space $H^{D1}$ (Fig. 1). In each of two
processes, the searcher is assumed to be a point moving continuously on $\mathbb{H}^{D1}$ as a Wiener
process, that is as a Brownian motion. Moreover, we assume that there is no drift,

which means that the searcher moves completely at random without any biased
direction. As shown in Fig. 1, the patch-searching process is terminated when the
searcher encounters a point on $\mathbb{H}^{D1}$ . On the same moment, the searcher finds a $ta^{r}get$

within a patch. On the other hand, the target-catching process continues from this
moment until the searcher catches targets whose number is given as a searcher’s
strategy, say $M$. This assumption means that the searcher takes a “fixed-number“
strategy. The searcher’s strategy is identified with the number $M$ of caught targets. And
the searcher is assumed to take always the optimal value $M=M^{*}$ for any fixed $\Delta S$ and
$\Delta L$.

Patch-Searching Process: For this process, we assume the Wiener process with
infinitesimal variance $\sigma_{1^{2}}$ . The searcher is assumed to begin its search at the origin on
$R^{D1}$ (Fig. 1). Two points are set at $x=-S$ and $x=S$ as nearest-neighbor two patches.
Thus, $\Delta S=2S$. Supposed that the starting point is uniformly distributed (this is a natural
assumption and the searcher does not know the position of the patches at all), the mean
starting point is located at the center between the two patches.
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The moment generating function (m.g. $f.$ ) of $T_{1}$ is given by that of the first-
passage-time with symmetric absorbing boundaries (L. M. Ricciardi, private
communication), from which we can obtain the mean time $\langle T_{1}\rangle^{9)}$ ;

$q_{1} \}=(\frac{\Delta S}{2\sigma_{1}})^{2}$. (1.1)

Target-Catching Process: The searcher is assumed to catch one target at $T_{2}=0$ , that is,

at the moment when the searcher begins the target-catching process. The searcher
searches the next neighbor target by the Wiener process with an infinitesimal variance
$\sigma_{2^{2}}$ which is less than $\sigma_{1^{2}}$ . The caught target is assumed to be removed. Thus, after
repeatedly targets are caught, there will be a wide region with no target (see Fig. 1).

Since the searcher undergoes the Wiener process in this region, the mean period
$\langle t_{j}\rangle$ for catching the $(j+1)$ -th target after thej-th is shorter than $\langle t_{j+1}\rangle$ for catching the
$(i^{+} 2)$ -th after the $(j+1)- th$. The m.g. $f$. of period $t_{j}$ for catching the $(j+1)$ -th target
after the j-th one is given by that of the first-passage-time with absorbing boundaries at
$x=\Delta L$ and $x=j\Delta L$ (L. M. Ricciardi, private communication), which gives the mean
time $\langle t_{j}\rangle^{9)}$;

$p_{J}\}=j(\frac{\Delta L}{\sigma_{2}})^{2}$ . (1.2)

Then, we can find the mean time $\langle T_{2}\rangle$ to catch $M$ targets:

$q_{2} \}=\{\sum_{j=1}^{M-1}t_{j}\}=\sum_{j=1}^{M-1}\{t_{j}\}=\frac{1}{2}(\frac{\Delta L}{\sigma_{2}})^{2}M(M-1)$

. (1.3)

Efficiency: Making use of the above results, we can find the mean efficiency:

$\omega_{M}=\frac{M}{q_{1}\}+(T_{2}\}}=\frac{M}{\frac,41(\frac{\Delta S}{\sigma_{1}})^{2}+\frac{1}{2}(\frac{\Delta L}{\sigma_{2}})^{2}M(M-1)}$

. (1.4)

Analysis: Calculating $\alpha E\rangle_{A}/\partial M$, we find that there is a unique $M^{*}$, which maximizes the
mean efficiency:
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$M^{*}= \frac{1}{q}\frac{\Delta S}{\Delta L}\frac{\sigma_{2}}{\sigma_{1}}$

. (1.5)

When $M=M^{*}$, the efficiency becomes

$\Theta M^{*}=a\}\frac{\Delta L}{\sigma_{2}}(\frac{\Delta S}{\sigma_{1}}-\frac{1\Delta L}{a\sigma_{2}})_{1}^{1^{-1}}$

. (1.6)

Seno (1991) analyzed (1.6) and showed the followings $9)_{;}$ The counter-behaving target,
which tends to reduce the searching efficiency, always adopts a patchy distribution at

the coevolutionary goal. In case of the cooperative-behaving target, which tends to
increase the searching efficiency, a targets’ uniform distribution is very likely to be
adopted versus a simple mode searching behavior of searcher. Searcher’s two-mode
searching behavior is always adopted against the counter-behaving target, while it is
adaptable against the cooperative-behaving target only when the target size and the
patch size are sufficiently small and the target density is sufficiently high in the patch.
Sufficiently large target size leads the searcher’s behavior to a simple mode searching.

MODEL 2

Model 2 is considered on $\ovalbox{\tt\small REJECT}^{1}$ , that is, on a circle (Fig. 2). We assume that the

searcher cannot distinguish the visited patch from the unvisited one. Moreover, as the
found target is not assumed to be removed in Model 2, it is assumed that the searcher
cannot distinguish the found target from the encountered one. Thus, the modelling
spaoe $\ovalbox{\tt\small REJECT}^{1}$ for Model 2 can be regarded as a mathematical translation of the spaoe $\mathbb{H}^{D1}$

where patches are uniformly distributed. In each of two processes, following a discrete
time, the searcher discretely changes its site on $\ovalbox{\tt\small REJECT}^{1}$ at each step. The searcher’s site is
selected at each step on $\ovalbox{\tt\small REJECT}^{1}$ at random independently of the previous site. The searcher
is assumed to take a “fixed-giving up time (i.e., number of steps)“ strategy.
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mn@m\Leftrightarrow er[iloN@

Fig. 2. Scheme of Model 2. For explanation, see the text.

Patch-Searching Process: We consider this process on a circle of length $A$. On this
spaoe, there is a connected region (an arc) of length $l(<A)$ , which represents the zone of
patch. This situation corresponds to that when the patch (segment) of length $l$ is
uniformly distributed on $\mathbb{H}^{o1}$ with distanoe $\Delta S=A-l$ between the nearest-neighbor
patches. Note that, as in the case of Model 1, $A$ can be regarded as a share of spaoe per
a patch. We use the following notations for Model 2:

$P_{1}^{in}$ : probability of the searcher’s entlance by one step into the patch. From
the assumption for the process, we easily find $P_{1}^{in}=(l/A)(bNP)$

\langle $n_{1}\succ$ ; expected number of steps for the searcher to enter the patch,

where $b$ can be regarded as the target size or the necessary space share per target as in
Model 1, while it can be regarded as the searcher’s searching capacity. With these
notations, the following is easily found:

{$n_{1}$) $= \sum_{k=1}k\cdot P_{1}^{in}(1-P_{1}^{in}f^{-1}=\frac{1}{P_{1}^{i\mathfrak{n}}}$

. (2.1)
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Target-Catching Process: We use the following notations:

$P_{2}^{in}$ : probability of the searcher’s catching the target in one step. From
the assumption for the process, this probability is given by $P_{2}^{in}=$

$b/\Delta L=bN/l$ .

$P_{2,k}^{in}$ : probability of the searcher’s catching the next target by $k$ steps
after catching a target

$P_{2,cI}^{in}$ probability that after catching a target the searcher’s catches the
next target by a number of steps less than or equal to $n_{c}$

$\langle n_{2}\rangle$ : expected total number of steps in the target-catching process
before the searcher gives it up

$\langle M\rangle$ ; expected number of targets caught in the target-catching prooess
before the searcher gives it up.

With these notations, the followings are found:

$\{M\}=\sum_{k=1}k\cdot(P_{2,c}^{in})^{k-1}\cdot(1-P_{2,c}^{in})=\frac{1}{1-P_{2,c}^{in}}$

. (2.2)

$\{n_{2})=\sum_{M=1}^{\infty}\sum_{k_{j}=1}^{n_{c}}(k_{1}+k_{2}+\cdots+k_{M-1}+nd(\prod_{j=1}^{M-1}P_{2,k_{j}}^{in}\int 1-P_{2,c}^{in})$

(2.3)

$= \frac{1}{P_{2}^{in}}\frac{1}{(1-P_{2}^{in})^{n_{c}}}+n_{c}$

.

Efficiency: With the above results, the efficiency is given by

$\emptyset_{tn_{1})}^{\ovalbox{\tt\small REJECT}_{+\phi_{2}\}^{=}}}=(\frac{1}{P_{1}^{in}}+n_{c}l^{1-p_{2}^{in}\gamma+}c\frac{1}{P_{2}^{in}}J^{-1}$

. (24)
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Analysis: Remark that it is beneficial for the searcher to take a simple mode searching,
only when the efficiency with a simple mode searching (i.e., $n_{c}=0$) is larger than that
with the two-mode searching for $n_{c}\geq 1$ . Since the simple mode searching of this model
is a simple Bernoulli process, the efficiency is easily obtained as follows:

$\otimes\iota_{imple}=\frac{bN}{A}=P_{1}^{in}$ . (2.5)

The condition $\otimes|_{n_{c}=n_{c}}<\not\in’$)$|_{simple}$ can be obtained from (2.4) and (2.5):

$\frac{1-(1-P_{2}^{in}1\gamma c}{n_{c}(1-P_{2}^{in})+/P_{2}^{in}}<P_{1}^{in}$

. (2.6)

Consequently from the analysis on (2.6), Seno (1991) shows that the coevolutionary
goal consists of a simple mode searching behavior and the counter-behaving targets’
uniform distribution, or of a two-mode searching behavior and the cooperative-
behaving targets’ patchy distribution.9) With some additional conditions, Seno (1991)

consider such possibility that a two-mode searching may be selected by the searcher at
the consequent situation in the coevolutionary game against the counter-behaving
target, too.9)

MODEL 3

This is the model modified from Model 2 (Fig. 3). Differently from Model 2,
the distance between a site and the following site is assumed to be an exponential
random variable. The direction of each step is selected at random, that is, with the

probability 1/2 the searcher jumps to the next site in the clockwise or in the anti
clockwise direction.

Patch-Searching Process: At frst, we must select the initial $sitex_{0}$ of the searcher out

of the patch. It is assumed that the initial site is uniformly distributed out of the patch.

The next searcher’s step is subjected to the exponential distribution with expected value
$\lambda_{1}$ , that is, with probability density function given by:
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Fig. 3. Scheme of Model 3. For explanation, see the text.

$f_{1}( \Delta \mathfrak{r})=\frac{1}{\lambda_{1}}ex+\frac{\Delta\kappa}{\lambda_{1}})$. (3.1)

For the patch-searching process, we use the following notations:

$x\in S_{1}\equiv[0, A]mod A$

I: zone of patch, $S_{1}\supset I\equiv(A-l, A)mod A$

$G$: zone out of patch, $S_{1}\supset G=S_{1}-I\equiv[0,$ $A-lImod A$

$P_{x}(\eta)$ : probability of the searcher’ $s$ entranoe by $n$ steps into the patch
from the initial point $x_{0}$ out of the patch with a configuration $x\equiv$

$(\eta, x_{1}, \ldots,x_{n-1})$ in $G$ , independently of the point reached in the

patch

$\langle n_{1}\rangle$ ; $\exp\infty ted$ number of steps for the searcher to enter firstly the

patch, averaged with respect to the initial point and the
configuration of searching.

With these notations, through the relation (3.2), Seno and Buonocore (1991) obtains 10)
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$\prec n_{1}>=\sum_{n=1}^{+\infty}\int_{G^{dx_{0}}}\int_{G^{d\mathfrak{r}_{1}}}\int_{c^{dx_{2}}}\cdot\cdot\int c^{dx_{n-1}n\cdot P_{x}(\eta)}$ . (3.2)

$P_{x}^{n}( \eta)=(\frac{1}{2\text{\‘{A}}_{1}})^{n-1}\}s\infty h(\frac{A}{2\lambda_{1}})\{n\sinh\{\frac{l}{2\lambda_{1}})co\mathbb{A}(\frac{2x_{n-1}-A+l}{2\text{\‘{A}}_{1}})\prod_{k=0}^{n-2}\infty\Phi(\frac{A-2|x_{k}-x_{k+1}|}{2\text{\‘{A}}_{1}})$.

(3.3)

Target-Catching Process: The searcher’s initial site in the target-catching process is the

center of target’s region which has length $2b$ (see Fig. 3). Now we regard the center
point of target’s region as the origin on $\ovalbox{\tt\small REJECT}^{1}$ . Further, after catching a target, the searcher

is assumed to begin always its next target-catching process from the center of target’s

region. The searcher’s step is subjected to the exponential distribution with expected
value $\lambda_{2}$ , that is, with probability density function:

$f_{2}( \Delta \mathfrak{r})=\frac{1}{\lambda_{2}}ex\phi-\frac{\Delta\kappa}{\lambda_{2}})$. (3.4)

The searcher is assumed to take a fixed-giving up step strategy. In nature, the searcher

may stochastically go out of the patch, and the smaller the patch size is, the larger such

probability must be.
Below we list up the notations for the target-catching process:

$z\in s_{1}\equiv[0, \Delta L]mod \Delta L$

$i$: target’s region, $s_{1}\supset i=i_{1}\cup i_{2}\equiv[0, b$) $\cup(\Delta L-b, \Delta L)mod \Delta L$

$g$ : region out of target, $s_{1}\supset g=s_{1}-i\equiv[b, \Delta L-b]mod \Delta L$

$n_{c}$ : fixed-giving up step, i.e., the behavior-switching step number in

the target-catching process

$\mu_{z}$ ; probability of the searcher’s catching the target by $n$ steps with a
configuration $z\equiv(\triangleleft)’ z_{1},$

$\ldots,$ $z_{n-1}$) in $g$

$F_{\langle z\rangle}$ : probability of the searcher’s catching a target by less than $n_{c}$

steps, averaged with respect to the configuration of searching
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\langle $n_{2}\leq n_{c^{\rangle}}$ : expected number of steps for the searcher to catch another target

after catching one, averaged with respect to the configuration of
searching, conditional on the number of steps being equal to or
less than the fixed-giving up step number $n_{c}$

$\langle n_{2}\rangle$ : $\exp\infty ted$ total number of steps in the target-catching process
before the searcher gives it up

$\langle M\rangle$ ; expected number of targets caught in the target-catching process
before the searcher gives it up.

With these notations, the following relations are found $10)_{;}$

$\langle M\rangle=\frac{1}{1-P^{c_{\emptyset}}}$
(3.5)

$\langle n_{2}\rangle=\{\langle M\rangle-1\}\langle n_{2}\leq n_{c^{\rangle}}+n_{c}$ . (3.6)

$P_{z}^{n}=2( \frac{1}{2\lambda_{2}})^{n}\{\varpi h(\frac{d}{2\lambda_{2}})\}^{n_{\dot{\Re}11h}}(\frac{r}{\lambda_{2}})\cosh(\frac{d-2z_{1}}{2\lambda_{2}})coffi(\frac{d-2_{k- 1}}{2\lambda_{2}})\prod_{k=1}^{n-2}\cosh(\frac{d-2|_{4+1}-*\}}{2\lambda_{2}})$.

(3.7)

Efficiency: With the above results, the mean efficiency is given by

(3.8)

Analysis: Made use of tiresome numerical calculations, the results obtained by Seno and
Buonocore (1991) 10) are the followings: If there is no constraint on the distribution, the
counter-behaving target takes $\iota*(<A)$ as its patch size at the goal of coevolutionary
game with the searcher’s searching behavior, while the cooperative-behaving target
takes a dense patchy distribution (every nearest-neighbor targets touch each other in
each patch) or a uniform distribution. If there is a constraint for the patch size $l:h_{in}\leq l$

$\leq\iota_{nax}$, and $l_{\min}\leq l^{*}<l_{\max}$, then the counter-behaving target can t&e $\iota*$ as its patch size
at the goal of coevolutionary game, while the cooperative-behaving target takes $l_{\min}$ or
$l_{\max}$ at the goal. However, especially in case of the counter-behaving target, if $l^{*}<l_{\min}$,
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the coevolutionary game leads the patch size to $l_{\min}$. If $l_{\max}<l^{*}$, the game leads the
patch size to $l_{\max}$. In this case, a simple model searching can become a coevolutionary
goal for the searcher against the counter-behaving target.

MODEL 4

Model 4 considers a $sp\infty ific$ situation, differently from three models presented
above. Only one target is considered, which makes a trajectory in the 2-dimensional
space for the searching process (Fig. 4). The trajectory corresponds to the patch
considered for the other models. The searcher’s patch-searching process is assumed to
encounter the trajectory. After the encounter, by tracing the trajectory the searcher is
assumed to search the target. This $COlTesponds$ to the target-catching process. This type
of searching behavior is observed for the predator against some leaf-miner.3), 4)

The target’s trajectory is assumed to expand the diameter $l$, which is defined as
the minimal diameter of the disc that can cover the whole trajectory. The total length of
the trajectory is assumed to be $J$.

The expected time $T_{1}$ for the searcher to encounter the trajectory in the patch-
searching process is assumed to be inversely proportional to the area expanded by the
trajectory, 1 2. On the other hand, the $\exp\infty ted$ time $T_{2}$ for the searcher to fmd the target
in the target-catching process is assumed to be proportional to the total length of the
trajectory, $J$. The above argument gives the probability for the searcher to catch the
target per unit time:

$p \propto l^{2_{+}}\frac{Y}{J}$
ヲ (4.1)

where $Y$ is a positive constant. The expected searching efficiency is corresponding to
$1/p$.

We consider the approximation for the target’s fractal trajectory by a number of
line segments with the length $w$. Then, the required number $m$ of segments is
approximatedly given by $J\wedge v$.

Following Katz and George (1985) 5)

$l\propto m^{(1-DyD}\cdot J$ $(1\leq D\leq 2)$ , (4.2)
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Fig. 4. Scheme of Model 4. For detail explanation, see the text.

where $D$ is the fractal dimension to characterize the spatial pattern of the trajectory.
Assume that the segment length $w$ is characterized by the mechanism for the target to
make the trajectory. Thus, $w$ is assumed to be determined, for example, by the relation
between the physiology of target organism and the structure of spaoe. In this sense, the
trajectory constructed by a number of line segments with the length $w$ can realize the
essential nature of the trajectory. Now, made use of the relations (4.1) and (4.2), the
catching probability $p$ is expressed as

$p= \alpha J^{2}m^{2(1-Dy_{D}+}\frac{\beta}{J}$ , (4.3)

where $\alpha$ and $\beta$ are positive constants. Analyzed $\partial p/\partial J,p$ takes the minimal value when
$J=P$ :

$J^{*}=( \frac{\beta}{2\alpha})^{1\mathcal{B}}m^{2(D-1p_{D}}$ . (4.4)
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This $J^{*}$ can be regarded as the optimal strategy for the target to reduoe the searching
efficiency as low as possible. If $m$ can be considered as the time length for the target to
make the trajectory, the existenoe of the optimum $i^{*}$ means that the optimal time length
to make the trajectory exists. In case of the prey-predator relation, the length may be
deternined with some additional conditions for the prey’s survival or reproduction.
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