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Basic problems on singularities of isotropic mappings

GOO ISHIKAWA (石川 剛郎いしかわごうお)
Department of Mathematics, Hokkaido University, Sapporo 060, Japan.

(北大・理)

This is a preliminary report about the singularity theory of isotropic mappings.

We collect some remarks and problems toward the local classification of singularities of

generic isotropic mappings.

A $c\infty$ mapping $f$ : $Narrow(M,w)$ from a $c\infty$ manifold $N$ of dimension 7? to a $c\infty$

symplectic manifold $(M,w)$ of dimension $2n$ is called isotropic if $f^{*}\omega=0$ . In other word,

an isotropic mapping is a parametrization of (maximal) (integral variety” of the differential

equation $\omega=0$ on M. (For the general theory of symplectic manifolds, see [W], for

instance.)

The natural equivalence relation for the classification of isotropic mappings is defined as

follows: Two isotropic mappings $f$ and $g$ : $N’arrow(M’,\omega’)$ are called equivalent if there exist

a diffeomorphism $\sigma$ : $Narrow N’$ and a symplectic difFeomorphism $\tau$ : $lIIarrow M’,$ $(\tau^{*}\omega’=\omega)$ ,

such that $\tau of=go\sigma$ .

Similarly we define the symplectic equivalence of isotropic map-germs or jets.

In this report, all manifolds and mappings are assumed of class $c\infty$ .

Though we do not mention here, some differential analytical objects appear in the study

of isotropic mappimgs or “singular Lagrange varieties”, [Z], [M], [I1], [I2], [I3].

The author thanks Toshizumi FUKUI, Moriyuki HOMMA, Shyuichi IZUMIYA, Tohru

MORIMOTO, Toru OHMOTO, Mikio TSUJI and Keizo YAMAGUCHI for valuable com-

munications.
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Isotropic deformations and unfoldings

Set $z_{i}=\xi_{i}+\sqrt{-1}x_{i},$ $1\leq i\leq n$ and set $\omega=\sum_{i=1}^{n}d\xi_{i}\wedge dx_{i}=d(\sum_{i=1}^{n}\xi_{i}dx_{i})$. Then $(C^{n},\omega)$

is a symplectic (homogeneous) manifold of dimension $2n$ , which is the local model of the

symplectic geometry: By Darboux’s theorem [AGV], any isotropic map-germ $N^{n},$ $xarrow$

$M^{2n}$ is equivalent to an isotropic map-germ $R^{n},$ $0arrow C^{n},$ $0$ .

Denote by $I(n)$ the set of isotropic map-germs $R^{n},$ $0arrow C^{n},$ $0$ .

Let $f_{0}\in I(n)$ and $f_{\lambda},$ $\lambda\in R^{\ell},$ $0$ , be an isotropic deformation of $f$ . By definition, $F=$

$(f_{\lambda}, \lambda)$ : $R^{n}\cross R^{t},$ $0arrow C^{n}\cross R^{\ell},$ $0$ is a $c\infty$ map-germ and $f_{\lambda}^{*}w=0$ for all $\lambda\in R^{\ell},$ $0$ .

Let $u$ denote the coordinate of $R^{n}$ . Since $f_{\lambda}^{*} \omega=d_{u}f_{\lambda}^{*}(\sum_{i=1}^{n}\xi_{i}dx_{i})=0$, there exists a

family of (generating) functions $e_{\lambda}$ uniquely up to the addition of a function of $\lambda$ with

$d_{u}e_{\lambda}=f_{\lambda}^{*}( \sum_{i=1}^{n}\xi_{i}dx_{i})$,

where $d_{u}$ means the exterior derivative with respect to $u$ . Then

$de_{\lambda}= \sum_{i=1}^{n}\xi_{i}of_{\lambda}d(x_{i}of_{\lambda})+\sum_{j=1}^{\ell}\mu_{j\lambda}d\lambda_{j}$ ,

for some function-germs $\mu_{j\lambda}(u)$ . Set

$\tilde{F}=(f_{\lambda};\mu_{\lambda}, \lambda)$ : $R^{n}\cross R^{\ell},$ $0arrow C^{n}\cross C^{\ell}$ .

Then $\tilde{F}$ is isotropic and it is a lift of $F$ with respect to the projection $\pi$ : $C^{n}\cross C^{\ell}arrow$

$C^{n}\cross R^{t},$ $\pi(\xi, x;\mu, \lambda)=(\xi, x, \lambda)$ . As easily verified, isotropic lifts of $F$ are equivalent to

each other. We call $\tilde{F}$ an isotropic unfolding of $f$ . Then we have the following fundamental

fact:

PROPOSITION 1. Let $f$ : $N^{n},$ $xarrow M^{2n},$ $f(x)$ be an isotropic map-germ with the kernal

ran$kkrf(=dimKerT_{x}f)=k$ . Then $f$ is $eq$uivalen$t$ to an isotropic unfolding of a $f_{0}\in I(k)$

with $krf_{0}=k$ .

PROOF: There exists symplectic coordinate $(p_{1}, \ldots , p_{n}; q_{1}, \ldots, q_{n})$ of $M,$ $f(x)$ such that

$(q_{k+1}, \ldots, q_{n})of$ is a submersion. Then it sufficies to set $f_{0}=(p_{1}, \ldots,p_{k}; q_{1}, \ldots, q_{k})of$ .
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REMARK: To set up the general theory of isotropic unfoldings, it is better to regard $C^{n}$

as $T^{*}R^{n}$ : Let $B$ be a manifold of dimension $n$ . Then there exists the unique one-form $\theta$

on the cotangent bundle $T^{*}B$ , which is called the canonical one-form, such that, for any

one-form $\alpha$ on $B$ considered as a section $\alpha$ : $Barrow T^{*}B$ of the projection $\pi$ : $T^{*}Barrow B$ ,

the induced one-form $\alpha^{*}\theta$ on $B$ is equal to the one-form $\alpha$ . Set $w=d\theta$ . Then ( $T^{*}B$ , to) is

a symplectic manifold of dimension $2n$ .

Let $N$ be n-manifold and $f$ : $Narrow T^{*}B$ an isotropic map-germ. We call $(F;i,j)$ an

isotropic unfolding of $f$ if $F:N’arrow T^{*}B’$ is an isotropic map-germ such that $(\pi oF;i,j)$

is an unfolding of $\pi of$ in the usual sense and $f=j^{*}(Foi)$ as one-form along $\pi of$ .

Let $(\tilde{F};i\tilde{j}),\tilde{F}\sim$, : $\tilde{N}arrow T^{*}\tilde{B}$ be another isotropic unfolding of $f$ . Then $(\phi, \psi)$ : $(\tilde{F}_{i^{i\tilde{j})}}^{\sim},arrow$

$(F;i,j)$ is called a morphism if $\phi$ : $\tilde{N}arrow N’,$ $\psi$ : $\tilde{B}arrow B’,$ $(\phi, \psi)$ is a morphism $(\pi 0\tilde{F};i\tilde{j})\sim,arrow$

$(\pi oF;i,j)$ in the usual sense, and $\tilde{F}=\psi^{*}(Fo\phi)$ modulo closed one-form on $\tilde{B}$ . Then

the notion of versality of isotropic unfoldings is naturally defined. The characterization of

versal isotropic unfoldings should be an important subject.

Isotropic map-germs of kernel rank one

By Proposition 1, any isotropic map-germ of kernel rank one is equivalent to an isotropic

unfolding of a map-germ $f$ : $R,$ $0arrow C,$ $0$ . Remark that $f$ is automatically isotropic, and any

deformation $(f_{\lambda}, \lambda)$ : $\mathbb{R}\cross \mathbb{R}^{n-1},0arrow C\cross R^{n-1},0$ is also isotropic. Simply write $f_{\lambda}=(\xi, x)$ .

Then $\tilde{F}=(f_{\lambda};\mu, \lambda)$ , where

$\mu_{j}=\frac{\partial}{\partial\lambda_{j}}(\int_{0}^{u}\xi\frac{\partial x}{\partial u}du)-\xi\frac{\partial x}{\partial\lambda_{j}}$

$= \int_{0}^{u}(\frac{\partial\xi}{\partial\lambda_{j}}\frac{\partial x}{\partial u}-\frac{\partial\xi}{\partial u}\frac{\partial x}{\partial\lambda_{j}})du$ , $1\leq j\leq n-1$ .

In fact the local classification of generic isotropic mappings of kernel rank one is given

in [I2], [Z]. (See also [G2]).

EXAMPLE: Let $f=(u^{2},0)$ . Consider the one-parameter deformation $F=(f_{\lambda}, \lambda)=$

$(u^{2}, u\lambda, \lambda)$ of $f$ . Then $\tilde{F}=(u^{2}, u\lambda, -(2/3)u^{3}, \lambda)$ : $R^{2},0arrow C^{2},0$ , which is called the open

Whitney umbrella [A1], $[G1]$ , [I2].
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Figure: The open Whitney umbrella.
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Isotropic map-germs of kernel rank two

Now we turn to the ploblem of the classification of isotropic map-germs of kernel rank 2.

By Proposition 1, the first stage of attaking the problem is devided into the following two

steps: Describe elements of $I(2)$ and then study the isotropic deformations of them.

Let $f$ : $R^{2},0arrow C^{2},0$ . Set $f=(\xi_{1}of, x_{1}of, \xi_{2}of, x_{2}of)=(P_{1}, Q_{1}, P_{2}, Q_{2})$ . Then

$f^{*}\omega=(J(P_{1}, Q_{1})+J(P_{2}, Q_{2}))du\wedge dv$ ,

where $(u, v)$ is the cordinate of $\mathbb{R}^{2}$ , and $J(, )$ means the Jacobian. Therefore $f$ is isotropic

if and only if

$J(P_{1}, Q_{1})+J(P_{2}, Q_{2})=0$ .

This is a non-linear first order partial differential equation.

REMARK: An isotropic map-germ $f$ : $R^{2},0arrow C^{2}$ is regarded as an infinitesimal Jacobian

preserving deformation of $g=(Q_{1}, Q_{2})$ . Similarly an infinitesimal isotropic deformation

of $f$ is an isotropic map-germ $\xi$ : $\mathbb{R}^{2},0arrow T^{*}C^{2}=H^{2}$ .

The strict motivation of the study is the following:

CONJECTURE 2. ($Gi$vental’ $[Gl]$) Any isotropic mapping $f$ : $N^{2}arrow M^{4}$ is approximated

by an isotropi$cf’such$ that, for any $x\in N$ , the germ $f_{x}’$ is an immersion or $equi$valent to

the $op$en Whitney unbrell$a$ .

Consider the more weak conjecture.

CONJECTURE 3. Any isotropic $m$apping $f$ : $N^{2}arrow M^{4}$ is approximated by an isotropic $f’$

such that, for any $x\in N,$ $l\sigma rf_{x}’\leq 1$ .

Then we remark that Conjecture 3 implies Conjecture 2, by the result of [I2],[Z]. Fur-

thermore, Zakalykin [Z] anounces that, if, at each point, $f$ composed with a Lagrangian

fibration is finite, then Conjecture 3 (therefore Conjecture 2) is true. But I think further

study on isotropic map-germs of kernel rank two is needed to solve Conjecture 2 completely.
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Isotropic jets

The notion of jet is essential for the usual singularity theory. Here we give some foundation

for the counterpart of the singularity theory of isotropic mappings.

Set $J^{r}=\{j^{r}f(0)|f : R^{2},0arrow C^{2},0\}$ , and $J_{I^{r}}=\{z\in J^{r}|z=j^{r}f(0)$ , for some $f\in$

$I(2)\},$ $r=1,2,$ $\ldots,$
$\infty$ . The first fundamental problem of the study is the following:

PROBLEM 4. Describe the set $J_{I}^{r}$ .

Now we introduce an auxiliary notion:

DEFINITION 5: A map-germ $f$ : $R^{2},0arrow C^{2},0$ is called $p$-isotropic, $(\ell=1,2, \ldots, \infty)$ , if

$f^{*}\omega\in m_{2}^{1}\Omega$ , that is, $j^{f-1}(f^{*}w)(0)=0$ , where $\Omega$ denotes $E_{2}$ -module of 2-form germs on

$R^{2},0$ . A jet $z\in J^{r}$ is called $p$-isotropic if $z=j^{r}f(0)$ for some $p$-isotropic $f$ .

Now set $J_{\ell^{r}-I}=$ { $z\in J^{r}|z$ is $p$-isotropic}. Then we have a sequence of sets:

$J^{r}\supset J_{1-I}^{r}\supset J_{2-I}^{r}\supset\cdots\supset J_{r-I}^{r}\supset J_{r+1-I}^{r}\supset\cdots\supset J^{\underline{r}}I\supset J_{I}^{r}$.

Set $f=f_{1}+f_{2}+\cdots$ , formally, where $f_{i}=(P_{1i}, Q_{1i}, P_{2i}, Q_{2i})$ is homogeneous of degree

$i,$ $i=1,2,$ $\ldots$ . Then $J(P_{1}, Q_{1})+J(P_{2}, Q_{2})=h_{0}+h_{2}+\cdots$ , with

$h_{k}= \sum_{i+j=k+2}J(P_{1i}, Q_{1j})+J(P_{2i}, Q_{2j})$
,

$k=0,1,2,$ $\ldots$ . Hence we have

LEMMA 6. $f$ is l-isotropic if and only if $h_{k}=0$ for $k\leq l$ .

Then it is easy to see the following lemmas:

LEMMA 7. $J_{\ell^{r}-I}$ is algebraic (resp. semi-algebraic) if $\ell\leq r$ (resp. $r<p<\infty$).

LEMMA 8. $J_{1-I}^{1}=J_{I}^{1}$ , which is identified with the set of line$ar$ isotropic mappings $R^{2}arrow$

$C^{2}$ . Moreover $J_{I}^{1}\subset Hom_{\mathbb{R}}(\mathbb{R}^{2}, C^{2})\cong \mathbb{R}^{8}$ is $a$ quadra$tic$ hypersurface with $SingJ_{I}^{1}=\{0\}$ .

For $s\leq r$ , we denote by $\pi_{s}^{r}$ : $J^{r}arrow J^{s}$ the canonical projection. Then we have
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PROPOSITION 9. $J_{r-I}^{r}-(\pi_{1}^{r})^{-1}(0)\subset J_{I^{\Gamma}}$ .

PROOF: Consider the natural action of $Diff(R^{2},0)\cross Symp(C^{2},0)$ on $J_{I}^{r}$ . Let $\pi_{1}^{r}(z)\in\Sigma^{0}$ .
Then the jet $z$ is equivalent to $j^{r}(P_{1}, u, P_{2}, v)(0)$ for polynomials $P_{1},$ $P_{2}$ of degree $\leq r$ , such

that $(P_{1}, u, P_{2}, v)$ is r-isotropic. Then the polynomial form of degree $\leq r-1,$ $dP_{1}du+$

$dP_{2}dv\in m^{r}\Omega$ . Therefore $dP_{1}du+dP_{2}dv=0$ as form. Thus $z\in J_{I}^{r}$ .

Let $\pi_{1}^{r}(z)\in\Sigma^{1}$ . Then $z$ is equivalent to $j^{r}(P_{1}, u, P_{2}, Q_{2})(0)$ for polynomials $P_{1},$ $P_{2},$ $Q_{2}$

of degree $\leq r$ such that $(P_{1}, u, P_{2}, Q_{2})$ is r-isotropic. Then $dP_{1}du+dP_{2}dQ_{2}\in m^{r}\Omega$ .

Therefore

$\frac{\partial P_{1}}{\partial v}=\frac{\partial P_{2}}{\partial u}\frac{\partial Q_{2}}{\partial v}-\frac{\partial P_{2}}{\partial v}\frac{\partial Q_{2}}{\partial u}+\rho$ , $\rho\in m^{r}$ .

Set $\tilde{P}_{1}=P_{1}-\int_{0}^{v}\rho dv$ and $f’=(\tilde{P}_{1}, u, P_{2}, Q_{2})$ . Then $j^{r}f’(0)=z$ and $f’$ is isotropic. Hence

$z$ is isotropic; $z\in J_{I^{r}}$ .

Q.E.D.

Set $J_{l^{r}-I,0}=J_{l^{r}-I}\cap(\pi_{1}^{r})^{-1}(0)$ . Then we have

LEMMA 10. $J_{r}^{r_{+1-I,0}}$ is an alge $b$raic set in $J^{r}$ .

LEMMA 11. $J_{3-I,0}^{2}=J_{I,0}^{2}(=J_{I}^{2}\cap(\pi_{1}^{r})^{-1}(0))$ .

REMARK: $J_{I,0}^{2}$ is identified with the set of homogeneous isotropic polynomial mappings
$R^{2}arrow C^{2}$ .

COROLLARY 12. $J_{3-I}^{2}=J_{I}^{2}$ .

For the classification of isotropic 2-jets, we see

PROPOSITION 13. Any jet $z\in J_{I,0}^{2}$ is equivalent to the jet $J^{2}(P_{1}, Q_{1}, P_{2}, Q_{2})(0)$ of one of

followings:

$(0, uv, 0, (1/2)(u^{2}+v^{2}))$ , $(0, uv, 0, (1/2)(u^{2}-v^{2}))$ , $(0, (1/2)(u^{2}+v^{2}),$ $0,0$ ),

$(O, uv, O, O)$ , $(0, (1/2)u^{2},0,0)$ , (0,0,0,0).
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PROOF: $P_{1},$ $Q_{1},$ $P_{2},$ $Q_{2}$ are necesarily linearly dependent over R. Therefore the image is

contained in a Lagrange plane. Then, by the classification of quadratic mappings $R^{2},0arrow$

$R^{2}$ , we have Proposition 13. (See [Gi]).

REMARK: For the isotropic 3-jets, the classification needs more initimate study. In fact,

for instance, the image of the isotropic map-germ $f=(u^{3}, v^{3}, -3u^{2}v, uv^{2})$ is not contained

in any proper submanifold.

Here we refer the following fact, which is easy to see:

PROPOSITION 14. Let $f\in I(2)$ . If the image of $f$ is contained in a proper $su$bmanifold,

then it is contained in a Lagrange submanifold.

Now in general it seems natural to expect

OPTIMISTIC CONJECTURE 15. For any $r<\infty$ , there exists $p=\ell(r)<\infty$ , such that

$J_{l^{r}-I}=J_{I^{r}}$ . Further, $J_{\infty-I}^{\infty}=J_{I}^{\infty}$ .

Based on the arguments of Zakalykin [Z], we have

THEOREM 16. Let $z=j^{r}f(O)\in J_{r^{r}+k-1-I}$ with $r\geq k$ . Assume $f_{1}=\cdots f_{k-1}=0$ , and

$f_{k}$ : $R^{2},0arrow C^{2},0$ is finite as $m$ap-germ. Then $z\in J_{I^{r}}$ .

We denote by $H^{j}$ the set of homogeneous polynomials of $u,$ $v$ of degree $j$ . Associated to

the initial part $f_{k}$ , we define $\Phi_{kj}$ : $(H^{j})^{4}arrow H^{k+j-2}$ by

$\Phi_{kj}=J(P_{1k}, )+J(Q_{1k}, )+J(P_{2k}, )+J(Q_{2k}, )$ .

Then the key to prove Theorem 16 is the following fact proved by Zakalykin $[]$ :

LEMMA 17. If $f_{k}$ is finite, then $\Phi_{kj}$ is surjective for $j\geqq k$ .

Furthermore we need

LEMMA 18. If $f_{k}$ is fnite, then similarly defined $\Phi_{k\infty}$ : $(m^{\infty})^{4}arrow m^{\infty}$ is surjecti $ve$ .

PROOF OF THEOREM 16: For the given leading terms $f_{k},$
$\ldots,$

$f_{r}$ , we determine $f_{r+1}$ by

the condition $h_{r+k-1}=0$ , using Lemma 17, $j=r+1$ . Determine $f_{r+2}$ by $h_{r+k}=0$ , and
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so on. Then we have $z=j^{r}f’(0)$ with $\infty$-isotropic $f’$ . By Lemma 18, $z=j^{r}f’’(0)$ with

isotropic $f”$ .

Q.E.D.

EXAMPLE: Let $f_{2}=(0, uv, 0, (1/2)(u^{2}+v^{2}))$ , (cf. Proposition 13).

Define $\Phi$ : $E\cross Earrow E$ by $\Phi(A, B)=J(uv, A)+J((1/2)(u^{2}+v^{2}), B)$ . Then $\Phi$ :

$m^{j}\cross m^{j}arrow m^{j},j=1,2,$
$\ldots$ , and $\Phi$ : $m^{\infty}\cross m^{\infty}arrow m^{\infty}$ are all surjective.

In fact, to solve $\Phi(A, B)=u(B_{v}-A_{u})+v(A_{v}-B_{u})=C$ , set $C=-uD-vK$ ; if $C\in m^{j}$

then $D,$ $K\in m^{j-1}$ . Then it sufficies to solve

$A_{u}-B_{v}=D$ , $-A_{v}+B_{u}=E$ .

Fixing $A= \int_{0}^{u}(D+B_{v})du$ , we need to solve the wave equation

$\frac{\partial^{2}B}{\partial u^{2}}-\frac{\partial^{2}B}{\partial v^{2}}=vD+uE$.

Since $(\partial^{2}/\partial u^{2})-(\partial^{2}/\partial v^{2})$ : $m^{j+2}arrow m^{j}$ is surjective, $j=0,1,$ $\ldots,$
$\infty$ , we have the result.

REMARK: Morimoto and Homma informed to me that the above situation is closely related

to the notions of prolongation, involutivity and Spencer cohomology, [Go]. I am very

interested in this aspect, and I think further intimate investigations are needed to progress

this point of view and to construct new general theory.



87

Analytic approximation, stability and determinacy

Let denote by $C_{I}^{\infty}(N, M)$ the space of proper isotropic mappings $Narrow M$ endowed with

Whitney $c\infty$ topology, and by $C_{I}^{an}(N, M)$ the subspace of isotropic mappings $f$ such that,

for any $x\in N,$ $f_{x}$ is equivalent to an analytic isotropic map-germ.

CONJECTURE 19. $C_{I}^{an}(N, M)\subset C_{I}^{\infty}(N, M)$ is dense.

If Conjecture 19 is affermative, then the stability of isotropic mappings becomes rather

easy to characterize: An isotropic map-germ $f$ : $N,$ $xarrow M$ is symplectically stable if

and only if $f$ is infinitesimally symplectically stable and $f$ is equivalent to an analytic

map-germ: $f$ is called infinitesimally symplectically stable if

$VI(f)=tf(V_{N})+wf(VH_{M})$ ,

where $VI(f)$ (resp. $V_{M},$ $VH_{M}$ ) is the set of isotropic one-forms $N,$ $xarrow T^{*}M$ along $f$

(resp. the set of vector fields over $N,$ $x$ , the set of Hamiltonian vector fields over $M,$ $f(x)$ ;

a Hamiltonian vector field is naturally considered as one-form on $T^{*}M$ .

A natural candidate for the characterization of finite determinacy of isotropic map-germ

is the condition that, for some $k<\infty$ ,

$m_{N}^{k}V(f)\cap VI(f)\subset tf(m_{N}V_{N})+wf(m_{M}VH_{M})$ .

In any case, the fundamental question would be the following:

QUESTION 20. For any $\xi\in VI(f)$ , is there an isotropi$c$ deformation $f_{\lambda}$ such that $\xi=$

$(\partial f_{\lambda}/\partial t)|_{t=0}7$
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