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The Pierce-Birkhoff Conjecture*

James J. Madden
Deptartment of Mathematics
Louisiana State University

Baton Rouge LA 70803-4918 USA

1. Statement of the Pierce-Birkhoff Conjecture (PBC).

2. Real spectrum; local nature of PBC and relation to singularities.

3. Infinitely near points and the two-dimensional case.

4. Open problems related to the three dimensional case.

Section 1.

Definition. Suppose $X\subseteq R^{n}$ . A function $\phi$ : $Xarrow R$ is called piecewise
polynomial–or “PWP” for short–if there is a finite collection $\{P_{k}\}$ of
closed semialgebraic subsets of $R^{n}$ and a collection of polynomial functions
$\{f_{k} : R^{n}arrow R\}$ such that $X \subseteq\bigcup_{k}P_{k}$ and $\phi=f_{k}$ on $P_{k}\cap X$ . The pair
$(\{P_{k}\}, \{f_{k}\})$ is called a presentation of $\phi$ .

Note that $f_{k}=f_{k’}$ on $P_{k}\cap P_{k’}\cap X$ . $\phi$ is continuous on $X$ , since
the sets $P_{k}\cap X$ are closed in $X$ . If $X$ is not closed, $\phi$ may fail to have a
continuous extension to $R^{n}$ .

Definition. Given functions $g_{j}$ $Xarrow R$ , the functions $_{j=1}^{s}g_{j}$ and
$\bigwedge_{j=1}^{s}g_{j}$ are defined as follows:

$(_{j=} \bigvee_{1}^{s}g_{j})(x)=\max\{g_{1}(x), \ldots, g_{s}(x)\}$
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$( \bigwedge_{j=1}g_{j})(x)=\min\{g_{1}(x), \ldots, g_{s}(x)\}$ .

If $\{h_{ij} : R^{n}arrow R\}$ is a finite collection of polynomial functions, then
$_{i} \bigwedge_{j}h_{ij}$ is piecewise polynomial on $R^{n}$ Any function of this form (or
the restriction to $X\subseteq R^{n}$ of any such function) is said to be “sup-inf-
polynomial definable (on $X$ ), or “SIPD” for short. It is easy to show that
any SIPD function on $X$ is PWP. The converse is not the case in general.

Main definition. We say “the condition of Pierce-Birkhoff holds for $X$ ’ if
every PWP function on $X$ is SIPD. The Pierce-Birkhoff Conjecture is that
for all $n$ , the condition of Pierce-Birkhoff holds for $R^{n}$ , see [G. Birkhoff,
R. S. Pierce, Lattice ordered rings, Anais Acad. Bras. Ci. 28 (1956), 41-69;
$MR18$ (1957), 191].

The known results are as follows: It is easy to show that the condi-
tion of Pierce-Birkhoft holds for R. For $R^{2}$ , on the other hand, this is
a difficult theorem due to L. Mah\’e, see [L. Mah\’e, On the Pierce-Birkhoff
conjecture, Rocky Mountain J. Math. 14(4), (Fall 1984), 983-5; $Zbl$ . $578$

(1986), 41008; $MR86d:14020$]. For $R^{n},$ $n\geq 3$ , the Pierce-Birkhoff Con-
jecture is completely open. Madden and Robson have shown that the con-
dition of Pierce-Birkhoff holds for any smooth compact semialgebraic sur-
face, and Madden has proved an analogue of this result which is valid with
an arbitrary real closed field in place of R. (These results have not yet
been submitted.) Marshall (to appear in Can$adi$an J. Math.) has shown,
among other things, that if $X$ is a semialgebraic curve then the condition of
Pierce-Birkhoff holds for $X$ if and only if at each singularity of $X$ distinct
half-branches have distinct half-tangents. Other variants of the conjecture
have been considered; an abstract framework which is useful for formulating
these is provided in [J. Madden, Pierce-Birkhoff rings, Archiv $d$er Math. 53
(1989), 565-70].

Section 2.

Suppose $\phi$ : $R^{n}arrow R$ is PWP and $(\{P_{k}\}, \{f_{k}\})_{k=1}^{m}$ is a presentation
of $\phi$ . We say that $(\{P_{k}\}, \{f_{k}\})_{k=1}^{m}$ is a good presentation if for all $i,j\in$
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$\{1, 2, \ldots, k\}$ there is a polynomial function $h_{ij}$ satisfying

$h_{ij}\geq\emptyset$ on $P_{i}$

$h_{ij}\leq\phi$ on $P_{j}$ .

If $(\{P_{k}\}, \{f_{k}\})_{k=1}^{m}$ is good, then for any $i$

$\bigwedge_{j}h_{ij}=\phi$
on $P_{i}$

and
$\bigwedge_{j}h_{ij}\leq\phi$

on $P_{j}$ ,

and hence
$\bigvee_{i}\bigwedge_{j}h_{ij}=\phi$

on $R^{n}$

This shows that a PWP function is SIPD provided that it has a good
presentation. Since the sets $P_{k}$ may be chosen as small as one likes, it is
clear that any obstruction to finding a good presentation must be local, in
some sense. In fact, more can be said. Let Trans $\phi$ $:=\{x\in R^{n}|\phi$ is not
polynomial on any neighborhood of $x$ }. (Note that Trans $\phi\subseteq\bigcup_{k}\partial P_{k}$ for
any presentation $(\{P_{k}\}, \{f_{k}\})$ of $\phi.$ ) It is possible to show that if $X\subseteq R^{n}$

is any compact set containing no singularity of Trans $\phi$ , then $\phi|_{X}$ is SIPD.
Thus, any obstructions to finding a good presentation $lie\oint$ in codimension
2.

My treatment of the real spectrum (below) is intended to be access-
able to people who have not thought much about this before. It is not as
general as possible, but is adequate for present purposes. For more informa-
tion, see [J.Bochnak, M.Coste and M.F.Roy, G\’eom\’etrie alg\’ebrique r\’eelle,
Ergebnisse der Mathematik und ihher Grenzgebiete, 3. Folge, Band 12,
Springer-Verlag, Berlin-Heidelberg-New York, 1987].

Definition. Suppose $X\subseteq R^{n}$ is a semialgebraic set. The real spectrum of
$X$ , denoted $\tilde{X}$ , is the set of prime filters of closed semialgebraic subsets
of $X$ . Given a semialgebraic set $U\subseteq X$ which is relatively open in $X$ ,
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we define $\tilde{U}$ $:=\{\alpha\in\tilde{X}|\forall Y\in\alpha Y\cap U\neq\emptyset\}$ . $\tilde{X}$ carries the weakest
topology in which all the sets $\tilde{U}$ are open.

Some of this may need a bit of explanation. First of all, what it means
for $\alpha$ to be a prime filter of closed semialgebraic subsets of $X$ is:

$\alpha$ is a collection of closed semialgebraic subsets of $X$ ,

$V,$ $W\in\alpha$ $\Rightarrow$ $V\cap W\in\alpha$ ,

$V\supseteq W\in\alpha$ $\Rightarrow$ $V\in\alpha$ ,

$V\cup W\in\alpha$ $\Rightarrow$ either $V\in\alpha$ or $W\in\alpha$ and

$X\in\alpha$ and $\emptyset\not\in\alpha$ .

Examples. If $x\in R^{n}$ , then the set of all closed semialgebraic subsets of $R^{n}$

which contain $x$ is a prime filter. If $\gamma$ : $Rarrow R^{n}$ is an analytic curve, then
the set of all closed semialgebraic subsets of $R^{n}$ which contain $\gamma([0, \epsilon))$ for
some $\epsilon\in R_{>0}$ is a prime filter.

If $\alpha\in\tilde{X}$ and $f,$ $g$ : $Xarrow R^{n}$ are semialgebraic functions, then we
write

$f(\alpha)=g(\alpha)$ if $f=g$ on some $U\in\alpha$ ,

$f(\alpha)>g(\alpha)$ if $f>g$ on some $U\in\alpha$ ,

$f(\alpha)\geq g(\alpha)$ if $f\geq g$ on some $U\in\alpha$ .

We define $supp\alpha$ $:=\{f\in R[x_{1}, \ldots , x_{n}]|f(\alpha)=0\}$ . By primality of
$\alpha,$ $supp$a is a prime ideal. Moreover, for any $f,$ $g\in R[x_{1}, \ldots, x_{n}]$ , exactly
one of the following holds: $f(\alpha)=g(\alpha)$ or $f(\alpha)>g(\alpha)$ or $f(\alpha)<g(\alpha)$ .
Thus, $\alpha$ induces a total order on $R[x_{1}, \ldots , x_{n}]/supp\alpha$ .

Definition. Let $\alpha,$
$\beta\in\overline{X}$ . Then { $\alpha,$

$\beta\rangle$ denotes the ideal of $R[x_{1}, \ldots, x_{n}]$

generated by the polynomials $f$ such that both $f(\alpha)\geq 0$ and $f(\beta)\leq 0$ .

Theorem. Suppose $X\subset R^{n}$ is $sem$ialgebraic and $\phi$ : $Xarrow R$ is $PWP$.
Then the following are equivalen$t$ :

1) $\phi$ is SIPD,

2) $\forall\alpha,$ $\beta\in\overline{X}$ $\exists h_{\alpha\beta}\in R[x_{1}, \ldots, x_{n}]$ such that $h_{\alpha\beta}(\alpha)\geq\phi(\alpha)$ and
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$h_{\alpha\beta}(\beta)\leq\phi(\beta)$ ,

3) $\forall\alpha,$ $\beta\in\tilde{X}\forall f,$ $g\in R[x_{1}, \ldots, x_{n}]$ , if $f(\alpha)=\phi(\alpha)$ and $g(\beta)=\phi(\beta)$

then $f-g\in\{\alpha, \beta\}$ .
For a proof of this theorem, see [Madden, $op$ . $cit.$ ]. We shall not repeat

it here, but shall be content to make a few comments on it. The proof is
based on the compactness of $\tilde{X}$ and the analogy between condition (2) and
the existence of a good presentation. One may think of the elements of $\overline{X}$

as limits of shrinking closed semialgebraic sets, and of $X$ itself as the limit
of all semialgebraic partitions of $X$ .

Some additional comments on the geometric meaning of some of the
concepts introduced above may be helpful in understanding the theorem.
The following assertions follow fairly directly from the definitions. Suppose
that $X$ is compact. Then for any $\alpha\in\overline{X}$ , there is unique a point of $X-$
call it Cntr $\alpha$ –which is contained in all the sets in $\alpha$ . For any ideal
$I\subseteq R[x_{1}, \ldots, x_{n}]$ , let $V_{R}(I)$ denote the set of real zeroes of $I$ . Then
$V_{R}(supp\alpha)$ is the intersection of the Zariski closures of all the elements of
$\alpha_{l}$ and $V_{R}(\{\alpha, \beta\rangle)$ is the intersection of the Zariski closures of all the sets
$S\cap T$ with $S\in\alpha$ and $T\in\beta$ . If Cntr $\alpha\neq$ Cntr $\beta$ , then \langle $\alpha,$

$\beta$ } contains
1. If Cntr $\alpha=$ Cntr $\beta$ , then $V_{R}(\{\alpha, \beta\})$ has codimension at least 1. It
is clear that if $\phi$ is PWP and $f(\alpha)=\phi(\alpha)$ and $g(\beta)=\phi(\beta)$ for some
$f,$ $g\in R[x_{1}, . . . , x_{n}]$ , then $f-g$ must vanish on $V_{R}(\{\alpha, \beta\})$ (–compare
with condition (3) in the theorem.)

What makes the Pierce-Birkhoff problem difficult is that in general
\langle $\alpha,$

$\beta$ } $\neq I(V_{R}(\{\alpha, \beta\}))$ . In many cases there are polynomials outside of
$\{\alpha, \beta\}$ which vanish on $V_{R}(\{\alpha, \beta\})$ . However, if $X$ is smooth and the
codimension of $V_{R}(\{\alpha, \beta\})$ is exactly 1, then it can be deduced from the
Transversal Zeroes Theorem that $\{\alpha, \beta\}=I(V_{R}(\langle\alpha, \beta\rangle))$ . We see again
that the difficulties of the Pierce-Birkhoff Conjecture lie in codimension at
least 2.

We describe another instance in which $\{\alpha, \beta\}=I(V_{R}(\{\alpha, \beta\}))$ . (This
will be used in the next section.) For any $x\in R^{n}$ and $Y\subseteq R^{n}$ , let
$arrow^{xY}$

$:=\{\lambda(y-x)|\lambda\in R_{\geq 0}, y\in Y\}$ . Assume $X$ is compact. If $\alpha\in\tilde{X}$ ,

it is possible to show that there is $t\in R^{n}$ such that $\bigcap_{Y\in\alpha}arrow^{(Cntr\alpha)Y}=$
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{ $\lambda t|$ A $\in R_{\geq 0}$ }. We call $D(\alpha)$ $:=\{\lambda t|\lambda\in R_{\geq 0}\}$ the “tangent ray of
$\alpha$

’ If Cntr $\alpha=x=Cntr\beta$ and $D(\alpha)\neq D(\beta)$ , then $n$ independent linear
functions can easily be found in { $\alpha,$

$\beta\rangle$ , and hence $\{\alpha, \beta\}=m_{x},$ $(m_{x}=$

the maximal ideal at $x$ ). (Note: If $X$ is a manifold, but is not given as a
subset of $R^{n}$ , we may view $D(\alpha)$ as an element in the tangent space at
Cntr $\alpha.$ )

Section 3.

It is possible to use quadratic transformations to prove that the Pierce-
Birkhoff condition holds for any smooth semialgebraic surface. We describe
how to do this in the present section, after first reviewing some facts about
quadratic transforms of surfaces.

Suppose that $X$ is an algebraic variety and $P$ is a point of $X$ . We write
$P’\succ P$ to indicate that $P’\in\pi^{-1}(P)\subset X’$ , where $\pi$ : $X’arrow X$ is the blow-
up with center $P$ . If there is a sequence $P^{(k)}\succ P^{(k-1)}\succ\ldots\succ P^{(0)}=P$ ,
then we call $P^{(k)}$ an “infinitely near point of $P$ ’ The algebra associated
with points infinitely near to $P$ when $P$ is a regular point of a surface is a
classical topic in algebraic geometry. Zariski found a way of formulating it
in modern ideal-theoretic language.* We shall sketch the relevant part of
the theory.

Let $P$ be a regular point in a surface, and let a sequence $P^{(k)}\succ$

$P^{(k-1)}\succ\ldots\succ P^{(0)}=P$ be given. Let $(\mathcal{O}^{(i)}, m^{(i)})$ denote the local ring at
$P^{(i)}$ . Recall that $\mathcal{O}^{(i+1)}$ is a localization of $\mathcal{O}^{(i)}[y_{i}/x_{i}]$ , where $x_{i}$ and $y_{i}$

*See [O. Zariski, Polynomial ideals defined by infinitely near points,
Amer. J. Math. 60 (1938), 151-204]. This was one of Zariski’s earliest at-
temptsto express notions of algebraic geometry in ideal-theoretic language.
Lately, there has been renewed interest in this theory; see [C. Huneke, Com-
plete ideals in two-dimensional regular local rings, Commutative Algebra,
Proc. Microprogram, MSRI Publication No. 15, Springer-Verlag, Berlin-
Heidelberg-New York (1989), 325-38], [J. Lipman, On complete ideals in
regular local rings, Algebraic Geomet$ry$ and Commutative Algebra in honor
of M. Nagata (1987), H. Hijikata (ed.), Kinokuniya Co., Tokyo, 203-31], and
[M. Spivakovsky, Valuations in function fields of surfaces, Amer. J. Math.
112 (1990), 107-56].
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are appropriately chosen generators of $m^{(i)}$ . (To allay any questions: we
assume that $\mathcal{O}^{(k)}$ is 2-dimensional.) Given $f\in \mathcal{O}^{(0)}$ , put $f^{(0)}$ $:=f$ and
inductively define $f^{(i+1)}$ $:=\varpi x_{i}1^{-ord_{i}(f^{(i)})}f^{(i)}\in \mathcal{O}^{(i+1)}$ . The so-called
“effective multiplicities” of the sequence $P^{(k)}\succ P^{(k-1)}\succ\ldots\succ P^{(0)}=P$

are the integers $e_{i}$ $:= \min\{ord_{i}(f^{(i)})|f^{(i)}\in m^{(i)}, i=0,1,2, \ldots, k\}$ . Given
$f\in \mathcal{O}^{(0)}$ , the so-called “virtual transforms” of $f$ are the elements

$V^{(i)}(f)$ $:=( \prod_{j=0}^{i-1}U^{x_{j}}\ddagger^{-e_{j}})f$ .

In general, $V^{(i)}(f)$ is not an element of $\mathcal{O}^{(i)}$ . It can be shown that
$I(P^{(k)})$ $:=\{f\in m^{(0)}|V^{(i)}(f)\in m^{(i)}, i=1,2, \ldots, k\}$ is a simple ideal
primary to $m^{(0)}$ and that $P^{(k)}\mapsto I(P^{(k)})$ is a bijection between points
infinitely near $P$ and simple ideals primary to $m^{(0)}$ . (This theory works
when relativized to the real coordinate ring of the set of real points of a
surface, but since the intent of the present talk is just to convey impressions,
I won’t say anything more explicit.)

Now assume that $X_{R}$ is the set of real points of a surface $X$ , and
for simplicity assume that $X_{R}$ is a compact manifold of (real) dimension
2. Take any $\alpha\in\overline{X_{R}}$ with $V_{R}(supp\alpha)\neq$ Cntr $\alpha$ and Cntr $\alpha$ regular. Let
$\pi$ : $X’arrow X$ be the blow-up of Cntr $\alpha$ . There is an element of $X_{R}’$ –call
it $\alpha’$ –consisting of the closed semialgebraic subsets of $X_{R}’$ which con-
tain some set of the form $X_{R}’\cap\pi^{-1}(S\backslash \{P\})$ with $S\in\alpha$ . We may
iterate this construction, and we get a sequence of real spectrum points
$\alpha=\alpha^{(0)},$ $\alpha^{(1)},$

$\ldots$ whose centers form a sequence of infinitely near points:
. . . $\succ$ Cntr $\alpha^{(1)}\succ$ Cntr $\alpha^{(0)}$ .

If $\beta$ is another point of $\overline{X_{R}}$ with $V_{R}(supp\beta)\neq$ Cntr $\beta$ , Cntr $\beta=$

Cntr $\alpha$ and $\pm D(\alpha)=\pm D(\beta)$ (notation in the last paragraph of the pre-
vious section), then Cntr $\beta’=$ Cntr $\alpha’$ Therefore, if { $\alpha,$

$\beta\rangle$ is not the
maximal ideal at Cntr $\alpha$ , the sequences . . . $\succ$ Cntr $\alpha^{(1)}\succ$ Cntr $\alpha^{(0)}$ and
. . . $\succ Cntr\beta^{(1)}\succ Cntr\beta^{(0)}$ agree for some initial terms.

I have proved the following:

Theorem. If $\{\alpha, \beta\}$ is primary to the maximal ideal at Cntr $\alpha$ then { $\alpha,$
$\beta\rangle$

is the simple $com$plete ideal corresponding to the sequence of infinit$ely$ near
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poin$ts$ Cntr $\alpha^{(k)}\ldots\succ$ Cntr $\alpha^{(1)}\succ$ Cntr $\alpha^{(0)}$ , where $k$ is the leas$t$ integer
for which $D(\alpha^{(k)})$ and $D(\beta^{(k)})$ are distinct.

I will not attempt to describe the proof, which depends on Zariski’s
theory. I would like,to sketch the proof of the following

Corollary. $E$very regular real algebraic surface $X_{R}$ satisfies the $con$dition
of Pierce-Birkhoff.

Proof sketch. Suppose that $\phi$ : $X_{R}arrow R$ is PWP, $\alpha,$
$\beta\in\overline{X_{R}}$ and

$\phi(\alpha)=f(\alpha)$ and $\phi(\beta)=g(\beta)$ for some $f,$ $g$ in the real coordinate ring
of $X_{R}$ . We need to show $g-f\in\{\alpha,$ $\beta\rangle$ . In remarks in section 2, we
indicated that this was immediate except in the case when $\{\alpha, \beta\}$ is pri-
mary to a maximal ideal which properly contains it. In the difficult case
$rad\{\alpha,$ $\beta\rangle$ corresponds to the point Cntr a $\in X_{R}$ . Take a small closed disk
$D$ about Cntr $\alpha$ , within which Trans $\phi$ is a finite union of half-branches
$B_{1},$

$\ldots,$
$B_{s}$ of curves emanating from Cntr $\alpha$ which are disjoint except at

Cntr $\alpha$ . We can assume there are at least three such half-branches by
adding a new one if needed, and that the half-branches are numbered
in order as one travels around Cntr $\alpha$ . Consecutive half-branches bound
closed semialgebraic “wedges”, $W_{1},$

$\ldots,$
$W_{s}$ , with $W_{1}$ between $B_{s}$ and

$B_{1}$ , etc. Suppose the numbering has been choicen so that $W_{1}\in\alpha$ and
$W_{m+1}\in\beta$ and the tangent rays of $B_{1},$

$\ldots,$
$B_{m}$ are equal to $D(\alpha)(=$ the

common tangent ray of $\alpha$ and of $\beta$ ). The key idea of the proof is that
the configuration fo the wedges is preserved by blowing up Cntr $\alpha$ , pro-
vided that $D(\alpha’)=D(\beta’)$ . Indeed, consider the the sequence of points
Cntr $\alpha^{(k)}\ldots\succ$ Cntr $\alpha^{(1)}\succ$ Cntr $\alpha$ , where $k$ is the least integer for which
$D(\alpha^{(k)})$ and $D(\beta^{(k)})$ are distinct. The proper transforms of the (curves
corresponding to the) half-branches $B_{1},$

$\ldots,$
$B_{m}$ must pass through these

points, so by the theorem above, a function in the coordinate ring which
vanishes on one of the sets $B_{1},$

$\ldots,$
$B_{m}$ belongs to $\{\alpha, \beta\}$ . Now assume

$\phi=f_{i}$ on $W_{i}$ ( $f_{i}$ in the coordinate ring). Then $f_{i+1}-f_{i}$ vanishes on $B_{i}$ .
As $g-f=f_{m+1}-fi=(f_{m+1}-f_{m})+(f_{m}-f_{m-1})+\ldots+(f_{2}-f_{1})$ , we
have the desired result.

Section 3.

The difficulty with making this approach work in higher dimensions is
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that the correspondence between infinitely near points and ideals becomes
much more complicated. The extension of Zariski’s theory to higher dimen-
sions was a problem he himself posed in the paper mentioned above, but
very little seems to have been accomplished in the interim. Some interesting
results are in [J. Lipman, On complete ideals in regular local rings. Alge-
braic Geometry and Commutative Algebra in honor of M. Nagata (1987),
H. Hijikata (ed.), Kinokuniya Co., Tokyo, 203-31]. Fortunately, the re-
sults discussed above do not seem to me to depend on any of the parts of
Zariski’s theory which are known to fail in higher dimensions, e.g. unique
factorization of complete ideals in dimension 2.

I believe that there are examples in dimension 3 in which we can hold
$\alpha$ fixed and maintain the condition that $k$ is the least integer for which
$D(\alpha^{(k)})$ and $D(\beta^{(k)})$ are distinct and yet cause $\{\alpha, \beta\}$ to vary depending
on the position of $D(\beta^{(k)})$ .


