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SIMPLE STABLE MAPS OF 3-MANIFOLDS
INTO SURFACES

OSAMU SAEKI*

佐伯 修
1. Introduction

Let $M$ be a closed orientable 3-manifold and $N$ a 2-manifold (or a surface)

with $\partial N=\emptyset$ . A $(C^{\infty}-)stable$ map $f$ : $Marrow N$ is said to be simple if $f$ has no

cusp point and if every component of the f-fiber $f^{-1}(a)$ contains at most one

singular point for all $a\in N$ . In this paper, we consider the following problems.

PROBLEM 1.1. Determine the diffeomorphism types of those 3-manifolds which

admit simple stable maps into 2-manifolds.

PROBLEM 1.2. Classify simple stable maps up to right-left equivalence.

Recall that if $f$ : $Marrow N$ is stable, then its singularities consist of three

types: definite fold points, indefinite fold points, and cusp points. Furthermore,

$f^{-1}(a)$ contains at most two singular points for all $a\in N([7,9])$ . In the

terminology of Kushner-Levine-Porto $[7, 9]$ , the simple stable maps are precisely

the stable maps without vertices. This class of stable maps were first studied by

Kobayashi [6].

A stable map $f$ : $Marrow N$ is said to be special generic if it has only definite

fold points as its singularities. Burlet-de Rham [1] have shown that a closed

orientable 3-manifold admits a special generic map into $R^{2}$ if and only if it is

diffeomorphic to the 3-sphere or the connected sum of some copies of $S^{1}\cross S^{2}$ .

Furthermore, by Levine [8], every closed orientable 3-manifold admits a stable

map into $R^{2}$ without cusp points. Since special generic maps are simple, the
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class of simple stable maps is an intermediate class between the class of special

generic maps and that of stable maps without cusp points.

One of the main results of this paper is an answer to Problem 1.1 as follows:

a closed orientable 3-manifold admits a simple stable map into a 2-manifold if
and only if it is a graph manifold. Here, a graph manifold is a 3-manifold built

up of $S^{1}$ -bundles over compact surfaces attached along their torus boundaries.

Note that the class of graph manifolds has been investigated by several authors

[4, 5, 10, 11, 15, 18] and that they can be completely classified by certain

coded finite graphs ([10]). Thus, summarizing the above results, we have the

situation as follows.

Class of stable maps Class of 3-manifolds

{special generic maps} $\{S^{3}, \# S^{1}\cross S^{2}\}$

$\cap$ $\cap$

{simple stable maps} {graph manifolds}
$\cap$ $\cap$

{stable maps without cusp points} {3-manifolds}
$\cap$ I 1

{stable maps} {3-manifolds}

Here we note that the class of graph manifolds is very large; for example, it

contains the Seifert fibered 3-manifolds [16], the link 3-manifolds which arise

around isolated singularities of complex surfaces [10], etc.. Nevertheless, it is

relatively easy to handle.

As to Problem 1.2, we do not know a complete answer yet. Instead, we

define a weaker equivalence relation, called quasi-equivalence, and classify simple

stable maps up to this weakened equivalence. For a simple stable map $f$ :

$Marrow N$ , consider the quotient map $q_{f}$ : $Marrow W_{f}$ which identffies points in $M$
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belonging to the same component of an f-fiber. Then two simple stable maps

are quasi-equivalent if their quotient maps are right-left equivalent in a certain

sense. Our classffication is based on the graph link $L(f)$ associated with every

simple stable map $f$ : $Marrow N$ , where $L(f)$ consists of the singular set of $f$ and

some components of regular f-fibers. Here, a graph link is a link in a 3-manifold

whose exterior is a graph manifold. Since graph links have been classifi$ed[2$ ,
10, 17], we can determine whether two simple stable maps are quasi-equivalent

or not.

In this paper, we will not give precise proofs to the theorems. Readers who

are interested in more details should refer to [12].

The author would like to express his sincere gratitude to Mahito Kobayashi

for suggesting the problem. He is also grateful to Kazuhiro Sakuma for many

helpful discussions.

2. A characterization of 3-manifolds admitting simple stable maps

THEOREM 2.1. For a clos$ed$ orienta$ble$ 3-manifold $M$ , th $e$ following three are

$eq$ uivalexlt.

(1) There exists a stable map $g:Marrow R^{2}$ such that $g|S(g):S(g)arrow R^{2}$ is

a smooth embeddin$g$.

(2) There exists a $s$imple sta$blemapf$ : $Marrow N$ for some 2-manifold $N$ .

(3) $M$ is a graph $m$anifold.

Since a stable map as in (1) is simple, the part (1) obviously implies the

part (2). In order to show that if $M$ admits a simple stable map as in (2),

then $M$ is a graph manifold, we need the notion of the Stein factorization as

follows. For a simple stable map $f$ : $Marrow N$ and $p,$ $p’\in M$ , we define $p\sim p’$ if

$f(p)=f(p’)(=a)$ and $p,p’$ belong to the same connected component of $f^{-1}(a)$ .

We denote by $W_{f}$ the quotient space of $M$ by this equivalence relation and by
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$q_{f}$ : $Marrow W_{f}$ the quotient map. We have a unique map $\overline{f}:W_{f}arrow N$ such that
$f=\overline{f}\circ q_{f}$ . The space $W_{f}$ or the commutative diagram

$M$
$arrow^{f}$

$N$

$q_{f}\backslash$
$\nearrow\overline{f}$

$W_{f}$

is called the Stein factorization of $f$ . It is known that a point $x$ in $W_{f}$ has a

neighborhood as in Figure 1 ([7, 9]).

$x\iota$
$x\in W_{j}-q_{f}(S(f))$

Figure 1

Now we show that if $f$ : $Marrow N$ is a simple stable map, then $M$ is a

graph manifold. Set $R=W_{f}-IntN(\Sigma)$ , where $\Sigma=q_{f}(S(f))$ and $N(\Sigma)$ is
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a regular neighborhood of $\Sigma$ in $W_{f}$ . Since $\overline{f}|R$ : $Rarrow N$ is a local home-

omorphism, it induces a natural smooth structure on $R$ . With this smooth

structure, $q_{f}|q_{j}^{-1}(R)$ : $q_{j}^{-1}(R)arrow R$ is a proper submersion with $S^{1}$ -fibers, and

hence $q_{f}^{-1}(R)$ is the total space of an $S^{1}$ -bundle over the surface $R$ . Further-

more let $N(\Sigma_{0})$ and $N(\Sigma_{1})$ be regular neighborhoods of $\Sigma_{0}$ and $\Sigma_{1}$ respectively,

where $\Sigma_{0}=q_{f}$ ({definite fold points}) and $\Sigma_{1}=q_{j}$ ( $\{indefinite$ fold points}). It

is not difficult to see that $q_{f}^{-1}(N(\Sigma_{0}))$ is diffeomorphic to a disjoint union of

some copies of the solid torus $S^{1}\cross D^{2}$ and that $q_{f}^{-1}(N(\Sigma_{1}))$ is a Seifert fibered

space, which is a graph manifold. Since $M$ is the union of $q_{f}^{-1}(R),$ $q_{f}^{-1}(N(\Sigma_{0}))$

and $q_{f}^{-1}(N(\Sigma_{1}))$ attached along their torus boundaries, $M$ is a graph manifold.

Thus, we have shown that the part (2) implies the part (3) in Theorem 2.1.

COROLLARY 2.2. (1) Let $M$ be a homotopy 3-sphere. If there exists a simple

$stable$ map $f$ : $Marrow N$ for some 2-manifold $N$ , then $M$ is diffeomorphic to the

3-sphere.

(2) Let $M$ be a closed orien table hyperbolic 3-manifold. Then $M$ admits

no simple $stable$ map into a 2-manifold.

Proof. The part (1) follows from the fact that a homotopy 3-sphere is

diffeomorphic to the 3-sphere if it is a graph manifold ([11, 15]). The part (2)

is a consequence of the well-known fact that a hyperbolic 3-manifold is never a

graph manifold. $\square$

In order to show that the part (3) implies the part (1) in Theorem 2.1, we

construct a stable map as in (1) for each graph manifold. Since the proof is long,

we omit it here. For details, see [12].
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3. A classification of simple stable maps

DEFINITION 3.1. Let $f$ : $Marrow N$ and $g$ : $M’arrow N’$ be simple stable maps of

closed orientable 3-manifolds into 2-manifolds. We say that $f$ and $g$ are quasi-

equivalent if there exist a diffeomorphism $\Phi$ : $Marrow M’$ and a homeomorphism

$\varphi$ : $W_{f}arrow W_{g}$ such that the following diagram is commutative:
$\Phi$

$Marrow M’$

$q_{f}\downarrow$ $\downarrow q_{g}$

$W_{f}arrow^{\varphi}W_{g}$ .

REMARK 3.2. We say that a homeomorphism $\varphi$ : $W_{f}arrow W_{g}$ is admissible if it

is a (($diffeomorphism’$ with respect to the (($smooth$ structures” on $W_{f}$ and $W_{g}$

induced by $\overline{f}:W_{f}arrow N$ and $\overline{g}$ : $W_{g}arrow N’$ respectively (a precise definition will

be given in the appendix). We will show in the appendix that a homeomorphism

$\varphi$ as in Definition 3.1 is necessarily admissible.

REMARK 3.3. It is $e$asy to see that if simple stable maps $f$ : $Marrow N$ and $g$ :

$M’arrow N’$ are right-left equivalent, then they are quasi-equivalent. Conversely,

if $f$ and $g$ are quasi-equivalent, then $g=\overline{g}’oq_{f}o\Phi^{-1}$ , where $\Phi$ : $Marrow M’$ is the

diffeomorphism as in Definition 3.1 and $\overline{g}’$ : $W_{j}arrow N’$ is an $(\langle immersion’$ .

For special generic maps, we have the following.

THEOREM 3.4. (Burlet-de Rham [1]) Let $f$ : $Marrow R^{2}$ and $g$ : $M’arrow R^{2}$ be

speci$al$ generic $maps$ of closed orientable 3-manifolds into the plane. Then $f$ and

$g$ are quasi-equivalent if and only if $b_{1}(M)=b_{1}(M’)$ and $\# S(f)=\# S(g)$ , where

$b_{1}(M)$ (resp. $b_{1}(M’)$) is the first betti $n$ umber $ofM$ (resp. $M’$) and $\# S(f)$ (resp.

$\# S(g))$ is the number of the connected componen $ts$ of $S(f)$ (resp. $S(g)$ ).

Theorem 3.4 is based on the fact that there are very few special generic

maps. For simple stable maps, the situation is much more complicated.
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Let $f$ : $Marrow N$ be a simple stable map of a closed orientable 3-manifold

into an orientable surface. We define the associated link $L(f)$ of $f$ in $M$ as

follows. Set $W_{f}-q_{f}(S(f))= \bigcup_{i=1}^{s}R_{i}$ , where $R$; are the components. Note that

each $R_{i}$ is a (smooth) surface. If $R_{i}$ is homeomorphic to $IntD^{2}$ , take distinct

two points $x_{i}$ and $y_{i}$ in $R_{i}$ . If $R$; is not homeomorphic to Int $D^{2}$ , take a point $x_{i}$

in $R_{i}$ . Define

$\tilde{S}_{\infty}(f)=(\bigcup_{i=1}^{s}q_{f}^{-1}(x_{i}))\cup(\bigcup_{R_{i}\approx IntD^{2}}q_{f}^{-1}(y_{i}))$ ,

and
$L(f)=S(f)\cup\tilde{S}_{\infty}(f)$ .

We call $L(f)$ the link associated with $f$ . Note that $S(f)$ is a closed l-dimensional

submanifold of $M$ and that $e$ach $q_{f}^{-1}(x_{i})$ or $q_{f}^{-1}(y_{i})$ is diffeomorphic to the circle.

Thus $L(f)$ is a link in $M$ . Note also that the isotopy class of $L(f)$ does not

depend on the choice of the points $x_{i}$ and $y_{i}$ .

We define an equivalence between associated links as follows. Let $f$ : $Marrow$

$N$ and $g$ : $M’arrow N’$ be simple stable maps of closed orientable 3-manifolds into

orientable surfaces. We orient $M,$ $N,$ $M’$ and $N’$ arbitrarily. Then each regular

fiber of $q_{f}$ and $q_{g}$ inherits a natural orientation. We say that $L(f)$ and $L(g)$ are

equivalent if there exists a diffeomorphism $\Phi$ : $Marrow M’$ such that

$\Phi$ ({definite fold points of $f\}$ ) $=$ {definite fold points of $g$ },

$\Phi$ ({indefinite fold points of $f\}$ ) $=$ {indefinite fold points of $g$ },

$\Phi(\tilde{S}_{\infty}(f))=\tilde{S}_{\infty}(g)$ ,

and that $\Phi$ preserves the orientations of the components of $\tilde{S}_{\infty}(f)$ and $\tilde{S}_{\infty}(g)$

simultaneously or reverses the orientations simultaneously. Note that this does

not depend on the choice of the orientations of $M,$ $N,$ $M’$ and $N’$ .

THEOREM 3.5. Let $f$ : $Marrow N$ be a simple sta$ble$ map of a closed orientable

3-manifold into an orienta$ble$ surface. Then the quasi-equivalence $cl$ass of $f$
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determines and is determined by the $eq$uivalence class of the associated link

$L(f)$ .

REMARK 3.6. By an argument similar to that in \S 2, we see that $L(f)$ is a graph

link; i.e., $M$ –Int$N(L(f))$ is a graph manifold. Furthermore, as in the case of

graph manifolds, graph links have been classified by certain coded finit $e$ graphs

([2, 10, 17]).

For the proof of Theorem 3.5, we use the torus decomposition theorem of

Jaco-Shalen-Johannson $[4, 5]$ , which states that a set of disjointedly embedded

tori in a 3-manifold is uniquely determined up to isotopy if it satisfies certain

good conditions. Our idea is to show that the set of the tori associated with the

canonical decomposition of a quotient space as in \S 2 satisfies the good conditions.

For this reason, we need two regular fibers over each component $R_{i}$ of $W_{f}-$

$q_{j}(S(f))$ which is homeomorphic to $IntD^{2}$ . In fact, Theorem 3.5 does not hold

if we take only one regular fiber for each $R$; (see Remark 5.13 (3) of [12]). For

details of the proof of Theorem 3.5, see [12].



41

Appendix

In this appendix, we prove some important facts about smooth structures

on quotient spaces in Stein factorizations.

DEFINITION A. Let $f$ : $Marrow N$ be a simple stable map of a closed orientable

3-manifold into a 2-manifold and let $C$ be a component of $q_{f}(\{indefinite$ fold

points}) $(\subset W_{f})$ . Note that the regular neighborhood $N(C)$ of $C$ in $W_{f}$ is

homeomorphic to $Y\cross S^{1}$ or $Y\cross\tau S^{1}$ ([9]), where $Y=\{re^{i\theta}\in C;r\leq 1,$ $\theta=$

$0,$ $\pm 2r\ulcorner/3$ } $,$

$\tau$ : $Yarrow Y$ is the complex conjugation restricted to $Y(\subset C)$ and $Y\cross\tau$

$S^{1}=Y\cross[0,1]/(y, 1)\sim(\tau(y), 0)$ . We define $\sigma(C)$ to be the subspace of $N(C)$

which corresponds to $\{re^{i\theta}\in Y;\theta=0\}\cross S^{1}$ by the above homeomorphisms and

call it the stem of $C$ .

DEFINITION B. Let $f$ : $Marrow N$ and $g$ : $M’arrow N’$ be simple stable maps of

closed orientable 3-manifolds into 2-manifolds. Set $\Sigma_{0}(W_{f})=q_{f}(\{definite$ fold

points}), $\Sigma_{1}(W_{f})=q_{f}$ ( $\{indefinite$ fold points}) and $\Sigma(W_{f})=\Sigma_{0}(W_{f})\cup\Sigma_{1}(W_{f})$

$(=q_{f}(S(f)))$ . A homeomorphism $\varphi$ : $W_{j}arrow W_{g}$ is admissible if, for all $x\in W_{f}$ ,

there exists an open neighborhood $U$ of $x$ in $W_{f}$ such that

(1) if $x\in W_{f}-\Sigma(W_{f})$ , then $U\subset W_{f}-\Sigma(W_{f}),\overline{f}|U$ and $\overline{g}|V(V=$

$\varphi(U))$ are homeomorphisms onto open subsets of $N$ and $N’$ respectively, and

the composition
$\overline{f}(U)arrow Uf^{--1}arrow^{\varphi}Varrow^{g\overline}g\neg(V)$

is a diffeomorphism,

(2) if $x\in\Sigma_{0}(W_{f})$ , then $U\subset W_{f}-\Sigma_{1}(W_{f}),\overline{f}|U$ and $\overline{g}|V$ are homeomor-

phisms onto subsets in $N$ and $N’$ respectively diffeomorphic to $R_{+}^{2}=\{(x_{1}, x_{2})\in$

$R^{2}$ ; $x_{1}\geq 0$ }, and the composition

$\overline{f}(U)arrow Uf^{--1}arrow^{\varphi}Varrow^{g\overline}\overline{g}(V)$

is a diffeomorphism,
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(3) if $x\in\Sigma_{1}(W_{f})$ , then $U\subset N(C),\overline{f}|U$; and $\overline{g}|V_{i}(V_{i}=\varphi(U_{i}))$ are home-

omorphisms onto open subsets in $N$ and $N’$ respectively, and the composition

$\overline{f}(U_{i})arrow U;f^{--1}arrow^{\varphi}V_{i}arrow^{g\overline}\overline{g}(V_{i})$

is a diffeomorphism $(i=1,2)$ , wher$eC$ is the component of $\Sigma_{1}(W_{f})$ containing

$x,$ $U_{i}=(U\cap\sigma(C))\cup U_{i}’$ , and $U-\sigma(C)$ has exactly two connected components
$U_{1}’$ and $U_{2}’$ (see Figure 2).

Figure 2

LEMMA C. Let $f$ : $Marrow N$ and $g$ : $M‘arrow N’$ be simple stable $maps$ of closed

orientable 3-manifolds into 2-manifolds. A homeomorphism $\varphi$ : $W_{f}arrow W_{g}$ is

admissible if, for every $x\in W_{f}$ , there exist an open neighborhood $\tilde{U}$ of $x$ in $W_{f}$

and a difFeomorphism $\Phi;q_{f}^{-1}(\tilde{U})arrow q_{g}^{-1}(\varphi(\tilde{U}))$ such th at the following diagram

is commutati$ve$ :

$q_{f}(\tilde{U})q_{f}^{-1}\downarrowrightarrow^{\Phi}q_{g}^{-1}(\varphi(\tilde{U}))\downarrow q_{g}$

$\tilde{U}$

$arrow^{\varphi|U^{\tilde}}$

$\varphi(\tilde{U})$ .

Proof. We show that there exists an open neighborhood $U$ of $x$ in $W_{f}$ as

in Definition B.

Case 1. $x\in W_{f}-q_{f}(S(f))$ .
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There exists an open contractible neighborhood $U$ of $x$ in $W_{f}$ such that
$U\subset(W_{f}-q_{f}(S(f)))\cap\tilde{U}$ and that $\overline{f}|U$ : $Uarrow N$ and $\overline{g}|V$ : $Varrow N’$ are

embeddings onto open subsets, where $V=\varphi(U)$ . Since $\overline{f}oq_{f}$ : $q_{f}^{-1}(U)arrow\overline{f}(U)$

is the trivial $S^{1}$ -bundle, there exists a smooth map $s:\overline{f}(U)arrow q_{f}^{-1}(U)$ such that
$\overline{f}oq_{f}os=id_{f^{-}(U)}$ . Then we see that $\overline{g}0\varphi 0\overline{f}^{-1}|\overline{f}(U)=go\Phi os$ , which implies

that it is a smooth map. By a similar argument, we see that $\overline{f}0\varphi^{-1}0\overline{g}^{-1}|\overline{g}(V)$

is also a smooth map. Thus $\overline{g}0\varphi 0\overline{f}^{-1}|\overline{f}(U)$ is a diffeomorphism.

Case 2. $x\in q_{j}$ ({definite fold points}).

There exists an open neighborhood $U$ of $x$ in $W_{f}$ such that $U\subset\tilde{U}$ , that
$\overline{f}|U$ : $Uarrow N$ and $\overline{g}|V$ : $Varrow N’(V=\varphi(U))$ are embeddings onto subsets

diffeomorphic to $R_{+}^{2}$ , and that there exist diffeomorphisms $\Psi$ and $\psi$ which satisfy

the following commutative diagram:

$q_{f_{j\downarrow^{(U)}}}^{-1}arrow^{\Psi}R^{2}\downarrow^{\cross_{l\cross}R_{id}}$

$\overline{f}(U)$

$arrow^{\psi}$
$R_{+}^{2}$ ,

where $l:R^{2}arrow R$ is the map defined by $l(x_{1}, x_{2})=x_{1}^{2}+x_{2}^{2}$ . Set $h=\overline{g}0\varphi 0\overline{f}^{-1}0$

$\psi^{-1}$ : $R_{+}^{2}arrow N’$ . Then we see easily that $ho(l\cross id)=go\Phi 0\Phi^{-1}$ is a smooth

map. Since $h(x_{1}^{2}+x_{2}^{2}, x_{3})=ho(l\cross id)(x_{1}, x_{2}, x_{3})$ , we see that $h(x_{1}^{2}+x_{2}^{2}, x_{3})$ is

smooth with respect to $x_{1},$ $x_{2}$ and $x_{3}$ . To show that $h$ is smooth, we need the

following lemma.

LEMMA D. Suppose that $F$ : $R_{+}^{2}arrow R$ is a $fu$nction such that $F(x_{1}^{2}, x_{2})$ is

smooth with respect to $x_{1}$ an$dx_{2}$ . Then $F$ itself is smooth.

Proof. By an argument similar to that in Example (A) of [3, p.108], using

the Malgrange Preparation Theorem, we see that, for every $y\in R$ , there exists

a smooth function germ $F_{1}$ at $(0, y)\in R^{2}$ such that $F_{1}(x_{1}^{2}, x_{2})=F(x_{1}^{2}, x_{2})$ on a

neighborhood of $(0, y)$ . Thus, $F$ is smooth near $O\cross R$ , and hence it is smooth

on $R_{+}^{2}$ . $\square$
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By the above lemma, we see that $h$ is smooth. Since $\psi$ is a diffeomorphism,

we see that $\overline{g}0\varphi 0\overline{f}^{-1}|\overline{f}(U)$ is a smooth map. By a similar argument, we see

that $\overline{f}0\varphi^{-1}0\overline{g}^{-1}|\overline{g}(V)$ is also a smooth map. Thus $\overline{g}0\varphi 0\overline{f}^{-1}|\overline{f}(U)$ is a

diffeomorphism.

Case 3: $x\in q_{f}$ ({indefinite fold points}).

Let $C$ be the component of $q_{f}$ ({indefinite fold points}) containing $x$ . There

exists an open neighborhood $U$ of $x$ in $W_{f}$ such that $U\subset N(C)\cap\tilde{U}$ , that
$\overline{f}|U_{i}$ : $U;arrow N$ and $\overline{g}|V_{i}$ : $V_{i}arrow N’$ are embeddings onto open subsets $(i=1,2)$ ,

where $U_{i}$ (resp. $V_{i}$ ) are the subsets of $U$ (resp. $V=\varphi(U)$ ) constructed as in

Definition $B$ using $\sigma(C)$ (resp. $\sigma(\varphi(C))$ ). By the commutativity of the diagram

$q_{f}(U)q_{f}^{-1}\downarrowarrow^{\Phi|q_{f}^{-1}(U)}q_{g}^{-1}(V_{g})\downarrow q$

$U$
$arrow^{\varphi|U}$

$V$,

we see easily that $\varphi(U\cap\sigma(C))=V\cap\sigma(\varphi(C))$ . Thus we may assume that
$\varphi(U_{i})=V_{i}$ . Taking a smaller neighborhood if necessary, we have a smooth map

$s$ : $\overline{f}(U)arrow q_{f}^{-1}(U)$ such that $f\circ s=id_{f^{-}(U)}$ . We can construct such a map

using the normal form of $f$ near $q_{f}^{-1}(U)\cap S(f)$ . Since $\overline{g}0\varphi 0\overline{f}^{-1}=go\Phi\circ s$ on
$\overline{f}(U_{i})$ , we see that $\overline{g}0\varphi\circ\overline{f}^{-1}|\overline{f}(U_{i})$ is a smooth map. By a similar argument,

we see that $\overline{f}0\varphi^{-1}0\overline{g}^{-1}|\overline{g}(V_{i})$ is also a smooth map. Thus $\overline{g}0\varphi 0\overline{f}^{-1}|\overline{f}(U_{i})$ is

a diffeomorphism $(i=1,2)$ .

By the three arguments as above, we conclude that $\varphi$ is admissible. This

completes the proof of Lemma C. $[]$

As an immediate corollary, we have the following.

COROLLARY E. Let $f$ : $Marrow N$ and $g$ : $M’arrow N’$ be simple $st$able $maps$ of

closed orienta$ble3$-manifolds into surfaces. Then $f$ and $g$ are quasi-equivalent

if and only if there exist a diffeomorphism $\Phi$ : $Marrow M’$ and an admissi$ble$

homeomorphism $\varphi$ : $W_{f}arrow W_{g}$ such that $q_{g}=\varphi oq_{j}o\Phi^{-1}$ .
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Using similar arguments, we can characterize the smooth functions on a

quotient space as follows. Here, by definition, a function on a quotient space is

smooth if it is smooth in a sense similar to Definition B.

PROPOSITION F. Let $f$ : $Marrow N$ be a simple stable map of a closed orientable

3-manifold into a 2-manifold. Then a function $h$ : $W_{f}arrow R$ is smooth if and

only if $hoqf$ : $Marrow R$ is smooth.

We can also characterize smooth maps between quotient spaces using the

ring of the smooth functions as follows. For a simple stable map $f$ : $Marrow N$ ,

denote by $C^{\infty}(W_{f})$ the ring of the smooth functions on the quotient space $W_{f}$ .

For a map $\varphi$ : $W_{f}arrow W_{g}$ between quotient spaces of simple stable maps, we

define $\varphi^{*}h=ho\varphi$ : $W_{f}arrow R$ for $h\in C^{\infty}(W_{g})$ .

PROPOSITION $G^{\dagger}$ . Let $f$ : $Marrow N$ and $g$ : $M’arrow N’$ be simple $stable$ maps

of closed orientable 3-manifolds into 2-manifolds. A map $\varphi$ : $W_{f}arrow W_{g}$ is an

admissible homeomorphism if and only if $\varphi^{*}C^{\infty}(W_{g})=C^{\infty}(W_{f})$ .
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