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Kirillov-Kostant theory and Feynman path integrals on
coadjoint orbits of a certain real semisimple Lie group

Takashi1 HasaiMoTO

Department of Mathematics, Faculty of Science, Hiroshima University

0 Introduction

Alekseev, Faddeev and Shatashvili showed in [1] that any irreducible unitary
representation of compact groups can be obtained by path integrals. They com-
puted characters of the representations. We showed in [3] that path integrals give
unitary operators of the representation which is constructed by Kirillov-Kostant
theory for some Lie groups. '

In [4] we found that, in order to compute the path integrals with nontrivial
Hamiltonians for SU(1,1) and SU(2) to obtain unitary operators realized by
Borel-Weil theory, we have to regularize the Hamiltonian functions, and in [5]
we extended the results to the case that the maximal compact subgroup K of a
connected semisimple Lie group G has equal rank to the complex rank of G.

In the rest of this section we shall show how the path integral reproduces
the representation constructed by Kirillov-Kostant theory in the case of SL(2,R)
with real polarization. This was done in [3].

Let
G =SL(2,R) = {g= (‘C‘ S) : ad—bc:l}

g=sl(2,R)={X= (Z Z) ;a+d=0}

Since the bilinear form (,) on g given by (X,Y) = trXY is nondegenerate, the
dual space g* of g is identified with g. :
a/2 0

0 —o/2
Hx = L2(R). We define a representation (Ux, Hy) of G as follows:

For a nonzero real number o, we put A = € g* and put

Ux(9)F(z) = | = ez + o]~ V=Tt p ( dz —b )
—cz+a

forgz((cl s>€GandF€'H,\.

We can obtain this representation by path integrals as we shall show below.



We introduce local coordinates on G by

(0 L)

Note that such elements forms an open subset of G which is also dense.

Then define a 1-form ¢ by
¢ = () g7 'dg) = o(udz + dv).

Since dv is exact 1-form, we choose o = cudz and put p = cu. The p is called
momentum in quantum mechanics. Define a function H(g : Y) for Y € g, which
we call Hamiltonian function, by

H(g:Y)=(Ad*(9)\,Y)

0
r a(o + 2pz) if Y= (a )
0 —a
. 0 b
K ' (0 0)
0 0
—c(oz + pz?) if Y=( ),
\ c 0

where Ad* denotes the coadjoint action of G on g*.

The path integral we should compute is given, symbolically, by

/D(m,p) exp (\/:—1/: Y'a—H(g: Y)dt) ,

where v denotes the paths in the phase space given below.

We divide the time interval [0,T] into N small intervals [T, £T) (k =
1, T )N) and fix xo(z I’), I1,°°" ,IN-1, mN(= z”) and Po,P1," " ,PN-1 arbi-
trarily. Then we consider the following paths:

z(0) =z', z(T)=2z"

z(t) =zk-1 + (t - f-];—l-:r) (____“;/;;-1)
p(t) =pr-1

for t € [T, £T7.
Furthermore, corresponding to a quantization of the Hamiltonian functions,
we take the following ordering of the Hamiltonians: On each interval [221T, £T1,
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we replace H(g:Y) by

. a 0
a(o + pr-1(zk + Tx-1)) f Y= (0 _a)
. 0 0
—c(ozp—1 + Pr-1Zk-izg) I Y = )
\ c 0

For each generator Y € g, we compute

N-1 dp
Ky(z",2': T =th/ /Hd:c_, -—’

exp\/:_{ZPk-1($k - 21:-1) - ch(g : Y)
k=1

=3
N

Then we have
/ Ky(a", 2" : T)F(s')ds' = (Un(exp TY)F)(x")
R

for each generator Y € g and F € H,.

Now we take another polarization and construct, following Kirillov-Kostant
theory, another unitary representation which is known to be equivalent to the
one given above.

Put H; = L?(R). Then the representation (Us, H;) is given by

Us()F(y) = | - by + /T (=)

forg=<j 3) € Gand F € H;.

Corresponding to the second polarization, we introduce local coordinates
on G by '
_ (10 1 w +e* 0
I=\y 1/\0 1 0 e )"
Then the 1-form ¢ is, in this parametrization, given by
¢ = o(—wdy + ds).

Since ds is exact 1-form, we choose @ = —gwdy and put p' = cw.



Then, proceeding analogously to the argument above, we can show that the
path integrals give the kernel functions Ky (y",y' : T) of the unitary operators
U; (expTY') for each generator ¥ € g.

Now consider the difference of the two 1-forms:
& —a =adlog|l — zy|.
Therefore
T T
/ ¥*a— H(g:Y)dt —/ v*a— H(g:Y)dt
0 0
=o(log|l — z"y"| — log |1 — z'y'|),

which implies that
T
/ & —H(g:Y)dt+olog|l—2'y|
0
T
=clog|l —z"y"| + / v*a— H(g:Y)dt.
0

Suggested by this, consider an integral operator with kernel function

e\/:l_dlogn—a:y] — |1 _ zy‘la.

But this operator does not commute with the unitary operators U ( g) and Us(9)
(g € G), so we modify the kernel function by multiplying |1 — zy|~!. Then
the following integral operator A gives a formal intertwining operator between

(UA,HA) and (UX,H:\) [9][10]2

(AF)(y) = /R 11— oy F(z)da

for F € H,.
We shall give a slight generalization of this in the following.
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1 Kirillov-Kostant theory

Let G be a linear connected noncompact semisimple Lie group, g its Lie alge-
bra. We fix a Cartan involution # of g and denote the Cartan involution of GG
corresponding to that of g, also by 8. Let

g=todp

be the corresponding Cartan decomposition, B the Killing form on g. Since B
is nondegenerate, the dual space g* of g is identified with g by

go3rv—X, €y, (1.1)
where
B(X,,X)=v(X) forall X €g.
We also use the notation (v, X) for v(X).

Let a C p be a maximal abelian subspace, ¥ the corresponding set of
nonzero restricted roots, and m the centralizer Zy(a) of a in & Fix a Weyl
chamber in a and let £t denote the corresponding set of positive restricted
roots. Then we have the decomposition

=000 ) 6a,
a€X

where
go=adm and g,={X€g;[H,X]=a(H)X for H € a}.

Define

where m, = dimg,.

Let K, A, N be the analytic subgroups corresponding to €, a, n, respectively,
and M the centralizer Zg(a) of a in K. Then NMAN is an open subset of
G whose complement is of lower dimension and has Haar measure 0, where

N =46N. ‘

For any element v € a* we denote by H, the element of a such that
B(H, H,))=v(H) forallH € a. (1.2)

We extend any linear form v on a to a linear form on g by defining v to vanish
on the orthogonal complement of a with respect to the Killing form.



Let A be an element of a* which corresponds to a regular element of a by
(1.2). We denote the coadjoint action of G on g* by Ad*. Then it is easy to see
that the isotropy subgroup ~

Gr={g € G;Ad*(9)A = A}

at A equals M A, and its Lie algebra g, equals m @ a. As a real polarization we
take 5_ = m @ a® T, where T = §n. Correspondingly, we put S_ = MAN.

Then the Lie algebra homomorphism
—V=1X:s5_ — V/=1R, Xo+ H+ X_ — —V—=1A(H)
lifts to the unitary character of S_:

~VETAE),

S_ — U(1), mexpHT — e

We define a one-dimensional representation £, of S_ by

£A . S_ —_ CX) mepoﬁ,_.) e—(\/:-fz\'FP)(H).

Let Ly be the C*™-line bundle over G/S_ associated to the one-dimensional
representation £, of S—. Then we can identify the space of all C*°-sections of
L by with

C(Ly) = {f € C=(G); f(zb) = £x(b) "' f(2),z € G,b€ S_}.

For any f € C*°(L,) we put

112 = /A F(R)[2dE,

where dk is a Haar measure on K. Let V) be the completion of C*(Ly) with
respect to the norm. For g € G, f € C*®(L,) and z € G, we define

m(9)f(z) = f(g7 =)
Then 7 can be uniquely extended to a unitary operator on V), which we also
denote by ).

For each o € £t we can find nonzero root vectors E4; € go (1 =1, ,mq)
such that :
B(Eq4i,0E,,;) = —6ij,

where §;; is Kronecker’s delta. Put E_,; = —§E,; and introduce differentiable
coordinates on n and T as follows:

My
R™ > n, mz(za,i)aex*",i:l,m,ma — E , § :ma,iEa,i
a€X+ i=1
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My
R™ — ﬁ; y= (ya,i)aEE"',i:l,m,m,, L Z Zya,iE—a,h

aE s+ i=1
where m =dim n. Put
My
ng = exp Z Zza,iEa,; EN (1.3)
a€Z+ i=1 '
My
Ny = exp Z ZAya,;E-a,; € N. (1.4)

a€xt i=1
We define a map L of C*°(L,) into C*(N) by
Lf(n) = f(n) for fe€C>®(L,). (1.5)

Then, defining a norm on C*°(N) with respect to a Haar measure on N, one
can show that

17117 = IILFII%,
when the Haar measures are suitably normalized.

Let H, be the completion of the image of C*°(L,) by L. Then one can
show that L is extended to an isometry of V) onto H,. Define a representation
(Ux, H») of G such that the following diagram commutes for any g € G :

L
Vi — Ha

)| |m@

L
. V)\ —_— H)\.
For g € NM AN, we write as
g = n(g)m(g)a(g)n(g). (1.6)

Then
Ur(9)F(z) = eV=1A+P)logala™"n2) p(p(g~1n, ) (1.7)

for F € L(C™(L4)).



2 Quantization
We retain the notation of §1. Moreover, for £ = (Za,i)aes+ i=1--mqs We put
My
X=Y Y zaiEa (2.1)

In this section we compute the differential representation dUy of Uy and quantize
the Hamiltonian functions for Y € m @ a or n.

We deéompose Ad(e X)Y as
Ad(e™X)Y =X, +Xo+ H+ X_ (2.2)
with X, € n, Xoe€m H €aand X_ €.
Then, for Y € g and F € CZ°(N), dU»(Y) is given by
dA(Y)F(2) = ~ (VT (A Ad(ns)"Y) + (p, Ad(n,)"'Y)) F(2)

-2 ica,; 0a,i F'(2), (2.3)

aent i=1
where z = (ma’,’), ng = exp X, (‘)a,,- = 6/82:a,s and
ad X
Cayi =B (mxh E—a,i) .

Define a 1-form ¢ by

o =() g7 "dg)
= (Ad*(R))A, n(g) " tdn(g)) + (A, a(g) "'da(g)),

where d is the exterior derivative on G and @ = m(g)a(g)n(g)(m(g)a(g))".
Since the second term is an exact 1-form, we choose

as_ = (Ad* (@), n(g) " dn(g)).
and parametrize n(g) as n(g) = exp X, where X is of the form (2.1). Let

Pa,i = as_(04,i)

i.e. po i is the coefficient of dza; In 05_ @ as_ = ), ;Pa,idZa,i- Then po; is

given by
adX __ 1

€
Pa,i = B (m—Ad(ﬁ)H,\,Ea,;> .
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Using co; and p4;, we have, for Y € g,

H(g:Y) = (A Ad(n:)7'Y) + ) an iPasi (2:4)
aex+ti=1
where g € NMAN and n(g) = n, = exp X.

Now, using (2.4), we quantize the Hamiltonian function for Y € m@aor n,
replacing z,,; and v/~—1pa,; in H(g : Y) by z4,;x (multiplication operator) and
Ou,i, respectively, (canonical quantization !) and choosing an operator ordering
between z, ;x’s and 0,,i’s.

ProprosITION 2.1. ForY € m@®a or n, we define quantized Hamiltonians H(Y")
as follows :

(i) ForY e m & q,

HY)=(\Y) - i;—-_—l- Z i {€a,i0ui +0ni0cai};

agT+ i=1
(ii) For Y € n,

= “\/__:I- Z iaa,i O Caq,iy

a€2+ i=1

where o denotes the composition of operators. Then the quantized Hamiltonian

coincides with v/—1dU,(Y)

Remark. Y € n, since 04,icq,i = 0, we obtain

“\/rl_ E ica,iaa,i

agxt i=1

v—1 Ma
== Z Z {ca,iaa,i + aa,z' o ca,i} .

agZt i=1

But we do not adopt these quantizations in the present paper.



3 Path integrals

In this section we show that the path integrals with Hamiltonian functions with
Y € m@® a or n give the kernel function of the unitary operator constructed in
§1. For detail, we refer the reader to [6].

The path integral is, symbolically, given by

/D(m,p) exp (\/__1/: Yas —H(g: Y)dt)

for Y € g, where v denotes certain paths in the phase space [3].
Here we divide the time interval [0, 7] into N small intervals

k—1_ k
N N

T T] (k=1,---,N).

- On each small interval [%f,lT, £TY], Proposition 2.1 indicates that we should
take the following ordering of Hamiltonian functions Hi(g:Y) withY e m@ a
or n.

(1) ForY e ma q,

Hi(g:Y) = () Y)+ > Z(ca,pa. +ph5lekah),

aEE‘l’t 1
where ¢f | = a(Y)a:
(i1) For Y €en,
Hi(g:Y)= Y Y piiteEil,
a€X+ i=1
where Lk
ad X
clz;,i =B (ea’dxk _ 1Y) E—a,i)

and X* = Za,i a:’;,,-Ea,;.
Now the computation of the path integral.

For z = (z4,:), 2" = (2, ;) given, let 23 ; = z,;, z; =z, ;. We put
Ma .
dal = [ ] de’,; and dp/ = T )m II Hdp{“
acr+i=1 acx+i=1

for brevity, where m = dim n. Remark that the Haar measure dz on N equals
the Haar measure dn given in §1, up to constant multiple.
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A. Path integral forY e md a
Recall that if Y € m @ a, then Hi(g:Y) is given by

1 X e _
Hi(g:Y)=(A\Y)+ 5 Z Zpi,il(cﬁ,i +chit),
aezt izl

where ¢k ; = a(Y)2k ;.

B. Path integral for Y € n
Recall that if Y € n, then Hy(g :Y) is given by

Hlg:¥)= Y0 Yoskieks,

a€ezt i=1
where .
Coi = B (;%X__l}’, E—-a,{)
and X* =3, ;25 Ea;. Now we assume that

C°nDC'n D C*n D C%n= {0}, (3.1)

where C°n = n and C**ln = [n,C'n].

Then, computing the path integrals as in §0, we obtain

THEOREM 3.1. (i) For Y € m & a, taking the ordering of the Hamiltonian

function H(g : Y) (9§ € NMAN) described in this section, the path integral
with the Hamiltonian gives the kernel function of the operator Uy(expTY).

(ii) Assume that the length of the central descending series of n is <3 (see (3.1)).
Then for Y € n, taking the ordering of the Hamiltonian function H(g:Y) (g €
NMAN) described in this section, the path integral with the Hamiltonian gives
the kernel function of the operator Uy(expTY).



4 Intertwining Operator

" In this section we take another real polarization and show that the formal in-
tertwining operator between the two representations can be obtained from the
‘path integral.

Let A be the same element of a* as in §1. We take another real polarization
s, = m® a® n. Correspondingly, we put Sy = MAN. Then the Lie algebra
homomorphism

—v-1X:s5;, — v-IR, Xo+ H+ X4 — —V-1XH)
lifts to the unitary character of Sy:

S, — U(1), mexp Hn +— e~ VIAH)

We define a one-dimensional representation £\ of S by

& Sy — C%, mexp Hn +— e(—V=TA+p)(H)

Let (Hj, Us) be the unitary representatlon of G which is constructed from £,

as in §1, instead of £,. Note that Fe Hj is a function on N, on which we
introduced coordinates by (1.6).

For g € NMAN, we write as
g =7 (g)m'(g)a'(g)n'(9) (4.1)
and parametrize 7'(g) as 7'(g9) =7, = expY, where Y is of the form
Y = Z Zya,;E_a,,-. ) (4.2)
aer+ i=1
Then for g € G and F € H; the action is
Us(g)F(y) = et/ =P8 6T B (7' R,)), (43)

where y = (ya,i) and iy = exp Y 5+ Yai E-a,i- If we use the parametrization
(4.1), then ¢ is given by

=(\gldg)
= (Ad*(n')A, 7 (9) "W (9)) + (A, a'(9) "'dd'(9)),

where n' = m/(g)a’(g)n'(g)(m'(g)a’(g))~". Since the second term is an exact

1-form, we choose
= (Ad*(n")\, W(g) ™ dm'(9)) -
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Fixing y' = (y,;) and ¥ = (¥a,i), We can explicitly compute the path integral
with Hamiltonian function for Y € m @ a or T, in the same way as in §3.

For g € NMAN N NMAN, write g in two ways :

Then we have
as_ —ag, = (A, a"'da), (4.4)

where a = a(7 (9) "' n(g)).

We parametrize n(g) = n, = expX and @'(g) = 7, = expY, where X
(or Y) is of the form (2.1) (or (4.2), respectively), and fix 2’ = (z,;), = =
(Zayi), ¥' = (¥ ;) and ¥y = (Ya,i)- .

Then using (4.4) and proceeding analogously to the argument in §0, we can’
show that an integral operator with kernel function

exp((—v~1+ p)loga(; ' n,)) (4.5)

coincides with the formal intertwining operator A(Sy : S_ : 1 : v/=1)) given
in [9][10]. The integral operator with kernel function (4.5) is not well-defined in
the sense that the integral

/ (VTN g (77 02) (1) dg
N

need not converge for F € H, . Knapp and Stein showed in [9][10] that if one
regularizes the integral suitably, then the regularized operator, A(S4 : S_ :1:
v/—1)) in their notation, is a well-defined intertwining operator and is invertible,
1.e., the following diagram commutes for all ¢ € G.

A(S4:5_:1:/=11)
by Hs

UA(y)l lvx(g)

A(S4:5_:1:/=1A)
A : > H;

THEOREM 4.1. The path integral with the action defined by (4.5) provides the
formal intertwining operator A(Sy : S- : 1 : /=1)), where A(Sy : S_ : 1:
v—11) is given by

A(S4:S-:1:vV/=1N)f(a,) = /Nf(fzynx)dz for f € V),



when the indicated integrals are convergent.

We can compute the path integral for Y € T using the polarization given

in this section in the same way as in §3.

Thus, considering the composition

A(S4:S_:1:v/=1X)"toUs(expTY) 0 A(S4 : S- : 1: V=1]),

we can obtain the unitary operators Uy (expTY) for Y € @by the path integrals.
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