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Value distribution for moving targets

MANABU SHIROSAKI

(University of Osaka Prefecture)

1. Introduction

In 1929, R. Nevanlinna conjectured that his defect relation remains cor-

rect for distinct meromorphic functions $g_{j}$ such that $T_{g_{J}}(r)=o(T_{f}(r))(rarrow$

$\infty)(1\leq j\leq q)$ :

$\sum_{j=1}^{q}\delta(f,g_{j})+\delta(f, \infty)\leq 2$ .

After many attempts, this defect relation was proved by Steinmetz in 1986.

His proof is very simple and elegant.

Stoll considered the case of holomorphic mappings of $C$ into $P^{n}(C)$ . He

extended Cartan’s defect relation to moving targets with Ru, and I gave

a simpler proof for their theorem. Also, they generalized it by Nochka’s

method.

I applied the above theory to the unicity theorem of Nevanlinna. This

means that two meromorphic functions on the complex plane which have
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the same inverse images counting multiplicities for four values are M\"obius

transforms of each other. I extended this theorem to moving targets.

2. Definitions

Let $f$ be a holomorphic mapping of $C$ into $P^{n}(C)$ . A holomorphic map-

ping of $f=(f_{0}, \ldots, f_{n})\not\equiv 0$ of $C$ into $C^{n+1}$ is called a representation of $f$

if $f(z)=(f_{0}(z)$ :. . . : $f_{n}(z))$ for all $z\in C$ , where $0$ is the origin of $C^{n+1}$

and $(w_{0}$ :. . . : $w_{n})$ is a homogeneous coordinate system of $P^{n}(C)$ . More-

over, if $f(z)\neq 0$ for any $z\in C$ , it is said to be reduced. Take a reduced

representation $\tilde{f}=(f_{0}, \ldots, f_{n})$ of $f$ . Fix $r_{0}>0$ .

Definition 1. The characteristic function of $f$ is defined for $r>r_{0}$ by

$T_{f}(r)= \frac{1}{2\pi}\int_{0}^{2\pi}\log\Vert f(re^{i\theta})\Vert d\theta-\frac{1}{2\pi}\int_{0}^{2\pi}\log\Vert f(r_{0}e^{i\theta})\Vert d\theta$ ,

where $\Vert z\Vert=(\Sigma_{j=0}^{n}|z_{j}|^{2})^{1/2}$ for $z=(z_{0}, \ldots, z_{n})\in C^{n+1}$ .

Let $g$ be a holomorphic mapping of $C$ into $P^{n}(C)$ with a reduced rep-

resentation $\tilde{g}=$ $(g_{0}, \ldots , g_{n})$ . We call $g$ a moving target for $f$ . Assume that
$h$ $:=g_{0}f_{0}+\ldots+g_{n}f_{n}\not\equiv 0$ .

Definition 2. The counting function of $f$ for $g$ is defined for $r>r_{0}$ by

$N_{f,g}(r)= \frac{1}{2\pi}\int_{0}^{2\pi}\log|h(re^{i\theta})|d\theta-\frac{1}{2\pi}\int_{0}^{2\pi}\log|h(r_{0}e^{i\theta})|d\theta$.
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For a meromorphic function (i.e., a holomorphic mapping into $P^{1}(C)$ ),

another counting function is defined. Let $\varphi$ be a meromorphic function on

$C$ .

Definition 3. If $\varphi\not\equiv 0$ , the counting function of $\varphi$ for $0$ is defined by

$N_{\varphi;0}(r)= \int_{0}^{r}\frac{..n_{\varphi}(t)}{t}dt$ ,

where $n_{\varphi}(t)$ is the sum of multiplicities of zeros of $\varphi$ in $\{z\in C;|z|\leq t\}$ .
For $a\in C$ , the counting function $N_{\varphi;a}(r)$ $:=N_{\varphi-a;0}(r)$ of $\varphi$ for $a$ is defined

-if $\varphi\not\equiv a$ . Also, the counting function $N_{\varphi;\infty}(r)$ $:=N_{1/\varphi;0}(r)$ of $\varphi$ for $\infty$ is

defined.

It is easy to see that $T_{f}(r)\geq 0$ and that $T_{f}(r)arrow\infty$ monotonically as

$rarrow\infty$ if $f$ is nonconstant. Also, we can see that $N_{f,g}(r)=N_{h;0}(r)$ by

the Poisson-Jensen formula. If $g$ is $co$nstant, then it defines a hyperplane

$H=\{w\in P^{n}(C);g_{0}w_{0}+\ldots+g_{n}w_{n}=0\}$ in $P^{n}(C)$ , and $h(z)=0$ implies

$f(z).\in H$ . Hence, the counting function $N_{f,g}(r)$ express the growth of the

inverse image of $H$ by $f$ .
Assume that $f$ is nonconstant.

Definition 4. The defect of $f$ for $g$ is defined by

$\delta(f,g)=\lim infrarrow\infty(1-\frac{N_{f,g}(r)}{T_{f}(r)+T_{g}(r)})$ .

We can easily verify that $0\leq\delta(f, g)\leq 1$ .

Let $N$ and $q$ be positive integers such that $N\geq n$ and $q\geq 2N-n$ in

this section and the next one. Take moving targets $g_{0},$ $\ldots,g_{q}$ for $f$ . Let
$\tilde{g}_{j}=$ $(gj0, \ldots , g_{jn})$ be reduced representations of $g_{j}(0\leq j\leq q)$ .
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Definition 5. If for each subset $A$ of $\{0,1, \ldots, q\}$ such that $\# A=N+1$ ,

there exist $j_{0},$
$\ldots$ , $j_{n}\in A$ such that $\det(g_{j_{\mu}\nu})_{0\leq\mu,\nu\leq n}\not\equiv 0$ , then $g_{0},$ $\ldots,$ $g_{q}$ are

said to be in N-subgeneral position. If $N=n$ , they are said to be in general

position.

Definition 6. Let 3 be a field with $C\subset \mathfrak{F}\subset \mathfrak{M}$ , where $\mathfrak{M}$ is the field of

meromorphic functions on $C$ . If $f_{0},$
$\ldots,$

$f_{n}$ are linearly independent over 3,

then $f$ is said to be non-degenerate over $\mathfrak{F}$ .

Let A be the smallest field which contains $C$ and all $g_{j\mu}/gj\nu$ with $g_{j\nu}\not\equiv 0$ .
If $f$ is non-degenerate over $R$ , then $g_{j0}f_{0}+\ldots+g_{jn}f_{n}\not\equiv 0$ for any $j=$

$0,1,$ $\ldots,$ $q$ . Hence, counting functions $N_{f,g_{j}}(r)$ and defects $\delta(f,g_{j})$ can be

defined.

If all $g_{j}$ are constants, then each $g_{j}$ defines a hyperplane $H_{j}=\{w\in$

$P^{n}(C);g_{j0}w_{0}+\ldots+g_{jn}w_{n}=0\}$ in $P^{n}(C)$ . Then, if $g_{0},$ $\ldots,g_{q}$ are in general

position, $H_{0},$
$\ldots,$

$H_{q}$ are in general position. Also, the non-degeneracy of $f$

over A means the non-degeneracy of $f$ over $C$ .
In the rest of this section, we consider holomorphic mappings into $P^{1}(C)$

and introduce notations which are used later. Let $f$ be a holomorphic map-

ping $C$ into $P^{1}(C)$ with a reduced representation $(f_{0}, f_{1})$ . Then, we identify
$f$ with the meromorphic function $f_{1}/f_{0}$ if $f_{0}\not\equiv 0$ . Otherwise, we identify it-

with the constant mapping taking the point at infinity as its value. Also, we

denote by $f^{*}$ the holomorphic mapping of $C$ into $P^{1}(C)$ with the reduced

representation $(-f_{1}, f_{0})$ .

Remark 1. We have defined two kinds of counting functions $N_{f;a}(r)$

and $N_{f,a}(r)$ for $a\in\overline{C}:=C\cup\{\infty\}$ which is a constant holomorphic mapping
of $C$ into $P^{1}(C)$ . However, if $N_{f;a}(r)-N_{f;\infty}(r)=N_{f,a^{r}}(r)$ for $a\in C$ and
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$N_{f;a}(r)=N_{f,a}\cdot(r)$ for $a=\infty$ .

For a subfield 3 of $\mathfrak{M}$ , put $\overline{\mathfrak{F}}=S\cup\{\infty\}$ . If $f$ is nonconstant, we define
$\Gamma_{f}=\{h\in \mathfrak{M};T_{h}(r)=o(T_{f}(r))(rarrow\infty)\}$ which is a field. Also, if $f\not\equiv\infty$ ,

we define the proximity function of $f$ for $\infty$ by

$m_{j;\infty}(r)= \frac{1}{2\pi}\int_{0}^{2\pi}\log^{+}|f(re^{i\theta})|d\theta$ ,

where $\log^{+}x=$ log(max(l, $x$ )) for $x\geq 0$ , and if $f\not\equiv a$ for $a\in \mathfrak{M}$ , the

proximity function of $f$ for $a$ is defined by $m_{f;a}(r)$ $:=m_{1/(f-a);\infty}(r)$ . It is

easy to see that

$T_{f}(r)=N_{f;a}(r)+m_{f;a}(r)+O(1)$ (1)

if $f\not\equiv a$ for $a\in\overline{C}$.
If $f$ is nonconstant and $a\in\overline{\Gamma}_{f}$ , then

$\delta(f, a)=\lim_{rarrow}\inf_{\infty}(1-\frac{N_{f,a}(r)}{T_{f}(r)})$ .

We use the notation “ $P(r)//”$ to mean that a property $P(r)$ holds for all
$r\in(r_{0}, \infty)-E$ , where $E$ is a subset of $(r_{0}, \infty)$ of finite Lebesgue measure.
We complete this section with the following which is called the lemma of the

logarithmic derivative:

Lemma. For a nonconstant meromorphic function $h$ on $C$ and $j=$

$1,2,$ $\ldots$ ,

$m_{h(j)/h;\infty}(r)=o(T_{h}(r))//$ as $rarrow\infty$ .
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3. Defect relations

In this section, we introduce various defect relations from H. Cartan to

Ru-Stoll.

Theorem A (H. Cartan). Assume that all $g_{j}$ are constants, $\int is$ non-

degenerate over $C$ and that $g_{0},$ $\ldots,g_{q}$ are in general position. Then

$\sum_{j=0}^{q}\delta(f,g4)\leq n+1$ .

Theorem $B$ (Nochka). Assume that all $g_{j}$ are constants, $f$ is non-

degenerate over $C$ and that $g_{0},$ $\ldots,g_{q}$ are in N-subgeneral position. Then

$\sum_{j=0}^{q}\delta(f,g_{j})\leq 2N-n+1$ .

Theorem $C$ (Ru-Stoll). Assume that $T_{9j}(r)=o(T_{f}(r))(rarrow\infty)(0\leq$

$j\leq q)_{f}f$ is non-degenerate over A and that $g_{0},$ $\ldots,g_{q}$ are in general position.

Then
$\sum_{j=0}^{q}\delta(f,g_{j})\leq n+1$ .

Theorem $B$ and Theorem $C$ are generalization of Theorem A and I gave a

simpler proof for Theorem $C$ in [6]. The following theorem is a generalization

of the above theorems.

Theorem $D$ (Ru-Stoll). Assume that $T_{9j}(r)=o(T_{f}(r))(rarrow\infty)(0\leq$

$j\leq q),$ $f$ is non-degenerate over A and that $g_{0},$ $\ldots,$ $g_{q}$ are in N-subgeneral

position. Then

$\sum_{j=0}^{q}\delta(f,g_{j})\leq 2N-n+1$ .
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4. Nevanlinna’s unicity theorems

We say that two meromorphic functions $f$ and $g$ on $C$ share the value $a$ if

the zeros of $f-a$ and $g-a$ ( $i/f$ and $1/g$ if $a=\infty$ ) are the same. Nevanlinna

[2] proved the following theorems:

Theorem E. If two distinct nonconstant meromorphic functions $f$ and

$g$ on $C$ share four values $a_{1},$ $\ldots,$
$a_{4}$ by counting multiplicities, then $g$ is a

Mobius transformation of $f$ , two shared values, say $a_{3}$ and $a_{4}$ , are Picard
$values_{J}$ and the cross ratio $(a_{1}, a_{2}, a_{3}, a_{4})=-1$ .

Theorem F. If two nonconstant meromorphic functions $f$ and $g$ share

five values, then $f\equiv g$ .

Igive an extension of TheoremE by using the results of moving targets in

[4] and [8]. An extension of Theorem $F$ is conjectured, but the second main

theorem for moving targets corresponding to that playing the main role in

the proof of Theorem $F$ is not proved yet.

5. Second fundamental theorem and Borel’s lemma

Let $f$ be a nonconstant holomorphic mapping of $C$ into $P^{1}(C)$ with a

reduced representation $f=(f_{0}, f_{1})$ .

Theorem G. If $a_{1},$ $\ldots,$
$a_{q}\in\overline{\Gamma}_{f}$ are distinct, then for each $e>0$

$(q-2- \epsilon)T_{f}(r)\leq\sum_{j=1}^{q}N_{f,a_{j}}(r)+o(T_{f}(r))//$ .
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Corollary. If $a_{1},$ $\ldots,$
$a_{q}\in\overline{\Gamma}_{f}$ are distinct, then

$\sum_{j=1}^{q}\delta(f, a_{j})\leq 2$ .

This is an extension of Nevanlinna’s defect relation and was obtained by

Steinmetz [8]. The following theorem called Borel’s lemma is useful for the

proof of the extension of Theorem $E$ :

Theorem 1. Let $N\geq 2$ be an integer, $F_{1},$
$\ldots,$

$F_{N}$ nonvanishing entire

functions, and $a_{1},$ $\ldots,$ $a_{N}$ meromorphic functions such that $a_{j}\not\equiv 0$ and

$T_{a_{j}}(r)=o(T(r))//$ as $rarrow\infty$ (1)

$(1 \leq j\leq N))$ where $T(r)= \sum_{j=1}^{N}T_{F_{j}}(r)$ . Assume that

$a_{1}F_{1}+\ldots+a_{N}F_{N}\equiv 1$ . (2)

Then, $a_{1}F_{1},$
$\ldots,$

$a_{N}F_{N}$ are linearly dependent over $C$ .

6. Unicity Theorem

We extend Theorem $E$ by dividing it into two parts.

Let $f$ and $g$ be distinct nonconstant meromorphic functions with reduced

representations $(f_{0}, f_{1})$ and $(g_{0},g_{1})$ , respectively. Let $a_{j}$ be distinct elements
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of $\overline{\Gamma}_{f}$ with reduced representations $(a_{j0}, a_{j1})(1\leq j\leq 4)$ . We define entire

functions by $F_{j}=a_{j0}f_{0}+a_{j1}f_{1}$ and $G_{j}=a_{j0}g_{0}+a_{j1}g_{1}$ . Then $F_{j}\not\equiv 0$ . Also,

we define meromorphic functions $\psi_{j}$ by

$G_{j}=\psi_{j}F_{j}$ . (1)

Theorem 2. If all $\psi_{j}$ are nonvanishing entire functions, then there exist

$A,$ $B,$ $C,$ $D\in\Gamma_{f}$ such that $AD-BC\not\equiv 0$ and

$g= \frac{Af+B}{Cf+D}$ (2)

Proof. By (1), we get

$(\begin{array}{llll}a_{10} a_{11} -a_{10}\psi_{1} -a_{11}\psi_{1}a_{20} a_{21} -a_{20}\psi_{2} -a_{21}\psi_{2}a_{30} a_{31} -a_{30}\psi_{3} -a_{31}\psi_{3}a_{40} a_{4l} -a_{40}\psi_{4} -a_{4l}\psi_{4}\end{array})(\begin{array}{l}g_{0}g_{1}f_{0}f_{1}\end{array})\equiv(\begin{array}{l}0000\end{array})$ .

Since $(g_{0}, g_{1}, f_{0}, f_{1})\not\equiv(0,0,0,0)$ , the determinant of the 4 $\cross 4$ matrix

above is identically equal to zero. By expanding it, we have

$b_{12}\psi_{1}\psi_{2}+b_{34}\psi_{3}\psi_{4}+b_{13}\psi_{1}\psi_{3}+b_{24}\psi_{2}\psi_{4}+b_{14}\psi_{1}\psi_{4}+b_{23}\psi_{2}\psi_{3}\equiv 0$, (3)

where
$b_{12}=b_{34}=(a_{10}a_{21}-a_{11}a_{20})(a_{30}a_{41}-a_{31}a_{40})$

$b_{13}=b_{24}=-(a_{10}a_{31}-a_{11}a_{30})(a_{20}a_{41}-a_{21}a_{40})$

$b_{14}=b_{23}=(a_{10}a_{41}-a_{11}a_{40})(a_{20}a_{31}-a_{21}a_{30})$ .

For distinct $j$ and $k$ , we have

$\frac{\psi_{j}}{\psi_{k}}-1=\frac{(a_{j1}a_{k0}-a_{j0}a_{k1})(f_{0}g_{1}-f_{1}g_{0})}{F_{j}G_{k}}$. (4)
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Since $F_{l}(z)=G_{l}(z)=0$ implies $f_{0}(z)g_{1}(z)-f_{1}(z)g_{0}(z)=0$ ,

$N_{\psi_{j}/\psi_{k};1}(r) \geq\sum_{l\neq j,k}N_{f,a_{l}}(r)+o(T_{f}(r))$
.

Hence, if $\#\{j, k, \mu, \nu\}\geq 3$ , by (??) and Theorem $G$

$T_{\psi_{j/\psi_{k}}}(r)+T_{\psi_{\mu}/\psi_{\nu}}(r)$ $\geq$ $N_{\psi_{j}/\psi_{k};1}(r)+N_{\psi_{\mu}/\psi_{\nu};1}(r)+O(1)$

$\geq$

$\sum_{l\neq j,k}N_{f,a_{1}}(r)+\sum_{l\neq\mu,\nu}N_{f,a_{l}}(r)+o(T_{f}(r))$

$\geq$ $\frac{1}{2}T_{f}(r)+o(T_{f}(r))//$ .

Applying Theorem 1 to the identity obtained from (3)

$\frac{b_{12}\psi_{1}}{b_{23}\psi_{3}}+\frac{b_{34}\psi_{4}}{b_{23}\psi_{2}}+\frac{b_{13}\psi_{1}}{b_{23}\psi_{2}}+\frac{b_{24}\psi_{4}}{b_{23}\psi_{3}}+\frac{b_{14}\psi_{1}\psi_{4}}{b_{23}\psi_{2}\psi_{3}}\equiv-1$ ,

we have a shorter identity

$\alpha_{12}b_{12}\psi_{1}\psi_{2}+\alpha_{34}b_{34}\psi_{3}\psi_{4}+\alpha_{13}b_{13}\psi_{1}\psi_{3}$

$+\alpha_{24}b_{24}\psi_{2}\psi_{4}+\alpha_{14}b_{14}\psi_{1}\psi_{4}\equiv 0$ ,

where $\alpha_{jk}$ are constants not all zero. By applying Theorem 3.3 successively,

we deduce that some $(b_{jk}\psi_{k})/(b_{jl}\psi_{l})$ are nonzero constants, where $b_{jk}=b_{kj}$

if $j>k$ . The conclusion of the theorem follows from this. Q.E.D.

Remark 2. In fact, $A,$ $B,$ $C$ and $D$ are rational functions of $a_{1},$ $\ldots,$
$a_{4}$ .

Hence, if $a_{1},$ $\ldots,$
$a_{4}\in\overline{C}$, then $A,$ $B,$ $C$ and $D$ are constants, and $f$ and $g$ are

M\"obius transforms of each other.

We state the second part of our extension of Theorem A. Let $A,$ $B,$ $C,$ $D\in$

$\mathfrak{M}$ such that $AD-BC\not\equiv 0$ . We define the mapping $S;\overline{\mathfrak{M}}arrow\overline{\mathfrak{M}}$ by

$S(F)=\{\begin{array}{l}(AF+B)/(CF+D)(F\in \mathcal{M})A/C(F\equiv\infty)\end{array}$
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For a nonconstant meromorphic function $f$ , we define the condition $P(f)$ by

$P(f)$ $N_{h;0}(r)+N_{h;\infty}(r)=o(T_{f}(r))$ $(rarrow\infty)$

for $h\in \mathfrak{M}$ .

Remark 3. The conclusion of Theorem 2 is true under the weaker

assumption that all $\psi_{j}$ satisfy the condition $P(f)$ .

Theorem 3. Assume that $A,$ $B,$ $C,$ $D\in\Gamma_{f}$ and that

$g=S(f)$ . (5)

Moreover, assume that all $\psi_{j}$ satisfy the condition $P(f)$ . Then, for two $j$ ,

say $j=3,4,$ $F_{j}$ satisfy the condition $P(f)$ , and the meromorphic function of
cross ratio $(a_{1}^{*}, a_{2}^{*}, a_{3}^{*}, a_{4}^{*})$ is identically equal to-l.

Remark 4. Under the assumption above, the two conditions $P(f)$ and
$P(g)$ are equivalent.

Remark 5. If $a_{1},$ $\ldots,$
$a_{4}\in\overline{C}$ and $A$ , $B$

’
$C,$ $D\in C$ , then it is easy to

deduce the conclusion of the theorem as a M\"obius transform which is not the

identity has at most two fixed points.

Proof. It followes from (5) that

$\frac{\psi_{j}}{\psi_{k}}$ $=$ $\frac{(Ba_{j1}+Da_{j0})f_{0}+(Aa_{j1}+Ca_{j0})f_{1}}{F_{j}}x$

$\frac{F_{k}}{(Ba_{k1}+Da_{k0})f_{0}+(Aa_{k1}+Ca_{k0})f_{1}}$ (6)

For distinct $j$ and $k$ , the common zeros of $F_{j}$ and $F_{k}$ are the zeros of $a_{j0}a_{k1}-$

$a_{j1}a_{k0}(\not\equiv 0)$ which satisfies $P(f)$ , and also, the $co$mm$on$ zeros of $F_{j}$ and
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$(Ba_{j1}+Da_{j0})f_{0}+(Aa_{j1}+Ca_{j0})f_{1}$ are the zeros of $(B.a_{j1}+Da_{j0})a_{j1}-(Aa_{j1}+$

$Ca_{j0})a_{j0}$ . Unless

$(Ba_{j1}+Da_{j0})a_{j1}-(Aa_{j1}+Ca_{j0})a_{j0}\equiv 0$, (7)

it satisfies $P(f)$ . Therefore, in this case, since $\psi_{j}/\psi_{k}$ satisfies $P(f)$ ,

$N_{F_{j^{j}}0}(r)=o(T_{f}(r))$ as $rarrow\infty$ . (8)

We conclude that at least one condition among (7) and (8) holds for each $j=$

$1,$
$\ldots,$

$4$ . However, the number of $j’ s$ which satisfy (8) and (7), respectively,

is at most two. Therefore, we may assume that for $j=1,2,$ (7) holds, but (8)

does not, and that for $j=3,4,$ (8) holds, but (7) does not. In (6), we consider

the case $j=3,$ $k=1$ . Then, we deduce that $(Ba_{31}+Da_{30})f_{0}+(Aa_{31}+Ca_{30})f_{1}$

satisfies $P(f)$ . However, (7) does not holds for $j=3$ . It follows from these

and Theorem $G$ that

$(Ba_{31}+Da_{30})a_{41}-(Aa_{31}+Ca_{30})a_{40}\equiv 0$ .

Similarly, we have

$(Ba_{41}+Da_{40})a_{31}-(Aa_{41}+Ca_{40})a_{30}\equiv 0$ .

We obtain from these two identities

$S(a_{4}^{*})=a_{3}^{*}$ , $S(a_{3}^{*})=a_{4}^{*}$ . (9)

Also, we have
$S(a_{j}^{*})=a_{j}^{*}$ $(j=1,2)$ (10)

by (7). From (9) and (10), the identity $(a_{1}^{*}, a_{2}^{*}, a_{3}^{*}, a_{4}^{*})\equiv-1$ is deduced.

QE.D.
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We give an analogue of Theorem F.

Corollary 4. Let $f$ and $g$ be nonconstant meromorphic functions with

reduced representations $(f_{0}, f_{1})$ and $(g_{0},g_{1})$ , respectively, and $a_{j}\in\overline{\Gamma}_{f}$ dis-

tinct with reduced representations $(a_{j0}, a_{j1})(1\leq j\leq 5)$ . Assume that all $\psi_{j}$

defined by (1) are entire functions without zeros. Then, $f\equiv g$ .

Proof. Assume that $f\not\equiv g$ . Then, it follows from Theorems 4.1 and 4.2 that

for two $j$ in {1, 2, 3, 4}, say $j=3,4,$ $F_{j}$ satisfy the condition $P(f)$ . In the

same way, $F_{j}$ satisfy the condition $P(f)$ for two $j$ in {1, 2, 3, 5}. Hence, the

number of $j$ in {1, 2, 3, 4, 5} such that $F_{j}$ satisfy the condition $P(f)$ is three

or four, a contradiction to Theorem 3.1. Q.E.D.

In Corollary 4, $F_{j}$ and $G_{j}$ are required to have the same zeros counting

multiplicities. However, Theorem $F$ does not count the multiplicities. The

following should be a complete extension of Theorem $F$ :

Conjecture. We have $f\equiv g$ , if $F_{j}$ and $G_{j}$ have the same zeros for each

$j=1,$ $\ldots,$
$5$ (not counting multiplicities).

If the number five is replaced by seven, this conjecture was proved by

Toda[10], recently.



24

REFERENCES

[1] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford,

1964.

[2] R. Nevanlinna, Einige Eindeutigkeitss\"atze in der Theorie der meromor-
phen Funktionen, Acta Math. 48(1926), 367-391.

[3] J. Noguchi and T. Ochiai, Gemetric function theory in severl complex

variables, Transl. Math. Monographs 80, Amer. Math. Soc., 1990.

[4] M. Ru and W. Stoll, The second main theorem for moving targets, J.

Geometric Analysis 1 (1991), 99-138.

[5] M. Ru and W. Stoll, The Cartan conjecture for moving targets, Proc.

Symp. in Pure Math. 52 (1991), 477-508.

[6] M. Shirosaki, Another proof of the defect relation for moving targets,
T\^ohoku Math. J. 43 (1991), 355-360.

[7] M. Shirosaki, An extension of unicity theorem for meromorphic func-

tions, to appear.

[8] N. Steinmetz, Eine Verallgemeinerung des zweiten Nevanlinnaschen

Hauptsazes, J. Reine Angew. Math. 368 (1986), 134-141.

[9] W. Stoll, An extension of the theorem of Steinmetz-Nevanlinna to holo-
morphic curves, Math. Ann. 282 (1988), 185-222.

[10] N. Toda, Some generalizations of the unicity theorem of Nevanllina,

NIT Seminar Report on Math. no.79, 1992.


