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In this note, The author would like to propose the following problem (prob-
lem 1) which seems to be open apparently.

PROBLEM 1. Let $f$ : $(\mathbb{C}^{n}, 0)arrow(\mathbb{C}, 0)$ be a holomorphic function germ $1z$aving an
isola$ted$ singular point at the origin. Let $\overline{f}$ be $its$ complex conjugation. Then, $is$

there a germ of Aomeomorphism of th$e$ source space $h$ : $(C^{n}, O)arrow(C^{n}, 0)$ such
that $\overline{f}=foh$ ?

Let $f$ : $(\mathbb{C}^{\tau\iota}, 0)arrow(\mathbb{C}, 0)$ be a holomorphic function germ. We say $f$ is of
real coefficient if the identity germ $\overline{f}(z)=f(\overline{z})$ holds.

PROBLEM 2. Let $f$ : $(C^{n}, 0)arrow(C, 0)$ be a holomorphic function germ $\Lambda$ aving
an isolated $singu1$ar poin $t$ at th $e$ origin. Then, is there a germ of one parameter
family $F$ : $(\mathbb{C}^{n}\cross[0,1], 0\cross[0,1])arrow(\mathbb{C}, 0)sucl\iota$ that th $e$ followin$g4pr$operties
hold ?

(I) $F$ depends on the parameter $t\in[0,1]$ continuous\rfloor 娩
(2) $F(t)$ is holomorphic for any $t$ of $[0,1]$ ,
(3) $F( 0)=f$ and $F( 1)$ is of real coe猛 cient,
(4) there exists a germ of $homeom$orphism

$H$ : $(\mathbb{C}^{n}\cross[0,1], 0\cross[0,1])arrow(\mathbb{C}^{n}\cross[0,1], 0\cross[0,1])$

of th $e$ form $H(z, t)=(H_{1}(z, t),t)$ such that $FoH(z,t)=f(z)$ .

We see easily that the problem 1 is affirmative if the problem 2 is affirmative.

Trivially, in the case $n=1$ (one variable) the problem 2 is affirmative. The
author learned from O.Saeki that the problem 2 has been solved affirmatively
in the case $n=2$ (two variables) by S.M.Gusein-Zade ([GZ]). In \S 2, we will
see that the problem 2 is affirmative in the case that the given function germ $f$

has a non-degenerate Newton principal part in the sense of A.G.Kouchnirenko
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([Ko]). Since having a non-degenerate Newton principal part in the sense of
A.G.Kouchnirenko is a generic property, we can say that the problem 2 is affir-
mative for almost all function germs. On the other hand, there are attempts to
find counterexamples of the problem 2 in three variables case $(n=3)$ (see [S]).
However, the problem 2 seems to be $stiU$ open in the case $n\geq 3$ .

In \S 1, the author gives a similar problem as the problem 1 from a knot-
theoretic view point, and also gives an alternative proof of the affirmative solu-
tion of the problem 1 in the case $n=2$ from this view point. The problem 1
also seems to be still open in the case $n\geq 3$ .

\S 1. ALGEBRAIC LINK

Let $f$ : $(\mathbb{C}^{n}, O)arrow(C, 0)$ be a holomorphic function germ having an isolated
singular point at the origin. We take a representative of $f$ (denoted by $f$ again).
That is to say, $f$ is a holomorphic function defined on some neighborhood $U$ of
the origin $0$ in $\mathbb{C}^{n}$ , that $f(O)=0$ , and that

$\{z\in U|\frac{\partial f}{\partial z_{1}(z)}=\cdots=\frac{\partial f}{\partial z_{n}(z)}=0\}=\{0\}$ .

Then, the hypersurface $f^{-1}(0)$ is equal to the origin in the case $n=1$ . For $n\geq 2$ ,
there exists a sufficiently small positive number $\epsilon_{0}$ such that for any $\epsilon$ $(0<$
$\epsilon<\epsilon_{0})$ the hypersurface $f^{-1}(0)$ intersects transversally a small sphere $\epsilon S^{2n-1}$

centered at the origin ( $\epsilon$ is the radius of this sphere). Thus, the intersection
$f^{-1}(0)\cap\epsilon S^{2n-1}$ gives a smooth compact (2n–3)-dimensional manifold $K_{f}$ (as
a general reference on this subject, see [M]).

We are interested in the embedding of $K_{f}$ in $eS^{2n-1}$ , which we call algebraic
link.

REMARK 1.1: lt is well-known that for any holomorphic function germ $f$ :
$(C”, 0)arrow(\mathbb{C}, 0)$ having an isolated singular point at the origin, there exists a
biholomorphic germ $h$ : $(\mathbb{C}", 0)arrow(\mathbb{C}^{n}, 0)$ such that the composition $foh$ is a
polynomial $(c. f. [W])$ . This is the reason why we use the word ‘’algebraic”.

REMARK 1.2: In the case $n=2,$ $K_{f}$ may have several connected components
(for instance, $K_{f}$ has two connected components for $f=z_{1}^{2}+z_{2}^{2}$ ). This is the
reason why we use the word “link”.

REMARK 1.3: It is well-known that $K_{f}$ is $(n-3)$-connected ([M]). Thus, $K_{f}$ is
connected in the case $n\geq 3$ .

REMARK 1.4: $K_{f}$ is orientable.

REMARK 1.5: It is well-known that the mapping $\phi_{f}$ : $\epsilon S^{2n-1}-K_{f}arrow S^{1}$ given
by $\phi_{f}(z)=\frac{f(z)}{||f(z)||}$ is a fibration, which we $caU$ Milnor’s fibration (see [M]).
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REMARK 1.6: It is also well-known that a fiber of the Milnor’s fibration $\phi_{f}^{-1}(\theta)$

of the given function germ $f$ is diffeomorphic to the intersection of the open ball
$\epsilon B^{2n}=$ { $z\in$ C’ : $||z||<\epsilon$} and a smooth hypersurface $f^{-1}(t)$ for sufficiently
small $t\neq 0$ (see [M]). Thus, we can see the topological structure of the given
map germ $f$ : $(\mathbb{C}^{n}, 0)arrow(\mathbb{C}, 0)$ is determined by the Milnor’s fibration of $f$ .

DEFINITION 1: Let $eS^{2n-1}$ be the set $\{z\in \mathbb{C}^{n}|||z||=\epsilon\}$ . We fix one orienta-
tion of $eS^{2n-1}$ . Let $L$ be an oriented submanifold of $eS^{2n-1}$ .
(1) We say $(eS^{2n-1}, L)$ is invertible if there exists an orientation preserving
homeomorphism $h:\epsilon S^{2}"-1arrow\epsilon S^{2n-1}$ such that the following two proper-
ties hold:

(1.1) $h(L)=L$

(1.2) the restriction $h|_{L}$ : $Larrow L$ is orientation reversing.

(2) We say $(\epsilon S^{2n-1}, L)$ is strongly invertible if there exists a one parameter
family $H:eS^{2n-1}\cross[0,1]arrow eS^{2n-1}$ with the following 5 properties:

(2.1) $H$ depends on the parameter $t\in[0,1]$ continuously,
(2.2) $H(t)$ is a homeomorphism for any $t$ of $[0,1]$

(2.3) $H(0)$ is the identity mapping
(2.4) $H(1)=h$ maps $L$ to itself homeomorphically
(2.5) the restriction $h|_{L}$ : $Larrow L$ is orientation reversing.

Of course, the strong invertibleness is a stronger notion than the invert-
ibleness. The following is a similar problem as our problem 1.

PROBLEM 3. Let $f$ : $(\mathbb{C}^{n}, 0)arrow(\mathbb{C}, 0)$ be a holomorphic function germ Aaving
an isolated singular point at the origin. Then, is $(eS^{2-1}, K_{f})$ strongly
inverti$ble$ ?

The author learned the following fact from M. Yamamoto ([Y]). This propo-
sition 1 gives a direct proof for the affirmative solution of problem 1 in the case
$n=2$ .

PROPOSITION 1 (M. YAMAMOTO). in th $e$ case $n=2,$ $e$very algebrai$c$ lin$k$

$(\epsilon S^{3}, K_{f})$ is strongly invertible.

PROOF OF PROPOSITION 1: First, we need one definition.

DEFINITION 2: Let $(S^{3}, K)$ be a classical knot. Take $l$ tubular neighborhoods
$V_{1},$

$\ldots,$
$V_{l}$ of $K$ in $S^{3}$ such that $K\subset V_{1}\subset V_{2}\subset\cdots\subset V_{l}$ and two boundaries

of $V_{i}$ and $V_{i+1}$ are disjoint for each $i$ $(1 \leq i\leq l-1)$ . Let $K_{:}(\subset\partial V_{i})$ be a
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$(p, q)$-cabling of $K$ , where $p$ and $q$ are relatively prime. Let $L$ be the union of
$K_{1},$ $K_{2},$

$\ldots$ , $K_{l}$ . We say $L$ a $(lp, lq)$ cable link of $K$ .
In the case $n=2$ , every algebraic link $(\epsilon S^{3}, K_{f})$ can be constructed in the

following way $(c. f. [P])$ .

Let $(S^{3}, T_{0})$ be a trivial knot. Let $T_{r}=K_{1}\cup\cdots\cup K_{\alpha}$ , where $K_{i}$ be a
connected component of $T$ . Let $L_{i}$ be a $(s, t)$ cable link of $K_{i}$ . We set

$\tau_{+1}=K_{1}\cup\cdots\cup K_{i}\cup\cdots\cup K_{\alpha}\cup L_{i}$ or
$K_{1}\cup\cdots\cup K_{i-1}\cup K_{i+1}\cup\cdots\cup K_{\alpha}\cup L_{*}\cdot$ .

Then, since every torus knot is strongly invertible, by this construction, every
$(S^{3}, T_{r})$ is also strongly invertible for any $r\subset \mathbb{N}$ .

Thus, every algebraic link in the case $n=2$ is strongly invertible. 1
PRO OF THAT PROPOSITION 1 IMPLIES THE AFFIRMATIVE SOLUTION OF THE

PROBLEM 1 IN THE CASE $n=2$ : By proposition 1, there exists a homeomor-
phism $h_{1}$ : $(\epsilon S^{3}, K_{f})arrow(eS^{3}, K_{f})$ such that the mapping $\phi_{f^{-}h_{1}}$ : $\epsilon S^{3}-K_{f}arrow S^{1}$

given by $\phi_{f^{-}h_{1}}(z)=\frac{f^{-}(h_{1}(z))}{||f^{-}(h_{1}(z))||}$ is a fibration. Since for classical fibered link $(S^{3}, L)$

the oriented fibration structure of it is unique up to isotopy ( $c$ . $f$. [R]), we see
there exists a homeomorphism $h_{2}$ : $(\epsilon S^{3}, K_{f})arrow(\epsilon S^{3}, K_{f})$ such that

$\frac{f(z)}{||f(z)||}=\frac{\overline{f}(h_{2}(z))}{||\overline{f}(h_{2}(z))||}$

for any $z$ of $eS^{3}-K_{f}$ .
Thus, we may conclude there exists a germ of homeomorphism $h$ : $(\mathbb{C}^{2},0)arrow$

$(\mathbb{C}^{2},0)$ such that $f=\overline{f}oh$ . I

\S 2 FUNCTION GERMS HAVING NON-DEGENERATE NEWTON PRINCIPAL PARTS

Let $f$ : $(\mathbb{C}^{n}, 0)arrow(\mathbb{C}, 0)$ be a holomorphic function germ. We write
$f(z)= \sum_{\nu_{1}\nu_{2}}a_{\nu}z^{\nu}$ , where $\nu=(\nu_{1}, \ldots,\nu_{n})$ goes through multi-integers $\mathbb{N}^{n}$ and
$z^{\nu}=z_{1}z_{2}$ . . . $z_{n}^{\nu_{n}}$ as usual. Let $\Gamma_{+}(f)$ be the convex hull of $\bigcup_{\nu}(\nu+(\mathbb{R}_{+})^{n})$ ,
where the union is taken for all $\nu$ such that $a_{\nu}\neq 0$ . Let $\Gamma(f)$ be the union of
compact boundaries of $\Gamma_{+}(f)$ . We say $f$ has a non-degenerate Newton principal
part if $f_{\Delta}(z)= \sum_{\nu\in\Delta}a_{\nu}z^{\nu}$ is non-singular on (C’) $=(\mathbb{C}-\{0\})^{n}$ for any $\Delta$ of
$\Gamma(f)$ . $f$ is said to be convenient if the intersection of $\Gamma(f)$ with each coordinate
axis is non-empty. These definitions are due to A. G. Kouchnirenko ([Ko], see
also [O]).

The problem 2 is affirmative for a holomorphic function germ which has a
non-degenerate Newton principal part (proposition 2).
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PROPOSITION 2. Let $f$ : $(\mathbb{C}^{n}, O)arrow(\mathbb{C}, 0)$ be a holomorphi$c$ function germ
with isola$ted$ singular poin $t$ at th $e$ origin. Suppose $f$ has a non-degenera$te$

Newton princip$aJ$ part. Then there exists a germ of one parameter family $F$ :
$(\mathbb{C}^{n}\cross[0,1], 0\cross[0,1])arrow(C, 0)$ such tlat the following 4 properties hold:

(1) $F$ depen$ds$ on the parameter $t\in[0,1]$ continuously,
(2) $F(,t)$ is holomorph$ic$ for any $t$ of $[0,1]$ ,
(3) $F( 0)=f$ and $F( 1)$ is of real coe猛cient,
(4) there exists a germ of homeomorphism

$H$ : $(\mathbb{C}^{n}\cross[0,1], 0\cross[0,1])arrow(C^{n}\cross[0,1], 0\cross[0,1])$

of th $e$ form $H(z, t)=(H_{1}(z,t),t)$ such that $FoH(z,t)=f(z)$ .

PROOF OF PROPOSITION 2: By the geometric characterization of finite deter-
minacy ([W]), we see

LEMMA 1. Let $f$ : $(\mathbb{C}^{n}, 0)arrow(\mathbb{C}, 0)$ be a function germ with isolated singul$ar-$

ities which $h$as a $n$on-degenera$te$ Newton princip$aI$ part. Then, there exists a
biholomorphic $map$ germ $h:(C^{n}, 0)arrow(\mathbb{C}^{n}, 0)$ such that the composition $foh$
is $con$venien $t$ and non-degenera$te$.

We write $f oh=\sum b_{\lambda}z^{\lambda}$ . Let $V_{fh}$ be the set of coefficients of all polynomial$s$

having terms only on $\Gamma(f\circ h)$ . Namely,

$V_{fh}=$ { $\sum c_{\lambda}z^{\lambda}|c_{\lambda}=0$ if and only if $b_{\lambda}=0$ or $\lambda\not\in\Gamma(foh)$ }.

We also set

$U_{fh}=$ { $\sum c_{\lambda}z^{\lambda}\in V_{fh}|$ it has a non-degenerate Newton principal part}.

Then,

LEMMA 2 ([O]). $U_{fh}$ is a non-em$pt_{J^{r}}$ Zariski $op$en subs$et$ of $V_{fh}$ .

Thus, we can choose a germ of one parameter family $F$ : $(C^{n}, 0)arrow(\mathbb{C}, 0)$

such that

(1) $F$ depends on the parameter $t\in[0,1]$ analytically,
(2) $F(t)$ is convenient and has a non-degenerate Newton principal part for
any $t$ of $[0,1]$ ,
(3) $F(, O)=foh$ and $F(, 1)$ is of real coefficient.

This germ of one parameter family $F$ is the desired one because

LEMMA 3 (COMBINING [O] AND [K]). Let $F$ : $(\mathbb{C}^{n}, 0)arrow(\mathbb{C}, 0)$ be a germ of
on $e$ parameter family such that
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(1) $F$ depends on the $p$arameter $t\in[0,1]$ analytically,
(2) $F$ ( , t) is convenient and $\Lambda$as a non-degenera$te$ Newt on principal part for
any $t$ of $[0,1]$ .
Then, there exists a germ $ofh$omeomorphism

$H$ : $(\mathbb{C}^{n}\cross[0,1], 0\cross[0,1])arrow(C^{n}\cross[0,1], 0\cross[0,1])$

of the form $H(z, t)=(H_{1}(z, t),t)$ such that $FoH(z, t)=f(z)$ .

1
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