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Value distribution for moving targets

MANABU SHIROSAKI -

(University of Osaka Prefecture)

1. Introduction

In 1929, R. Nevanlinna conjectured that his defect relation remains cor-
rect for distinct meromorphic functions g; such that T, (r) = o(T%(r)) (r —

00)(1<j<q):

ifS(f,gj) +6(f,00) < 2.

After many attempts, this defect relation was proved by Steinmetz in 1986.
His proof is very simple and elegant.

Stoll considered the case of holomorphic mappings of C into P™(C). He
extended Cartan’s defect relation to moving targets with Ru, and I gave
a simpler proof for their theorem. Also, they generalized it by Nochka’s
method.

I appliedﬁ the above theory to the unicity theorem of Nevanlinna. This

means that two meromorphic functions on the complex plane which have
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the same inverse images counting multiplicities for four values are Mobius -

transforms of each other. I extended this theorem to moving targets.

2. Definitions

Let f be a holomorphic mapping of C into P"(C). A holomorphic map-
ping of f = (fo,..., fa) # 0 of C into C™*! is called a representation of f
if f(z) = (fo(2) : ... : fa(2)) for all z € C, where o is the origin of C™*
and (wg : ... : wy) is a homogeneous coordinate system of P"(C). More-
over, if f(z) # o for any z € C, it is said to be reduced. Take a reduced
representation f = (fos- - , fn) of f. Fix rg > 0.

Definition 1. The characteristic function of f is defined for r > ro by

1

. 2T . . 1 27 ~ .
T(r) = 5= [ log I f(re)lldo — = [ log]|f(roc®) s,

where ||z|| = (X7 |2;]%)"/? for z = (z0,...,2,) € C™F.

Let g be a holomorphic mapping of C into P"(C) with a reduced rep-
resentation § = (go,...,gn). We call g a moving target for f. Assume that

h:zgof0+...+gnfn¢0.

Definition 2. The counting function of f for ¢ is defined for r > ry by

1 2T . 1 2r .
Ng 4 (r) = 2—7r/0 log |h(7‘610)|d0 — g/o loglh(roew)]dﬁ.



For a meromorphic function (i.e., a holomorphic mapping into P*(C)),
another counting function is defined. Let ¢ be a meromorphic function on

C.

Definition 3. If ¢ # 0, the counting function of ¢ for 0 is defined by

Noolr) = [ 2284,

0

where n,(t) is the sum of multiplicities of zeros of ¢ in {z € C;|z| < t}.
For a € C, the counting function Nw;a(rr) := Ny—q.0(r) of ¢ for a is defined
“if ¢ # a. Also, the counting function Ny (7)) := Nijg;0(r) of ¢ for oo is
defined.

It is easy to see that T¢(r) > 0 and that T¢(r) — oo monotonically as
r — oo if f is nonconstant. Also, we can see that Ny ,(r) = Npo(r) by
the Poisson-Jensen formula. If ¢ is constant, then it defines a hyperplane
H={we P"C); gowo+ ...+ gnw, =0} in P*(C), and h(z) = 0 implies
f(2) € H. Hence, the counting function Ny ,(r) express the growth of the
invefse image of H by f.

Assume that f is nonconstant.

Definition 4. The defect of f for g is defined by

. Ny o(r)
17WH%M)

8(7.9) = timint (

We can easily verify that 0 < é6(f,g) < 1.
Let N and ¢ be positive integers such that N > n and ¢ > 2N — n in
this section and the next one. Take moving targets go,...,g, for f. Let

~

d; = (gjo,- .-, gjn) be reduced representations of g; (0 < 5 < g).
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Definition 5. If for each subset A of {0,1,... ,‘q} such that fA = N+1, |
there exist jq,...,jn, € A such that det (gj“")osu,ugn # 0, then go,..., g, are
said to be in N-subgeneral position. If N = n, they are said to be in general

position.

Definition 6. Let § be a field with C C § C 2, where 9 is the field of
meromorphic functions on C. If fy,..., f, are linearly independent over F,

then f is said to be non-degenerate over J.

Let & be the smallest field which contains C and all g;,/g;, with g;, # 0.
If f is non-degenerate over R, then gjofo + ... + gjnfn # 0 for any j =
0,1,...,9. Hence, counting functions Ny ,.(r) and defects 6(f,g;) can be
defined.

If all g; are constants, then each g; defines a hyperplane H; = {w €
P*(C); gjowo+...+9gjnw, =0} in P"(C). Then, if go, ..., g, are in general
position, Hy,..., H, are in general position. Also, the non-degeneracy of f
over & means the non-degeneracy of f over C.

In the rest of this section, we consider holomorphic mappings into P*(C)
and introduce notations which are used later. Let f be a holomorphic map-
ping C into P'(C) with a reduced representation (fo, f;). Then, we identify
f with the meromorphic function f;/fy if fo Z 0. Otherwise, we identify it -
with the constant mapping taking the point at infinity as its value. Also, we
denote by f* the holomorphic mapping of C into P'(C) with the reduced

representation (—fi, fo).

Remark 1. We have defined two kinds of counting functions Ny, ,(r)
and Ny o(r) for a € C := CU{oo} which is a constant holomorphic mapping
of C into P'(C). However, if Ny,o(r) — Nf,oo(T) = Ny o+(r) for a € C and
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Ny,o(r) = Ny or(r) for a = oo.

For a subfield § of M, put §F = FU {oo}. If f is nonconstant, we define
Iy = {h € MTh(r) = o(Ty(r))(r — oo0)} which is a field. Also, if f # oo,

we define the proximity function of f for oo by

1

2 .
mpeo(r) = 5= [ log* 1(re)|do,

where logt 2z = log(max(1,z)) for z > 0, and if f # a for a € M, the
proximity function of f for a is defined by my,o(r) := myy(s_a);c0(r). It is
easy to see that . ’
Ty(r) = Npa(r) + mya(r) + O(1) (1)
if f#aforacC.
If f is nonconstant and a € Ty, then

6(f,a) = limnf (1 - ]\;{f(?(f)')) .

We use the notation “ P(r) // ” to mean that a property P(r) holds for all

r € (ro,00) — E, where E is a subset of (ry,c0) of finite Lebesgue measure.
We complete this section with the following which is called the lemma of the

logarithmic derivative:

Lemma. For a nonconstant meromorphic function h on C and j =
1,2,...,

i iee(r) = o(Th(r) /| as 7= co.
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3. Defect relations

In this section, we introduce various defect relations from H. Cartan to
Ru-Stoll.

Theorem A (H. Cartan). Assume that all g; are constants, f is non-

degenerate over C and that go,...,g, are in general position. Then

Zq:5(f,gj) <n+l

=0

Theorem B (Nochka). Assume that all g; are constants, f is non-
degenerate over C and that go,...,9, are in N-subgeneral position. Then

q

Zé(f’gj) < 2N—n+1

i=0

Theorem C (Ru-Stoll). Assume that T,.(r) = o(Ty(r))(r — o0)(0 <
J £q), f is non-degenerate over & and that go, ..., g, are in general position.

Then .
Y 6(f,95) <n+1.
j=0

Theorem B and Theorem C are generalization of Theorem A and I gave a
simpler proof for Theorem C in [6]. The following theorem is a generalization

of the above theorems.

Theorem D (Ru-Stoll). Assume that Ty, (r) = o(Ty(r))(r — o0)(0 <
7 < q), f is non-degenerate over & and that go,...,g, are in N-subgeneral

position. Then
g

S 6(fig) S2N —n+1.

=0



4. Nevanlinna’s unicity theorems

We say that two meromorphic functions f and g on C share the value a if
the zeros of f —a and g—a (l/f and 1/g if a = 00) are the same. Nevanlinna

[2] proved the following theorems:

Theorem E. If two distinct nonconstant meromorphic functions f and
g on C share four values ay,...,aq by counting multiplicities, then g is a
Moébius transformation of f, two shared values, say az and a4, are Picard

values, and the cross ratio (ay,a2,a3,a4) = —1.

Theorem F. If two nonconstant meromorphic functions f and g share

five values, then f =g.

I give an extension of Theorem E by using the results of moving targets in
[4] and [8]. An extension of Theorem F is conjectured, but the second main
theorem for moving targets corresponding to that playing the main role in

the proof of Theorem F is not proved yet.

5. Second fundamental theorem and Borel’s lemma

Let f be a nonconstant holomorphic mapping of C into P'(C) with a

reduced representation f = (fo, f1)-

Theorem G. Ifa,...,a, € [; are distinct, then for each e > 0

(4= 2= Tr) < 30 Ny, r) + olT5(0)) /.
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Corollary. Ifa,...,a, € ['y are distinct, then

Eé(f, a;) < 2.

This is an extension of Nevanlinna’s defect relation and was obtained by
Steinmetz [8]. The following theorem called Borel’s lemma is useful for the

proof of the extension of Theorem E:

Theorem 1. Let N > 2 be an integer, Fy,...,Fy nonvanishing entire

functions, and aq,...,any meromorphic functions such that a; 0 and
To(r) = olT() [ a5 v o0 SRS
(1 <j < N), where T(r) = ¥, Tr,(r). Assume that
a Fi+...+anFy = 1. (2)

Then, aFy,...,anFy are linearly dependent over C.

6. Unicity Theorem

We extend Theorem E by dividing it into two parts.
Let f and g be distinct nonconstant meromorphic functions with reduced

representations (fo, f1) and (go,91), respectively. Let a; be distinct elements



of Ty with reduced representations (ajo,aj1) (1 <5 < 4). We define entire
functions by F; = ajofo + aj1fi1 and G; = ajogo + a;191. Then F; # 0. Also,

we define meromorphic functions ; by

G; =, F;. *m

Theorem 2. If allv; are nonvanishing entire functions, then there exist

A,B,C,D € I'y such that AD — BC # 0 and

A B
_AT+B (2)
Cf+D -
Proof. By (1), we get
alp @11 —01%1 —an; Jo 0
azgo @z —axp¥P2 —ana 91 | = 0
3o 431 —a30¢3 —(1311/)3 fo - 0
ago Ga1 —g0%s —0411/)4 fl 0

Since (go, 91, fo, f1) # (0,0,0,0), the determinant of the 4 x 4 matrix

above is identically equal to zero. By expanding it, we have

biath1¥y + b3at3ths + 1301903 + baathaths + b1at19s + bozthaths = 0, (3)

where
big = bgy = (aloazl - a11020)(a3oa41 - 031040)
biz = byy = *(aloasl - auaso)(azoau - a21a40)
big = bz = (aloa41 - a11a40)(a20a3'1 - a21a30)-
For distinct 7 and k, we have

V; ] —

Yi (aj10x0 — ajoar1)(fogr — f190) (4)
Vi F;Gy

19
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Since Fi(z) = Gi(z) = 0 implies fo(2)g1(2) — f1(2)go(2) = 0,

Ny; pysa(r) 2 l;k Ny,al(r) + o(Ty(r))-

Hence, if §{j, k, u,v} > 3, by (??) and Theorem G

v

N'lpj/‘f’k;l(r) + Ndm/l/w;l(r) + O(l)
2 2 Npa(r)+ 32 Ny (r) +o(Ty(r))

I#5:k F TR

STy () + o{Ty(r) /.

Ty, 10 () + Ty, (1)

AV

Applying Theorem 1 to the identity obtained from (3)

b12'¢)1 bB4 "[)4 b13¢1 b24 ¢4 bl4¢1 ¢4
- + + + + = -1,
b23¢3 b23 ¢2 b23 1/)2 62371[)3 b23 ¢2 ¢3 ~

we have a shorter identity

a12b12192 + a3sbsat)aths + arsbiathi s
+az4bastPaths + a1abratpr1ps = 0,

where «;) are constants not all zero. By applying Theorem 3.3 successively,
we deduce that some (b;x))/(bji%i) are nonzero constants, where b, = by;

if § > k. The conclusion of the theorem follows from this. Q.E.D.

Remark 2. In fact, A, B,C and D are rational functions of a4, ..., a4.

Hence, if a4,...,a4 € C, then A, B,C and D are constants, and f and g are

Moébius transforms of each other.

We state the second part of our extension of Theorem A. Let A, B,C,D €

o such that AD — BC # 0. We define the mapping S : M — 9 by

F) = (AF+B)/(CF+ D) (FeM)
A/C (F = ).
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For a nonconstant meromorphic function f, we define the condition P(f) by
P(f) Ni;o(7) + Npyoo(r) = o(T4(r)) (r — 00)
for h € M.

Remark 3. The conclusion of Theorem 2 is true under the Weaker

assumption that all ¢; satisfy the condition P(f).

Theorem 3. Assume that A, B,C,D € I'y and that

g =S(f). (5)

Moreover, assume that all ¢; satisfy the condition P(f). Then, for two j,
say j = 3,4, F; satisfy the condition P(f), and the meromorphic function of

cross ratio (a3, a3, a3, a}) is identically equal to —1.

- Remark 4. Under the assumption above, the two conditions P(f) and

P(g) are equivalent.

Remark 5. If ay,...,a4 € C and A,B,C,D € C, then it is easy to
deduce the conclusion of the theorem as a Mobius transform which is not the

identity has at most two fixed points.

Proof. 1t followes from (5) that

ﬁ _ (Bajl + Dajg)fo + (Aajl + Cajo)fl %
Yk F;

Fy
(Bag, + Dago) fo + (Aary + Cago) fi

For distinct j and k, the common zeros of F; and Fj, are the zeros of ajqax, —

(6)

aj1aro(# 0) which satisfies P(f), and also, the common zeros of F; and
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(Baji+ Dajo) fo+(Aaji + Cajo) fi are the zeros of (Baﬂ + Dajo)aj; —(Aaj; +

Cajo)ajo. Unless
(Baji + Dajo)ajy — (Aaj; + Cajp)ajo = 0, (7)
it satisfies P(f). Therefore, in this case,..since ¥; [y satisfies P(f),
ij;o(r) =o(T¢(r)) as r — oo. (8)

We conclude that at least one condition among (7) and (8) holds for each j =
1,...,4. However, the number of j’s which satisfy (8) and (7), respectively,
is at most two. Therefore, we may assume that for j = 1,2, (7) holds, but (8)
does not, and that for 7 = 3,4, (8) holds, but (7) does not. In (6), we consider
the case 7 = 3,k = 1. Then, we deduce that (Bas; +Daéo)f0+(Aa31 +Caz) fi
satisfies P(f). However, (7) does not holds for j = 3. It follows from these
and Theorem G that

(Bas; + Dagzg)ag — (Aaszy + Cazg)ag = 0.
Similarly, we have
(Bag + Dagg)az — (Aag + Cag)aze = 0.
We obtain from these two identities
S(ay) = a3, S(a3) = a;. (9)

Also, we have | |
S(a;)=a; (j=1,2) | (10)
by (7). From (9) and (10), the identity (af,a3,a3,a;) = —1 is deduced.
| Q.E.D.



We give an analogue of Theorem F.

Corollary 4. Let f and g be nonconstant meromorphic functions with
reduced representations (fo, f1) and (go,g1), respectively, and a; € Ty dis-
tinct with reduced representations (ajo,a;1) (1 < j < 5). Assume that all 1);
defined by (1) are entire functions without zeros. Then, f = g.

Proof. Assume that f # g. Then, it follows from Theorems 4.1 and 4.2 that
for two j in {1,2,3,4}, say j = 3,4, F} satisfy the condition P(f). In the
same way, F; satisfy the condition P(f) for two j in {1,2,3,5}. Hence, the
number of j in {1,2,3,4,5} such that F; satisfy the condition P(f) is three

or four, a contradiction to Theorem 3.1. Q.E.D.

In Corollary 4, F; and G; are required to have the same zeros counting
multiplicities. However, Theorem F does not count the multiplicities. The

following should be a complete extension of Theorem F:

Conjecture. We have f = g, if F; and G have the same zeros for each

J =1,...,5 (not counting multiplicities).

If the number five is replaced by seven, this conjecture was proved by

Toda[10], recently.
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