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Basic problems on singularities of isotropic mappings
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This is a preliminary report about the singularity theory of isotropic mappings.

We collect some remarks and problems toward the local classification of singularities of

generic isotropic mappings.

A C® mapping f : N - (M,w) from a C* manifold N of dimension n to a C*
symplectic manifold (M,w) of dimension 2n is called isotropic if f*w = 0. In other word,
an isotropic mapping is a parametrization of (maximal) “integral variety” of the differential
equation w = 0 on M. (For the general theory of symplectic manifolds; see [W], for

instance.)

The natural equivalence relation for the classification of isotropic mappings is defined as
follows: Two isotropic mappings f and g : N' — (M',w") are called equivalent if there exist
a diffeomorphism ¢ : N — N’ and a symplectic diffeomorphism 7 : M — M', (7*w' = w),

such that ro f = goo.
Similarly we define the symplectic equivalence of isotropic map-germs or jets.
In this report, all manifolds and mappings are assumed of class C°.
Though we do not mention here, some differential analytical objects appear in the study

of isotropic mappimgs or “singular Lagrange varieties”, [Z], [M], [I1], [12], [I3].

The author thanks Toshizumi FUKUI, Moriyuki HOMMA, Shytichi IZUMIYA, Tohru
MORIMOTO, Toru OHMOTO, Mikio TSUJI and Keizo YAMAGUCHTI for valuable com-

munications.
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Isotropic deformations and unfoldings

Set z; =& ++v—1z;,1 <i<nandsetw=> 1  d&Adz; =d(X 0, £idz;). Then (C* w)
is a symplectic (homogeneous) manifold of dimension 2n, which is the local model of the
symplectic geometry: By Darboux’s theorem [AGV], any isotropic map-germ N" z —

M?™ is equivalent to an isotropic map-germ R",0 — C",0.
Denote by I(n) the set of isotropic map-germs R™,0 — C",0.

Let fo € I(n) and fx, A € R0, be an isotropic deformation of f. By definition, F =
(fA,A): R® x R,0 — C™ x R%,0 is a C* map-germ and fjw = 0 for all A € R¢,0.

Let u denote the coordinate of R™. Since fiw = du ff(>_ i, &idzi) = 0, there exists a

family of (generating) functions ey uniquely up to the addition of a function of A with

duex = f3() &dey),
=1
where d, means the exterior derivative with respect to u. Then
n ' £
dex =Y &ofad(zio fr)+ Y mindhj,
=1 7=1
for some function-germs p;x(u). Set
F= (fa; a, A) : R™ X RK,O — C" x C%.
Then F is isotropic and it is a lift of F with respect to the projection 7 : C* x Cf —
C" x RY,w(€,z;1,A) = (€,2,)). As easily verified, isotropic lifts of F' are equivalent to

each other. We call F' an isotropic unfolding of f. Then we have the following fundamental

fact:

PROPOSITION 1. Let f : N™,a — M?" f(z) be an isotropic map-germ with the kernal
rank krf(= dim KerT, f) = k. Then f is equivalent to an isotropic unfolding of a fo € I(k)
with krfy = k.

PROOF: There exists symplectic coordinate (p1,...,Pn;q1,---,qn) of M, f(x) such that
(¢k+1,---,qn) 0 f is a submersion. Then it sufficies to set fo = (p1,---,Pk;q1,---,9%)° f.
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REMARK: To set up the general theory of isotropic unfoldings, it is better to regard C®
as T*R™: Let B be a manifold of dimension n. Then there exists the unique one-form 6
on the cotangent bundle T* B, which is called the canonical one-form, such that, for any
one-form « on B considered as a section « : B — T*B of the projection = : T*B — B,
the induced one-form a*6 on B is equal to the one-form a. Set w = df. Then (T*B,w) is

a symplectic manifold of dimension 2n.

Let N be n-manifold and f : N — T*B an isotropic map-germ. We call (F;7,5) an
isotropic unfolding of f if F': N' — T*B' is an isotropic map-germ such that (7 o F';1, j)
is an unfolding of 7 o f in the usual sense and f = j*(F o) as one-form along 7 o f.
Let (F;1,7),F : N — T*B be another isotropic unfolding of f. Then (¢,v) : (F;1,7) —
(F;i,7)is called a morphismif ¢ : N — N', ¢ : B — B', (¢, %) is a morphism (70 F;7,7) —
(m o F;1,j) in the usual sense, and F = ¥*(F o ¢) modulo closed one-form on B. Then
the notion of versality of isotropic unfoldings is naturally defined. The characterization of

versal isotropic unfoldings should be an important subject.

Isotropic map-germs of kernel rank one

By Proposition 1, any isotropic map-germ of kernel rank one is equivalent to an isotropic
unfolding of a map-germ f : R,0 — C,0. Remark that f is automatically isotropic, and any
deformation (fx,\) : Rx R*7! 0 —» C x R"~! 0 is also isotropic. Simply write fx = (£, z).
Then F = (fa; py A), where

pi = a/\/f

o Oz O 3:1: .
— = <j<n-1.
/ (8)\] du  du o), Jdu, 1<jsn-l

In fact the local classification of generic isotropic mappings of kernel rank one is given

in [I2], [Z]. (See also [G2]).

EXAMPLE: Let f = (u?,0). Consider the one-parameter deformation F' = (fy,)\) =
(u?,uM, A) of f. Then F = (u?,u), —(2/3)u3,)) : R2,0 — C2,0, which is called the open
Whitney umbrella [A1],[G1],[12].



Figure: The open Whitney umbrella.
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Isotropic map-germs of kernel rank two

Now we turn to the ploblem of the classification of isotropic map-germs of kernel rank 2.
By Proposition 1, the first stage of attaking the problem is devided into the following two

steps: Describe elements of I(2) and then study the isotropic deformations of them.

Let f:R210_)C2)0' Set f: (glofa$10f7£2of,$20f) =(P1’Q1)P2)Q2)' Then
o = (J(P1,Q1) + J(P2, Q2))du A dv,

where (u, v) is the cordinate of R?, and J( , ) means the Jacobian. Therefore f is isotrbpic
if and only if
J(P1, Q1)+ J(P2,Q2) = 0.

This 1s a non-linear first order partial differential equation.

REMARK: An isotropic map-germ f : R2,0 — C? is regarded as an infinitesimal Jacobian
preserving deformation of ¢ = (Q1,Q2). Similarly an infinitesimal isotropic deformation

of f is an isotropic map-germ £ : R?,0 — T*C? = H2.
The strict motivation of the study is the following:

CONJECTURE 2. (Givental’ [G1]) Any isotropic mapping f : N* — M* is approximated
by an isotropic f' such that, for any z € N, the germ f. is an immersion or equivalent to

the open Whitney unbrella.
Consider the more weak conjecture.

CONJECTURE 3. Any isotropic mapping f : N2 & M4 is approximated by an isotropic f'
such that, for any z € N, krf’ < 1.

Then we remark that Conjecture 3 implies Conjecture 2, by the result of [12],[Z]. Fur-
thermore, Zakalykin [Z] anounces that, if, at each point, f composed with a Lagrangian
fibration is finite, then Conjecture 3 (therefore Conjecture 2) is true. But I think further

study on isotropic map-germs of kernel rank two is needed to solve Conjecture 2 completely.
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Isotropic jets

The notion of jet is essential for the usual singularity theory. Here we give some foundation

for the counterpart of the singularity theory of isotropic mappings.

Set J* = {j7f(0) | f : R2,0 — C%,0}, and JT = {z € J" | z = 57 f(0), for some f €
I(2)}, r =1,2,...,00. The first fundamental problem of the study is the following:

PROBLEM 4. Describe the set JT.

Now we introduce an auxiliary notion:

DEFINITION 5: A map-germ f : R2,0 — C2,0 is called f-isotropic, (¢ = 1,2,...,00), if
f*w € miQ, that is, j*71(f*w)(0) = 0, where Q denotes E,-module of 2-form germs on
R%,0. A jet z € J" is called ¢-isotropic if z = ;7 f(0) for some £-isotropic f.

Now set Jj_; = {z € J" | z is £-isotropic}. Then we have a sequence of sets:

J' DI DI ;D DI DI DD DI}

Set f = f1 + fa + - -+, formally, where f; = (Py;, Q1:, Pa;, @2:) is homogeneous of degree
i,iz 1,2,.... Then J(Pl,Q1)+J(P2,Q2) = ho +h2 +"', with

hi= Y J(Pui, Qi)+ J(Pai, Qzj);

i+ j=k+2

k=0,1,2,.. Hence we have
LEMMA 6. f is {-isotropic if and only if hy = 0 for k < £.
Then it is easy to see the following lemmas:
LEMMA 7. J;_; is algebraic (resp. semi-algebraic) if £ < r (resp. r < £ < o0).

LEMMA 8. Ji_; = J}, which is identified with the set of linear isotropic mappings R* —

C?. Moreover J; C Homg(R?,C?) = R® is a quadratic hypersurface with SingJ}! = {0}.

For s < r, we denote by 7} : J™ — J*® the canonical projection. Then we have
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PROPOSITION 9. J!_; — (=])71(0) C Jj.

PROOF: Consider the natural action of Diff(R?,0)xSymp(C2,0) on J7. Let n](z) € £°.
Then the jet z is equivalent to j7( Py, u, Py, v)(0) for polynomials Py, P, of degree < r, such
that (P, u, Py,v) is r-isotropic. Then the polynomial form of degree < r — 1, dP;du +
dP;dv € m"). Therefore dPydu + dPydv = 0 as form. Thus z € J7.

Let 7{(z) € 1. Then z is equivalent to j"(Py,u, Pz, @2)(0) for polynomials Py, P2, Q2
of degree < r such that (P,u,P;,Q,) is r-isotropic. Then dPidu + dP,dQ, € m™Qd.
Therefore

8P1 . 8P2 8Q2 aP? aQ2 T

v  Ou Ov v Ou T pem

Set P, = P —-fov pdv and f' = (P],U,PQ, @2). Then 37 f'(0) = z and f' is isotropic. Hence

z 1s isotropic; z € JJ.

Q.E.D.
Set J;_ro = Ji_;y N (7])71(0). Then we have
LEMYMA 10. J7,,_1, is an algebraic set in J".
LEMMA il. T3 10 =Jio(= JF N (7])71(0)).

REMARK: J%,o is identified with the set of homogeneous isotropic polynomial mappings
RZ - C2.

COROLLARY 12. JZ_, = J%
For the classification of isotropic 2-jets, we see

PROPOSITION 13. Any jet z € J}f, is equivalent to the jet J*(Py,Q1, Py, Q2)(0) of one of

followings:
(0,uv,0,(1/2)(u* +v%)), (0,uv,0,(1/2)(u* = v*)), (0,(1/2)(v* ++7),0,0),

(0,uv,0,0),  (0,(1/2)u?,0,0), (0,0,0,0).
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PROOF: Pi,Qq, P,,Q2 are necesarily linearly dependent over R. Therefore the image is
contained in a Lagrange plane. Then, by the classification of quadratic mappings R%,0 —

R2, we have Proposition 13. (See [Gi]).

REMARK: For the isotropic 3-jets, the classification needs more initimate study. In fact,
for instance, the image of the isot‘ropic map-germ f = (u3,v®, —3u®v, uv?) is not contained

in any proper submanifold.

Here we refer the following fact, which is easy to see:

PROPOSITION 14. Let f € I(2). If the image of f is contained in a proper submanifold,

then it is contained in a Lagrange submanifold.
Now in general it seems natural to expect

OPTIMISTIC CONJECTURE 15. For any r < oo, there exists £ = £(r) < oo, such that

Ji_; = Ji. Further, JS_; = Jf°.
Based on the arguments of Zakalykin [Z], we have

THEOREM 16. Let z = j7f(0) € JT ,_;_; withr > k. Assume f; = --- fx_1 = 0, and

fr : R?,0 — C?,0 is finite as map-germ. Then z € JJ.

We denote by H? the set of homogeneous polynomials of u, v of degree j. Associated to
the initial part fi, we define ®; : (H?)* — H*1-2 by

Qi = J( Pk, )+ J(Quk, )+ J(Por, )+ J(Q2k, )
Then the key to prove Theorem 16 is the following fact proved by Zakalykin [ |:
LEMMA 17. If fi is finite, then ®y; is surjective for j 2 k.
Furthermore we need
LEMMA 18. If f is finite, then similarly defined ® koo : (m™)* — m™ is surjective.

PROOF OF THEOREM 16: For the given leading terms fi,..., f., we determine f,;; by

the condition h,4r—1 = 0, using Lemma 17, j = r 4+ 1. Determine f,42 by h,4x = 0, and
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-s0 on. Then we have z = 57 f'(0) with co-isotropic f'. By Lemma 18, z = ;" f"(0) with
isotropic f".

Q.ED.
EXAMPLE: Let fo = (0,uv,0,(1/2)(u? + v?)), (cf. Proposition 13).

Define @ : Ex E — E by @(A,B) = J(uv, A) + J((1/2)(u? + v?),B). Then & :

m! xm! - m?,j=1,2,...,and ® : m>® x m*™® — m® are all surjective.

In fact, to solve ®(A, B) = u(B, — A,)+v(4,—B,) = C, set C = —uD —vK; if C € m’

then D, K € m?~'. Then it sufficies to solve

A, — B, =D, —-A,+ B, =F.

Fixing A = fou(D + B, )du, we need to solve the wave equation

0*’B 9’B
BT vD + uFE.
Since (82 /0u?)—(8?/9v?) : mI*? — mJ is surjective, j = 0,1,...,00, we have the result.

REMARK: Morimoto and Homma informed to me that the above situation is closely related
to the notions of prolongation, involutivity and Spencer cohomology, [Go]. I am very
interested in this aspect, and I think further intimate investigations are needed to progress

this point of view and to construct new general theory.
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Analytic approximation, stability and determinacy

Let denote by C§°(N, M) the space of proper isotropic mappings N — M endowed with
Whitney C* topology, and by C¢™(N, M) the subspace of isotropic mappings f such that,

for any ¢ € N, f, is equivalent to an analytic isotropic map-germ.
CONJECTURE 19. C{™(N,M) C Cf°(N, M) is dense.

If Conjecture 19 is affermative, then the stability of isotropic mappings becomes rather
easy to characterize: An isotropic map-germ f : N,z — M is symplectically stable if
and only if f is infinitesimally symplectically stable and f is equivalent to an analytic

map-germ: f is called infinitesimally symplectically stable if

VI(f) =tf(VN)+wf(VHuy),

where VI(f) (resp. Va, VHp) is the set of isotropic one-forms N,z — T*M along f
(resp. the set of vector fields over N, z, the set of Hamiltonian vector fields over M, f(z);

a Hamiltonian vector field is naturally considered as one-form on T*M.

A natural candidate for the characterization of finite determinacy of isotropic map-germ

is the condition that, for some k < oo,
myV(F) N VI(f) C tf(mnVn) +wf(muV Har).

In any case, the fundamental question would be the following:

QUESTION 20. For any £ € VI(f), is there an isotropic deformation fx such that £ =
(0fr/08)|t=0 7
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