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On Malign Input Distributions for Algorithms

東工大・理 小林孝次郎 (Kojiro Kobayashi)

1 Introduction

One important problem in the theory of complexity of computation is how the average-case

computation time of algorithms is related to the probability distribution of inputs.

Concerning this problem, Li and Vit\’anyi [2] found an interesting result that if inputs

to algorithms are selected with the probability that is proportional to a semicomputable

measure that is known as an a priori measure [3], then the worst-case computation time

and the average-case computation time are roughly the same for any algorithm. A more

precise statement of this result is as follows.

By a measure we mean a function $\mu$ from $\{0,1\}^{*}$ (the set of all binary sequences) to

real numbers such that $\mu(x)\geq 0$ for any $x$ and $\mu(\{0,1\}^{*})<\infty$ . For an algorithm $A$

and a measure $\mu$ , let $t_{A}^{wo}(n)$ denote the worst-case computation time of $A$ for inputs from

$\{0,1\}^{n}$ (the set of all binary sequences of length n) and let $t_{A}^{av,\mu}(n)$ denote the average-case

computation time of $A$ for inputs from $\{0,1\}^{n}$ where a sequence $x$ in $\{0,1\}^{n}$ is given to $A$

with the probability $\mu(x)/\mu(\{0,1\}^{n})$ . Li and Vit\’anyi’s result says that if $\mu$ is an a priori

measure then for any algorithm $A$ there exists a constant $c(>0)$ such that $t_{A}^{wo}(n)\leq ct_{A}^{av,\mu}(n)$

for any $n$ . Miltersen [4] called measures having this property “malign measures.” Then Li

and Vit\’anyi’s result says that a priori measures are malign.

A priori measures are very complicated mathematical objects and it is difficult to imag-

ine a real situation where inputs are generated with the probability that is proportional to

an a priori measure. Hence, if “a priori”-ness and malignness are equivalent, we may regard

Li and Vit\’anyi’s result as one interesting but pathological phenomenon. In the present pa-
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per, we consider the problem of whether the two notions “a priori”-ness and malignness are

different or not.

For this problem, we first introduce the notion of strongly malign measures and point out

that what Li and Vit\’anyi proved is that a priori measures are strongly malign. Although the

intuitive notion of malignness allows several natural variations of definition of malignness

other than the one introduced by Miltersen, strong malignness seems to imply all of these

variations. Hence we may regard strong malignness as the strongest of these variations.

Then we show that there exists a semicomputable strongly malign measure that is not a

priori. This means that the two notions “a priori”-ness and malignness are different in one

strong sense.

We also show two results concerning a priori measures and Kolmogorov complexity. For

a rational number $p$ such that $0<p<1$ , let $P_{p}(x)$ denote the probability that a universal

prefix-free algorithm $A_{U}$ outputs a binary sequence $x$ when the input binary sequence to

$A_{U}$ is randomly selected with $p$ as the probability that the symbol 1 is selected. It is known

that $P(x)=P_{1/2}(x)$ is an a priori measure. We show that $P_{p}(x)$ is an a priori measure for

each $p$ . Let $H_{p}(x)$ denote the smallest of $|u|_{p}$ for binary sequences $u$ such that $A_{U}$ outputs

$x$ when $u$ is given to $A_{U}$ as an input, where $|u|_{p}$ denotes the value ( $-\log_{2}$(1-p))(number

of $O’ s$ in u) $+$ ( $-\log_{2}$ p)(number of l’s in $u$ ). The value $H(x)=H_{1/2}(x)$ is known as the

(prefix-free algorithm based) Kolmogorov complexity of $x$ . We show that for each $p$ there

exists a constant $c$ such that $|H(x)-H_{p}(x)|\leq c$ for any $x$ .

2 Preliminaries

Let $\Sigma$ denote the set $\{0,1\}$ of two symbols $0,1,$ $\Sigma^{n}$ denote the set of all sequences of $0,1$

of length $n$ , and $\Sigma^{*}denote$ the set $\Sigma^{0}\cup\Sigma^{1}\cup\Sigma^{2}\ldots$ . We call an element of $\Sigma^{*}$ a word. For

each word $x$ , let $|x|$ denote its length. Let $\lambda$ denote the empty word, that is, the sequence

of length $0$ . We use $N,$ $Q,$ $R$ to denote the sets of ail natural numbers, all rational numbers,
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and all real numbers respectively. We assume that some standard one-to-one mapping from

$N$ onto $\Sigma^{*}$ is fixed and we identify a number with its corresponding word. Throughout in

this paper, $\log x$ means $\log_{2}x$ .

By a measure we mean a function $\mu$ from $\Sigma^{*}$ to $R$ such that $\mu(x)\geq 0$ for any $x$ and

$\mu(\Sigma^{*})<\infty$ (for $L\subseteq\Sigma^{*},$ $\mu(L)$ denotes $\Sigma_{x\in L}\mu(x)$). A measure $\mu$ is said to be semicomputable

if there exists a computable function $fbom\Sigma^{*}\cross N$ to $Q$ such that $f(x, n)\leq f(x, n’)$ for

$n\leq n’$ and $hm_{narrow\infty}f(x, n)=\mu(x)$ . For two functions $f,$ $g$ from $N$ to $R$ , we write $f_{\sim}<g$ if

there exists a constant $c(>0)$ such that $f(n)\leq cg(n)$ for any $n$ . We write $f\approx g$ if both of

$f_{\sim}<g,$ $g_{\sim}<f$ hold true.

By an algorithm we mean a deterministic Turing machine. We assume that algorithms

accept words as inputs and generate words as outputs if they halt. Let $\phi_{A}(x)$ denote the out-

put of an algorithm $A$ for an input $x$ . When the algorithm does not halt, $\phi_{A}(x)$ is undefined.

We assume that some standard one-to-one mapping from the set of all (representations of)

algorithms onto $\Sigma^{*}$ is fixed and we identify an algorithm with its corresponding word.

By a step counting function, we mean any partial function $time_{A}(x)$ that assigns a

natural number to an algorithm $A$ and an input $x$ that satisfies the following two conditions

(the “Blum’s axioms” [1]): (1) $\phi_{A}(x)$ is $defined\Leftrightarrow time_{A}(x)$ is defined; (2) the predicate
(
$time_{A}(x)\leq t$’ on $A,$ $x,$ $t$ is decidable. We understand that the predicate “time$A(x)\leq t’$

)

is false when $time_{A}(x)$ is undefined.

Suppose that one step counting function is fixed. We define the worst case computation

time $tW^{o}(n)$ of an algorithm $A$ for inputs of length $n$ by $t_{A}^{wo}(n)= \max_{x\in\Sigma\hslash}time_{A}(x)$ . For

each measure $\mu$ , we define the average case computation time $t_{A}^{av,\mu}(n)$ of an algorithm A for

inputs of length $n$ by $t_{A}^{av,\mu}(n)=\Sigma_{x\in\Sigma n}(\mu(x)/\mu(\Sigma^{n}))$ time$A(x)$ .

Definition 1 ([4]) A measure $\mu$ is malign if it satisfies the following two conditions for
any step counting function: (i) $\mu(\Sigma^{n})>0$ for any $n$ ; (ii) for any algorithm $A$ that halts for
all inputs there exists a constant $c(>0)$ such that $t_{A}^{wo}(n)\leq ct_{A}^{av,\mu}(n)$ for any $n$ .
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3 A Priori Measures

There are several equivalent ways to define a priori measures. The first is to define them

as semicomputable measures that are largest among $a\mathbb{I}$ semicomputable measures.

Definition 2 An a priori measure is a semicomputable measure $\mu$ such that for any semi-

computable measure $\mu’$ there exists a constant $c(>0)$ such that $\mu’(x)\leq c\mu(x)$ for any $x$ .

Existence of such measures is well-known ([3]).

Other ways to define a priori measures use prefix-free algorithms. For two words $x,$ $y$ ,

$y$ is a prefx of $x$ if there exists a word $z$ such that $yz=x$ . A set of words $L$ is prefix-free

if it contain no two different words $x,$ $y$ such that $y$ is a prefix of $x$ . Note that the value

$\Sigma_{x\in L}2^{-|x|}$ is always defined and is at most 1 for any prefix-free set $L$ .

An algorithm $A$ is prefix-free if the domain $dom(\phi_{A})$ of the partial function $\phi_{A}$ is prefix-

free. It is well-known that there exist one prefix-free $algorithmA_{U}\sim$ and one prefix-free set

of words $L_{U}$ that satisfy the condition: for any prefix-free algorithm $A$ there exists $h\in L_{U}$

such that $\phi_{A_{U}}(hx)=\phi_{A}(x)$ for any $x$ . We call such $A_{U}$ a universal prefix-free algorithm

and the word $h$ a code of the algorithm $A$ for $A_{U}$ . We use $A_{U}$ and $L_{U}$ to denote some fixed

universal prefix-free algorithm and set of codes.

For each word $x$ we define a real number $P(x)$ and a natural number $H(x)$ by $P(x)=$

$\Sigma_{y}\{2^{-|y|}|\phi_{A_{U}}(y)=x\}$ and $H(x)= \min\{|y||y\in\Sigma^{*}, \phi_{A_{U}}(y)=x\}$ . (We use the notation

$\Sigma_{x}\{f(x)|S(x)\}$ to denote the sum of $f(x)$ for all words $x$ that satisfy the condition $S(x).)$

The value $P(x)$ is the probability that a randomly selected infinite sequence of $0,1$ starts

with a word $y$ such that $\phi_{A_{U}}(y)=x$ . The value $H(x)$ is the value that is known as the

(prefix-free algorithm based) Kolmogo$rov$ complexity of $x$ ([3]). The second way to define

a priori measures $\mu$ is by the condition (
$\mu$ is semicomputable and $\mu(x)\approx P(x)$ and the

third is by the condition $\mu$ is semicomputable and $\mu(x)\approx 2^{-H(x)}$ . These three definitions

of a priori measures are equivalent. From now on we fix one a priori measure and denote it

by $\tilde{\mu}$ .
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Theorem 1 ([2]) If $\mu$ is an a priori measure then it is malign.

Proof. The proof in [2] is quite simple. However, here we devide it into two parts to make

its logical structure clearer. The proof of the condition $\mu(\Sigma^{n})>0$ is easy and we omit it.

Let $\mu$ be an a priori measure and let $A$ be an algorithm that halts for all inputs. Suppose

that a step counting function is fixed. Let $w(n)$ denote one of the worst inputs of length $n$ .

(1) The proof that there exists a constant $c(>0)$ such that $\mu(w(n))\geq c\mu(\Sigma^{n})$ for any $n$ .

Let $A_{0}$ be an algorithm such that

$\phi_{A_{0}}(y)=\{\begin{array}{l}w(|\phi_{A_{U}}(y)|)undefi ned’\end{array}$ $oth^{U}erwise\phi_{A}(y)is$
defined,

This algorithm $A_{0}$ is prefix-free. Let $h$ be one of its codes. Then there exist constants $c_{1},$ $c_{2}$

$(>0)$ such that we have, for any $n,$ $\mu(w(n))\geq c_{1}P(w(n))\geq c_{1}2^{-|h|}\Sigma_{y}\{2^{-|y|}|\phi_{A_{0}}(y)=w(n)\}$

$\geq c_{1}2^{-|h|}P(\Sigma^{n})\geq c_{1}2^{-|h|}c_{2}\mu(\Sigma^{n})$ . Denoting the constant $c_{1}2^{-|h|}c_{2}(>0)$ by $c$ , we have

$\mu(w(n))\geq c\mu(\Sigma^{n})$ for any $n$ .

(2) The proof that $t_{A}^{wo}(n)\leq(1/c)t_{A}^{av,\mu}(n)$ for any $n$ . For any $n$ , we have $t_{A}^{av,\mu}(n)=\Sigma_{x\in\Sigma^{n}}$

time$A(x)\mu(x)/\mu(\Sigma^{n})\geq time_{A}(w(n))\mu(w(n))/\mu(\Sigma^{n})\geq ct_{A}^{wo}(n)$. $\square$

4 Strongly Malign Measures

We defined malignness by Definition 1. However, there are several other ways to define the

intuitive notion of malignness. The variations come from two factors.

First factor is what kind of step counting functions are allowed. In [2], this factor was not

clearly stated. One extreme way is to fix one step counting function such as the number of

steps performed by Turing machines. This is the approach adopted in [4]. Another extreme

way is to allow all step counting functions that satisfy the Blum’s axioms. Our definition

adopts this approach. There are many other ways that are in between these two extreme

approaches. At present, we do not know whether the notions of malignness defined by these

two extreme approaches are different or not.
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The second factor is how to define the sizes of inputs. In Definition 1, the size of an

input $x$ meant its length $|x|$ . However, in practice we use the term “size of an input”

more loosely. For example, if $A$ is an algorithm for computing the product of two Boolean

matrices, we will use (an input of size $n$
’ to denote a bit sequence of length $2n^{2}$ that is the

representation of two $n\cross n$ bit matrices. Generally, the definition of the size of an input

depends on the algorithm that uses them as inputs.

There are several ways to formally define malignness. However, it is interesting to note

that Li and Vit\’anyi’s result that a priori measures are malign seems to hold true for all of

these variations of the definition of malignness. Therefore, a priori measures might have

one essential feature from which follows the malignness of a priori measure for all these

variations.

Analyzing the proof of Li and Vit\’anyi’s result (Theorem 1), we see that what they

essentially proved is the following property of a priori measures $\mu$ .

(A1) There exists a constant $c(>0)$ such that $\mu(w(n))\geq c\mu(\Sigma^{n})$ for any $n$ .

The malignness of $\mu$ immediately follows $hom$ (A1). However, Li and Vit\’anyi’s proof can

be readily modified to prove the following stronger property.

(A2) For any two partial recursive functions $f$ from $N$ to $\Sigma^{*}$ and $g$ from $\Sigma^{*}$ to

$N$ , there exists a constant $c(>0)$ such that $\mu(f(n))\geq c\mu(g^{-1}(n))$ for any $n$ such

that $f(n)$ is defined.

We think that the porperty (A2) is a feature of a priori measures that deserves investigation

in itself and call measures that have this property (A2) “strongly malign.”

Definition 3 A measure $\mu$ is strongly malign if it satisfies the following two conditions:

(1) $\mu(\Sigma^{*})>0$ ;

(2) for any algorithms $A,$ $B$ , there exists a constant $c(>0)$ such that, for any $n\in N$ ,

if $\phi_{A}(n)$ is defined then $\mu(\phi_{A}(n))\geq c\mu(\phi_{B}^{-1}(n))$ .
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As is expected, a priori measures are strongly malign and strongly malign measures are

malign.

Theorem 2 A priori measures are strongly malign.

Proof. Let $\mu$ be an a priori measure. Suppose that $A,$ $B$ are algorithms. Let $A_{0}$ be an

algorithm such that $\phi_{A_{0}}(y)=\phi_{A}(\phi_{B}(\phi_{A_{U}}(y)))$. Then the step (1) of the proof of Theorem 1

becomes a proof of the strong malignness of $\mu$ if we replace $w(n)$ with $\phi_{A}(n),$ $|\phi_{A_{U}}(n)|$ with

$\phi_{B}(\phi_{A_{U}}(n))$ and $\Sigma^{n}$ with $\phi_{B}^{-1}(n)$ . $\square$

The proof of the following theorem is easy and we omit it.

Theorem 3 Strongly malign measures are malign.

Let AP, SSMAL, SMAL, MAL denote the following classes of measures: $AP=the$ class

of all a priori measures, SSMAL$=the$ class of all semicomputable strongly malign measures,

SMAL$=the$ class of all strongly malign measures, MAL$=the$ class of all malign measures.

The above theorems imply $AP\subseteq SSMAL\subseteq SMAL\subseteq MAL$ . We will show that these four

classes are all different. To show $SSMAL\neq SMAL$ and $SMAL\neq MAL$ is straightforward.

Theorem 4 There exists a strongly malign measure that is not semicomputable.

Proof (an outline). For each $n$ let $x_{n}$ be a word of length $n$ such that $H(x_{n})\geq n/2$ and

let $X$ be the set $\{x_{0}, x_{1}, \ldots\}$ . We can relativize the notions of “a priori”, “strongly malign”

and $H(x)$ with respect to $X$ . Let $\mu$ be a measure that is a priori relative to $X$ . Then $\mu$ is

strongly malign relative to $X$ and is hence strongly malign. Let $\tilde{\mu}$ be an a priori measure.

Then we can prove that there exist constants $c_{1},$ $c_{2}$ such that $\tilde{\mu}(x_{n})\leq c_{1}2^{-n/2}$ and $\mu(x_{n})$

$\geq c_{2}2^{-H^{X}(x_{n})}\geq c_{2}2^{-2\log n}=c_{2}/n^{2}$ for any $n$ ( $H^{X}(x)$ denotes the relativized $H(x)$ ). This

shows that $\mu$ is not semicomputable. $\square$

Theorem 5 There exists a malign measure that is not strongly malign.
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Proof (an outline). Let $\tilde{\mu}$ be an a priori measure. We can easily show that the measure

$\mu$ defined by $\mu(x)=\tilde{\mu}(x)/|x|$ is malign and is not a priori. $\square$

5 Characterizations of a Priori and Strongly Malign Measures

Before proceeding to the proof of AP $\neq SSMAL$ we give some characterizations of the two

classes AP and SMAL. These characterizations show an essential difference, if any, of the

two classes AP and SSMAL.

Theorem 6 For a measure $\mu$ , the following two conditions are equivalent.

(1) $\mu$ is a strongly malign measure.

(2) $\mu$ satisfies the conditions:

(i) $\mu(\Sigma^{*})>0$ ;

(ii) for any algorithm $A$ there exists a constant $c(>0)$ such that $\mu(x)\geq c\mu(\phi_{A}^{-1}(x))$

for any $x$ .

(I) Proof of (1) $\Rightarrow(2)$ . Suppose that $\mu$ is strongly malign. Let $A$ be an algorithm. Let $B,$ $C$

be algorithms such that $\phi_{B}(n)=n,$ $\phi_{C}(y)=\phi_{A}(y)$ . Then there exists a constant $c(>0)$

such that $\mu(\phi_{B}(n))\geq c\mu(\phi_{\overline{C}}^{1}(n))$ for any $n\in N$ , and hence $\mu(x)=\mu(\phi_{B}(x))\geq c\mu(\phi_{C}^{1}(x))$

$=c\mu(\phi_{A}^{-1}(x))$ for any $x\in\Sigma^{*}$ .

(II) Proof of (2) $\Rightarrow(1)$ . Suppose that a measure $\mu$ satisfies $(i)-(ii)$ . Let $A,$ $B$ be algorithms.

Let $C$ be an algorithm such that $\phi_{C}(y)=\phi_{A}(\phi_{B}(y))$ for any $y\in\Sigma^{*}$ . There exists a

constant $c(>0)$ such that $\mu(x)\geq c\mu(\phi_{\overline{C}}^{1}(x))$ for any $x\in\Sigma^{*}$ . Then we have $\mu(\phi_{A}(n))\geq$

$c\mu(\phi_{\overline{C}}^{1}(\phi_{A}(n)))\geq c\mu(\phi_{B}^{-1}(n))$ for any $n\in N$ such that $\phi_{A}(n)$ is defined. $\square$

Recall that by $\tilde{\mu}$ we denote some fixed a priori measure.

Theorem 7 For a measure $\mu$ , the following two conditions are equivale $nt$.

(1) $\mu$ is an a priori measure.

(2) $\mu$ satisfies the conditions:
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(i) $\mu$ is semicomputable;

(ii) $\mu(\Sigma^{*})>0$ ;

(iii) there exists a constant $c(>0)$ such that $\mu(x)\geq c\tilde{\mu}(A)\mu(\phi_{A}^{-1}(x))$ for any algorithm

$A$ and any $x$ .

(I) Proof of (1) $\Rightarrow(2)$ . Let $\mu$ be an a priori measure. It is obvious that (i), (ii) hold true.

Let $B$ be a prefix-free algorithm such that $\phi_{B}(uv)=\phi_{w}(\phi_{A_{U}}(v))$ , with $w=\phi_{A_{U}}(u)$ , and let

$h$ be one of its codes. If $u$ is a description of $A$ (that is, a word $u$ such that $\phi_{A_{U}}(u)=A$ ) and

$v$ is a description of a word in $\phi_{A}^{-1}(x)$ , then we have $\phi_{A_{U}}(huv)=\phi_{B}(uv)=x$ . Therefore

there exist constants $c_{1},$ $c_{2}(>0)$ such that

$\mu(x)$ $\geq$ $c_{1}P(x)$ $=$ $c_{1}\Sigma_{y}\{2^{-|y|}|\phi_{A_{U}}(y)=x\}$

$\geq$ $c_{1}2^{-|h|}(\Sigma_{u}\{2^{-|u|}|\phi_{A_{U}}(u)=A\})(\Sigma_{v}\{2^{-|v|}|\phi_{A_{U}}(v)\in\phi_{A}^{-1}(x)\})$

$=$ $c_{1}2^{-|h|}P(A)P(\phi_{A}^{-1}(x))$ $\geq$ $c_{1}2^{-|h|}c_{2}\tilde{\mu}(A)\mu(\phi_{A}^{-1}(x))$ .

(II) Proof of (2) $\Rightarrow(1)$ (An outline). Suppose that a measure $\mu$ satisfies (i) –(iii). For

each word $x_{0}$ let $A_{x_{0}}$ be an alrogithm such that $\phi_{A_{0}}.(x)=x_{0}$ for any $x$ . The algorithm

$A_{x_{0}}$ is determined by $x_{0}$ and hence there is a constant $c_{1}$ such that $H(A_{x_{0}})\leq H(x_{0})+c_{1}$ .

Hence there is a constant $c_{2}(>0)$ such that $\tilde{\mu}(A_{x_{0}})\geq c_{2}\tilde{\mu}(x_{0})$ , and we have $\mu(x_{0})\geq$

$c\tilde{\mu}(A_{x_{0}})\mu(\phi_{A_{x_{0}}}^{-1}(x_{0}))\geq cc_{2}\tilde{\mu}(x_{0})\mu(\Sigma^{*})$. Denoting the constant $cc_{2}\mu(\Sigma^{*})(>0)$ by $c_{3}$ , we have

$\mu(x_{0})\geq c_{3}\tilde{\mu}(x_{0})$ for any $x_{0}$ . Moreover $\mu$ is semicomputable. Hence $\mu$ is a priori. $\square$

Comparing these two theorems, we see that the essential difference between SSMAL and

AP lies in the difference of the behavior of $\mu(x)/\mu(\phi_{A}^{-1}(x))$ as a function of $x$ . For a measure

in SSMAL, this value is bounded from below by a constant $c_{A}(>0)$ that may depend on

the algorithm $A$ . For a measure in AP, the same is true and moreover the constant $c_{A}$ can

be represented as $c\tilde{\mu}(A)$ with a constant $c(>0)$ that does not depend on $A$ . Therefore,

the problem of whether AP $=$ SSMAL or not is the problem of whether the nonuniform

existence of constants for measures in SSMAL can be always changed to uniform existence
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or not.

6 Semicomputable Strongly Malign Measures that are not a

Priori

We show one method for constructing a family of semicomputable strongly malign measures.

This family contains some of a priori measures, and also measures that are not a priori.

Let $f$ be a computable function from $\Sigma^{*}\cross\Sigma$ to $Q$ such that $f(u, a)>0,$ $f(u, O)+f(u, 1)\leq$

$1$ , and $f(uv, a)\geq f(v, a)$ for any $u,$ $v\in\Sigma^{*}$ and $a\in\Sigma$ . For this $f$ , let $\pi_{f}$ be the function

from $\Sigma^{*}$ to $Q$ defined by $\pi_{f}(\lambda)=1$ and $\pi_{f}(a_{1}a_{2}\ldots a_{m})=f(\lambda,a_{1})f(a_{1},a_{2})f(a_{1}a_{2},a_{3})\ldots$

$f(a_{1}a_{2}\ldots a_{m-1}, a_{m})$ for $m\geq 1$ . It is easy to show that $\pi_{f}(u_{1}\ldots u_{m})\geq\pi_{f}(u_{1})\ldots\pi_{f}(u_{m})$ for

any words $u_{1},$ $\ldots,$ $u_{m}$ and that $\Sigma_{\iota}\{\pi_{f}(s)|s\in L\}\leq 1$ for any prefix-free set $L$ . Finally, let

$P_{f}$ be the measure defined by $P_{f}(x)=\Sigma.\{\pi_{f}(s)|\phi_{A_{U}}(s)=x\}$.

For two rational numbers $p,$ $q$ such that $0<p,$ $0<q,$ $p+q\leq 1$ , let $\pi_{q,p}(u)$ and $P_{q,p}(x)$

denote $\pi_{f}(u)$ and $P_{f}(x)$ respectively for the function $f$ defined by $f(u, 0)=q,$ $f(u, 1)=p$ .

For a rational number $p$ such that $0<p<1$ , let $\pi_{p}(u)$ and $P_{p}(x)$ denote $\pi_{1-p,p}(u)$ and

$P_{1-p,p}(x)$ respectively. Moreover, for each $a\in\Sigma$ let $|0|_{p}$ and $|1|_{p}$ denote $-\log(1-p)$

and $-\log p$ respectively, for each word $u=a_{1}\ldots a_{m}$ let $|u|_{p}$ denote $|a_{1}|_{p}+\ldots+|a_{m}|_{p}$

$(=-\log\pi_{p}(u))$ , and for each word $x$ let $H_{p}(x)$ denote $\min\{|u|_{p}|u\in\Sigma^{*}, \phi_{A_{U}}(u)=x\}$ .

In these notations, the measure $P(x)$ and the Kolmogorov complexity $H(x)$ introduced in

Section 3 are $P_{1/2}(x)$ and $H_{1/2}(x)$ respectively.

In this section we show four results: (1) $P_{f}(x)$ is semicomputable and strongly malign;

(2) if $p+q<1$ then $P_{q,p}(x)$ is not a priori; (3) $P_{p}(x)$ is a priori; (4) there is a constant $c$

such that $|H(x)-H_{p}(x)|\leq c$ for any $x$ . The results (1), (2) imply AP $\neq SSMAL$ .

Theorem 8 The measure $P_{f}(x)$ is semicomputable and strongly malign.

Proof. It is obvious that $P_{f}(x)$ is semicomputable. We use Theorem 6 to prove that

$P_{f}(x)$ is strongly malign. It is obvious that $P_{f}(\Sigma^{*})>0$ . Let $A$ be an algorithm. Let $A_{0}$
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be a prefix-hee algorithm such that $\phi_{A_{0}}(s)=\phi_{A}(\phi_{A_{U}}(s))$ and let $h$ be one of its codes.

Then, for any $x$ we have $P_{f}(x)=\Sigma_{r}\{\pi_{f}(r)|\phi_{A_{U}}(r)=x\}\geq\Sigma_{*}\{\pi_{f}(hs)|\phi_{A_{U}}(hs)=x\}\geq$

$\pi_{f}(h)\Sigma_{\ell}\{\pi_{f}(s)|\phi_{A_{U}}(s)\in\phi_{A}^{-1}(x)\}=\pi_{f}(h)P_{f}(\phi_{A}^{-1}(x))$ . Denoting the constant $\pi_{f}(h)(>0)$

by $c$ , we have $P_{f}(x)\geq cP_{f}(\phi_{A}^{-1}(x))$ . $\square$

For a word $w=a_{1}a_{2}\ldots a_{n}$ of length $n$ and $i$ such that $0\leq i\leq n$ , let $w|i$ denote the

head $a_{1}a_{2}\ldots a$: of $w$ of length $i$ .

Theorem 9 If $f$ satisfies the condition

$\lim_{narrow\infty}\max_{w\in\Sigma^{n}:}\prod_{=0}^{n-1}(f(w|i, 0)+f(w|i, 1))=0$ ,

then the measure $P_{J}(x)$ is not a priori.

Proof. Let $g$ be the function from $\Sigma^{*}\cross\Sigma$ to $Q$ defined by $g(u, a)=f(u, a)/(f(u, 0)+$

$f(u, 1))$ . Suppose that $P_{f}(x)$ is a priori. Then there exists a constant $c(>0)$ such that

$P_{g}(x)<cP_{f}(x)$ for any $x$ because $P_{g}(x)$ is semicomputable.

Let $n_{0}$ be a value such that $\Pi_{i=0}^{n-1}(f(w|i, 0)+f(w|i, 1))\leq 1/c$ for any $n\geq n_{0}$ and

any word $w$ of length $n$ . For any word $s=a_{1}a_{2}\ldots a_{n}$ of length $n\geq n_{0}$ we have $\pi_{f}(s)\leq$

$(1/c)\pi_{g}(s)$ because

$\pi_{f}(s)$ $=$ $\prod_{:=1}^{n}f(a..a, a_{i})$ $=$ $\pi_{9}(s)\prod_{:=1}^{n}(f(a_{1}\ldots a_{i-1},0)+f(a_{1\cdots:-1}a,1))$

$= \pi_{g}(s)\prod_{j=0}^{n-1}(f(s|j, 0)+f(s|j, 1))$ $\leq$ $(1/c)\pi_{g}(s)$ .

Let $x$ be a word such that there is no $s$ oflength less than $n_{0}$ such that $\phi_{A_{U}}(s)=x$ . Then

we have $P_{f}(x)=\Sigma_{s}\{\pi_{f}(s)|\phi_{A_{U}}(s)=x\}\leq\Sigma_{s}\{(1/c)\pi_{g}(s)|\phi_{A_{U}}(s)=x\}=(1/c)P_{g}(x)$ .

This contradicts $P_{g}(x)<cP_{f}(x)$ . $\square$

Corolary 1 If $p,$ $q$ are rational numbers such that $0<p,$ $0<q,$ $p+q<1_{f}$ then $P_{q,p}(x)$ is

a semicomputable strongly malign measure that is not a priori.
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Proof. We have $\lim_{narrow\infty}\max_{w\in\Sigma\hslash}\Pi_{:^{-1}}^{n_{=0}}(f(w|i, 0)+f(w|i, 1))=\lim_{narrow\infty}(p+q)^{n}=0$ . $\square$

Now we show the results (3), (4). In the remainder of this section we fix one rational

number $p$ such that $0<p<1$ and denote $1-p$ by $q$ . Moreover, we simply write $\pi(u)$

instead of $\pi_{p}(u)(=\pi_{1-p,p}(u))$ .

We define “the interval represented by a word $u$
’ as follows. The empty word $\lambda$ repre-

sents the unit interval $(0,1)$ . If a word $u$ represents an interval $(s,t)$ , then $uO$ represents the

interval $(s, s+q(t-s))$ and $u1$ represents the interval $(s+q(t-s), t)$ . It is obvious that

the size $t-s$ of the interval $(s, t)$ represented by a word $u$ is $\pi(u)$ . Let $\tau$ be the function

from $\Sigma^{*}$ to $Q$ such that the interval represented by $u$ is $(\tau(u), \tau(u)+\pi(u))$ . This function $\tau$

is defined inductively by $\tau(\lambda)=0,$ $\tau(uO)=\tau(u),$ $\tau(u1)=\tau(u)+\pi(u)q$ . It is easy to show

that if $|u|=|u’|$ and $u’$ is greater than $u$ by one as a binary number then $\tau(u)+\pi(u)=$

$\tau(u’)$ . We call a number $r$ in the unit interval $(0,1)$ p-rational if there exists a word $u$ such

that $r=\tau(u)$ , and p-irrational otherwise. We call a subinterval $(s, t)$ of $(0,1)$ a p-interval

if it is the interval represented by some word $u$ . It is well-known that any subinterval $(s, t)$

of size $d(=t-s)$ of the unit interval $(0,1)$ contains a 1/2-interval (a (binary interval”) of

size at least $d/4$ . This fact is used to prove $2^{-H(x)}\sim>P(x)$ . We show a similar result for

p-intervals.

Lemma 1 Any subinterval $of$ size $d$ of $(0,1)$ contains a p-interval of size at least $(d/2)$ .

$\min\{q,p\}$ .

Proof (an outline). Let $(s, t)$ be a subinterval of size $d$ of $(0,1)$ . We may assume that

$0<s$ and $s,$
$t$ are p-irrationals. Let $u$ be the shortest word such that $\tau(u)$ is in the interval

$(s, t)$ . There is a word $u’$ such that $u=u’1$ . At least one of $t-\tau(u),$ $\tau(u)-s$ is at

least $d/2$ . If $t-\tau(u)\geq d/2$ then let $h$ be the value such that $\tau(u)+\pi(u0^{h})\geq t$ and

$\tau(u)+\pi(u0^{h+1})<t$ . Then the p-interval $(\tau(u0^{h+1}), \tau(u0^{h+1})+\pi(u0^{h+1}))$ satisfies the

condition. If $\tau(u)-s\geq d/2$ then let $h$ be the value such that $\tau(u’01^{h})\leq s,$ $\tau(u’01^{h+1})>$

$s$ . Then the p-interval $(\tau(u’01^{h+1}), \tau(u’01^{h+1})+\pi(u’01^{h+1}))$ satisfies the condition. $\square$
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Theorem 10 If $p$ is a rational number such that $0<p<1$ then there is a $\omega nstantc$ such

that $H_{p}(x)\leq-\log P(x)+c$ for any $x$ .

Proof (an outline). It is obvious that $P_{p}(x)$ is semicomputable. We show that there exists

a constant $c(>0)$ such that $P(x)\leq cP_{p}(x)$ for any $x$ .

Let $X$ be the recursively enumerable set $\{(x, m) | x\in\Sigma^{*}, m\in N, 2^{-m}<P(x)/2\}$

and let $(x_{0}, m_{0}),$ $(x_{1}, m_{1}),$ $(x_{2}, m_{2}),$
$\ldots$ be the enumeration of all elements of $X$ by some

algorithm. We have $\Sigma_{i=0}^{\infty}2^{-m:}\leq 1$ and hence the interval $(2^{-m_{0}}+\ldots+2^{-m_{i-1}},2^{-m_{0}}+$

. $..+2^{-m;}$ ) is a subinterval of size $2^{-m:}$ of the unit interval $(0,1)$ for each $i\geq 0$ . Let $z$;

be (the leftmost of) the largest p-interval contained in this interval. Let this p-interval $z$;

be represented by a word $u_{i}$ . By Lemma 1, the size $\pi_{p}(u_{*}\cdot)$ of the p-interval $z_{*}$
. is at least

$(2^{-m_{i}}/2) \min\{q,p\}$ . Let $A$ be the algorithm such that if there exists $i$ such that $u=u_{i}$

then $\phi_{A}(u)=x:$ , and $\phi_{A}(u)$ is undefined otherwise. The domain of $\phi_{A}$ is the prefix-free set

$\{u_{0}, u_{1}, \ldots\}$ and hence $A$ is prefix-free. Let $h$ be one of its codes.

Let $x$ be a word. We have $2^{-\lceil-\log P(x)\rceil-2}<P(x)/2$ . Hence $(x, \lceil-\log P(x)\rceil+2)$ is in $X$ .

Let $(x;, m_{i})$ be this element. Then we have $\phi_{A_{U}}(hu:)=\phi_{A}(u;)=x_{i}=x$ , and hence $H_{p}(x)$

$\leq|hu;|_{p}=-\log\pi(hu_{i})=-\log\pi(h)-\log\pi(u_{i})\leq-\log\pi(h)+m_{i}+1$ –log(min{q, $p\}$ )

$\leq-\log\pi(h)+4$ –log(min{q, $p\}$ ) $-\log P(x)$ . Denoting the constant $-\log\pi(h)+4-$

log(min{q, $p\}$ ) by $c$ , we have $H_{p}(x)\leq-\log P(x)+c$ . $\square$

The proofs of the following two corollaries are easy if we note that $2^{-H_{p}(x)}$ is semicom-

putable and that $P_{p}(x)\geq 2^{-H_{p}(x)}$ .

Corollary 2 If $p$ is a rational number such that $0<p<1_{f}$ then $P_{p}(x)$ is an a priori

measure.

Corollary 3 If $p$ is a rational number such that $0<p<1$ , then there exists a constant $c$

such that $|H(x)-H_{p}(x)|\leq c$ for any $x$ .
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7 One Condition for Semicomputable Strongly Malign Measures

to be a Priori

In this section we show one condition for measures to be a priori under the assumption that

they are semicomutable and strongly malign. We expect such a condition to be weaker

than the conditions for the case where no assumption on the measures is made.

We call a function $F$ from $\Sigma^{*}$ to $R$ feasible if it is semicomputable, $F(s)\geq 0$ for any

word $s,$ $F(L)\leq 1$ for any prefix-free set $L$ , and there exists a prefix-free $al$gorithm $A$ such

that the measure $\mu(x)$ defined by $\mu(x)=\Sigma.$ { $F(s)$ I $\phi_{A}(s)=x$ } is a priori. The function

$\pi_{p}$ is an example of feasible functions by Corollary 2. Especially the function $F(s)=2^{-|s|}$

is feasible. For a measure $\mu$ , let $\rho_{\mu}(s)$ denote inf, $\in\Sigma^{*}\mu(sy)/\mu(y)$ .

Theorem 11 Let $F$ be a feasible function and $\mu$ be a semicomputable strongly malign

measure. Then the following two conditions are equivalent.

(1) $\mu$ is an a priori measure.

(2) For any recursively enumerable prefix-free set $L$ there exists a constant $c(>0)$ such

that $F(s)\leq c\rho_{\mu}(s)$ for any $s$ in $L$ .

Proof of (1) $\Rightarrow(2)$ (an outline) Let $L$ be a recursively enumerable prefix-free set. Using

an enumeration $(s_{0}, m_{0}),$ $(s_{1}, m_{1}),$
$\ldots$ of the recursively enumerable set $X=\{(s, m)|s\in$

$L,$ $m\in N,$ $2^{-m}<F(s)/2$ }, we can show that there is a prefix-free algorithm $A_{0}$ such that

for any $s\in L$ there exists $u$ such that $\phi_{A_{0}}(u)=s$ and $|u|\leq-\log F(s)+5$ . Its proof is

similar to that of Theorem 10, but we use Lemma 1 with $p=1/2$ .

Let $A_{1}$ be a prefix-free algorithm such that $\phi_{A_{1}}(uv)=\phi_{A_{0}}(u)\phi_{A_{U}}(v)$ and let $h$ be one of

its codes. Then, for any $s\in L$ and any $y$ we have $H(sy)\leq|h|-\log F(s)+5+H(y)$ , and

hence $\mu(sy)\geq c_{1}2^{-H(\ell y)}\geq c_{1}2^{-|h|-6}F(s)2^{-H(y)}\geq c_{1}c_{2}2^{-|h|-5}F(s)\mu(y)$ for some constants

$c_{1},$ $c_{2}(>0)$ .

Proof of (2) $\Rightarrow(1)$ . Let $A_{0}$ be a prefix-free algorithm such that the measure $\mu’(x)$ defined

by $\mu’(x)=\Sigma_{s}\{F(s)|\phi_{A_{0}}(s)=x\}$ is a priori. The domain $dom(\phi_{A_{0}})$ of $\phi_{A_{0}}$ is a recursively
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enumerable prefix-free set. Let $c_{1}(>0)$ be a constant such that $F(s)\leq c_{1}\rho_{\mu}(s)$ for any

$s\in dom(\phi_{A_{0}})$ . Let $A_{1}$ be the algorithm such that $\phi_{A_{1}}(sy)=\phi_{w}(y)$ , with $w=\phi_{A_{0}}(s)$ . By

Theorem 6 there exists a constant $c_{2}(>0)$ such that $\mu(x)\geq c_{2}\mu(\phi_{A_{1}}^{-1}(x))$ for any $x$ .

For any algorithm $A$ and any word $x$ , we have

$\mu(\phi_{A}^{-1}(x))\mu’(A)$ $=$ $\mu(\{y|y\in\Sigma^{*}, \phi_{A}(y)=x\})\Sigma.\{F(s)|\phi_{A_{0}}(s)=A\}$

$\leq$ $\Sigma_{*,y}\{\mu(y)F(s)|s\in dom(\phi_{A_{0}}), \phi_{A_{1}}(sy)=x\}$

$\leq$ $\Sigma_{*)y}\{c_{1}\mu(sy)|s\in dom(\phi_{A_{0}}), \phi_{A_{1}}(sy)=x\}$

$\leq$ $c_{1}\mu(\phi_{A_{1}}^{-1}(x))$ $\leq$ $c_{1}(1/c_{2})\mu(x)$ .

This shows that $\mu$ is a priori by Theorem 7. 口
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