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ON MORDELL-WEIL GROUPS OF ABELIAN SCHEMES

BY
MASA-HIKO SAITO

Kyoto University

\S 1 Mordell-Weil group.

Let $S$ be a connected smooth quasi-projective variety defined over the field of
complex numbers C. An abelian scheme

$f$ : $Aarrow S$

is a smooth projective group scheme over $S$ with connected fiber. For every closed
point $s\in S$ , the fiber $A_{s}=f^{-1}(s)$ is an abelian variety defined over C.

(1.1) Definition. For an abelian scheme $f$ : $Aarrow S$ , we define the Mordell-Weil
$gro$up $MW(A/S)$ by the group $A_{\eta}(K)$ of K-rational poin$ts$ of the generic fiber $A_{\eta}$ ,
where $K=C(S)$ is the function field of $S$ and $\eta$ denote the generic poin $t$ of $S$ .

By definition, the Mordell-Weil group $MW(A/S)$ is isomorphic to the group

{ $s:S\cdotsarrow A$ rational section of $f$ },

and Hartogs’ theorem and GAGA imply that this group is isomorphic to the group of
regular sections of $f$ .
(1.2) Definition. Let $K$ be the function field of $S$ , and $A_{K}$ an abelian variety defin$ed$

over K. $A$ $K/C$-trace of $A_{K}$ is a pair $(B, \tau)$ consisting of an abelian variety $B$ defined
over $C$ and a $hom$omorphism

$\tau$ : $Barrow A_{K}$

$defi_{li}ed$ over $K$ which $h$ as the followin$g$ universal property. Given an abelian varie$ty$

$C$ defined over $C$ and a $h$omomorphism $\phi$ : $Carrow A_{K}$ , then there exists a uniq $ue$

homomorphism $\phi_{*}$ ; $Carrow B$ defin$ed$ over $C$ such that $\phi=\tau\phi_{*}$ .
The existence of $(K/C)$-trace is proved by Chow. Moreover we have the following

fundamental result due to Lang and N\’eron.
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(1.3) Theorem-Definition. (cf. Lang-N\’eron [La, pl39, $Tb.2J$) Let $K$ be th$e$ func-
tion field of $S,$ $A_{K}$ an abelian variety defined over $K$ , and $(B,\tau)$ a $(K/C)$-trace of
$A_{K}$ . Then $A(K)/\tau(B(C))$ is finitely generated. If we write as

$A_{K}/\tau(B(C))\simeq Z‘\oplus$ (Torsion),

we call th$e$ rank $r$ of the free part of $A_{K}/\tau(B(C))$ the Mordell-Weil $mnk$.
This is a function field analogue of Mordell-Weil theorem for abelian variety defined

over a number field. In the number field case, there is a beautiful conjecture due to
Birch&Swinnerton-Dyer about the relation between the order of zero of L-function
and the Mordell-Weil rank. On the other hand, Mordell-Weil groups admit height
pairings, which have been deeply studied by Shioda [Sd 2] and Cox-Zucker [C-Z] for
elliptic surfaces and recently for families of Jacobian of curves (see [Sd3]). In this
note, we will give a Hodge theoretic interpretation of Mordell-Weil groups by using
Zucker’s relative Hodge theory. We will also give a few applications in [Sa.MH] and
recent result on the group of the component of the N\’eron model.

\S 2 Relative Hodge theory after Deligne and Zucker.

We shall give a Hodge theoretic interpretation of a Mordell-Weil group $MW(A/S)$ .
Given an abelian scheme $f$ : $Aarrow S$ , let $R_{1}f_{*}Z_{X}$ denote the local system of the first
homology of fibers of $f$ . Then from the relative exponential sequence we have the
exact sequence of sheaves on $S^{an}$

(2.1) $0arrow R_{1}f_{*}Zarrow \mathcal{L}ie_{A/S}arrow \mathcal{O}_{S}^{an}(A)arrow 0$ .

Setting $V_{Z}=R_{1}f_{*}Z_{X}$ and using the isomorphisn

$\mathcal{L}ie_{A/S}\simeq R^{1}f_{*}\mathcal{O}_{A}^{an}$ ,

we have the following exact sequence:

$0arrow H^{0}(S, V_{Z})arrow^{p_{0}}H^{0}(S, R^{1}f_{*}\mathcal{O}_{A}^{an})arrow H^{0}(S, \mathcal{O}_{S}^{an}(A))$

(2.2)
$arrow^{\delta}H^{1}(S, V_{Z})arrow^{p_{1}}H^{1}(S,R^{1}f_{*}\mathcal{O}_{A}^{an})$

It is well-known that the exact sequence (2.1) is equivalent to giving data of vari-
ation of Hodge structure (VHS) of weight $(- 1)$ , moreover it is polarized by a relative
ample line bundle on $A$ .
(2.3) Definition. A polarized variation of Hodge structure (VHS) of weight-l and
of types $(- 1,0),$ $(0,- 1)$ over $S$ is data $(V_{Z}, A,\mathcal{F}^{0})$ consisting of:
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(i) a local system of free Z-modules on $S$ ,
(ii) a flat Z-valued non-degenerate symplectic form A on $W_{Z}$ ,
(iii) and a locally free subsheaf $\mathcal{F}^{0}\subset \mathcal{F}^{-1}$ $:=V_{Z}\otimes z\mathcal{O}_{S}$ such that

$\mathcal{F}^{0}\oplus\overline{\mathcal{F}^{0}}\cong V_{Z}\otimes_{Z}\mathcal{O}_{S}$,

satisfying that

(HRBR): for any non-zero local section $u\in \mathcal{F}^{0}$ , we have

$A(u, u)=0$,
$-(\sqrt{-1})A$( $u$ , Of) $>0$ ,

(GT): and the Griffiths’ transversality

$\nabla(\mathcal{F}^{p})\subset \mathcal{F}^{p-1}\otimes\Omega_{S}$ .

Note that the subsheaf $\mathcal{F}^{0}\subset V_{Z}\otimes \mathcal{O}_{S}$ is given by

$ker(V_{Z}\otimes \mathcal{O}_{S}arrow \mathcal{L}ie_{A/S}\simeq R^{1}f_{*}\mathcal{O}_{A}^{an})$ ,

hence one has
$R^{1}f_{*}\mathcal{O}_{A}^{an}\simeq Gr_{F}^{-1}$ .

For a general polarized VHS, we have the following

(2.4) Theorem. Let $V_{Z}$ be a polarized $VHS$ over $S$ of weight $m$ . Assume that $S^{an}$ is
compact. Then the cohomology group $H^{q}(S, V_{Z})$ admits a Hodge structure of weight
$q+m$ an$d$ a primitive decomposition.

(2.5) Remark. This theorem is a starting point of studies of Hodge structures on
the cohomology groups with coefficient in VHS. When $\dim S=1$ but $S$ may be non-
compact, then Zucker extended Deligne’s result to the cohomology groups $H^{q}(\overline{S},j_{*}V_{Z})$ ,
which is isomorphic to an intersection cohomology group $IH^{q}(S, V_{Z})$ . Now these kind
of results have been extended to more general cases. (see [K-K], [Sa.Mol, 2]).

Let $f$ : $Aarrow S$ be an abelian scheme and $(V_{Z}, A, \mathcal{F}^{0})$ the corresponding polarized
VHS. We define the filtration on the holomorphic de Rham complex $\Omega_{S}(V_{C})$ by

$F^{r}\Omega_{S}^{p}(V_{C})=\Omega_{S}^{p}\otimes \mathcal{F}^{r-p}$ .

(Griffiths’ transversality assures that they actually form subcomplexes.) Assume that
$S$ is compact. Then we have an isomorphism

(2.6) $H^{n}(S, V_{C})\cong H_{(2)}^{n}(S, V_{C})$ for all $n$ .



109

By using $L^{2}$ -harmonic theory, one can show that there exists a Hodge decomposition

(2.7) $H^{n}(S, V_{C})\cong H_{(2)}^{n}(S, V_{C})=\oplus_{p+q=n-1}H^{p,q}$ .

Since one has a quasi-isomorphism $V_{C}\simeq\Omega_{S}(V_{C})$ ,
the filtration $F^{r}\Omega_{S}(V_{C})$ induces a filtration on $H^{n}(S, V_{C})$ and the Hodge compo-

nents are given by
$H^{p,q}\simeq H^{n}(S, Gr_{F}^{p}\Omega_{S}(V_{C}))$ .

For example, $H^{0}(S, V_{C})$ has a 2-step filtration $0=F^{1}\subset F^{0}\subset F^{-1}$ whose succes-
sive quotients are:

$H^{0,-1}=Gr_{F}^{0}=F^{0}=H^{0}(\mathcal{F}^{\triangleleft}arrow\Omega_{S}\otimes Gr_{F}^{-1})$ ,
$H^{-1,0}=Gr_{F}^{-1}=F^{-1}/F^{0}=H^{0}(Gr_{\mathcal{F}}^{-1})$ .

where $Gr_{F}^{-1}=\mathcal{F}^{-1}/\mathcal{F}^{0}$ . $H^{1}(S, V_{C})$ has a 3-step filtration $0=F^{2}\subset F^{1}\subset F^{0}\subset$

$F^{-1}=H^{1}$ whose successive quotients are:

(2.8) $H^{1,-1}=Gr_{F}^{1}=F^{1}=H^{1}(0arrow\Omega_{S}^{1}\otimes F^{1}arrow\Omega_{S}^{2}\otimes Gr_{F}^{-1})$ ,

(2.9) $H^{0,0}=Gr_{F}^{0}=F^{0}/F^{1}=H^{1}(\mathcal{F}^{0}arrow\Omega_{S}^{1}\otimes Gr_{F}^{-1})$ ,

(2.10) $H^{-1,1}=Gr_{F}^{-1}=F^{-1}/F^{0}=H^{1}(Gr_{F}^{-1})$ .

Considering $H^{1}(S, V_{Q})$ as a lattice of $H^{1}(S, V_{C})$ , we set

(2.23) $H^{1}(S, V_{Q})^{0,0}=H^{1}(S, V_{Q})\cap H^{0,0}$ .

Let $p_{n}$ : $H^{n}(S, V_{C})arrow H^{-1,n}=H^{n}(S, Gr_{\mathcal{F}}^{-1})$ be the natural projection map induced
by the Hodge spectral sequence. Set also

(2.11) $A_{const}=coker\{p_{0} : H^{0}(S, V_{Z})arrow H^{0}(Gr_{F}^{-1})\}$,

(2.12) $H^{1}(S, V_{Z})^{0,0}=ker\{p_{1} : H^{1}(S, V_{Z})arrow H^{1}(S, Gr_{F}^{-1})\}$ .

Then by Hodge theory one has

(2.13) $H^{1}(S, V_{Q})^{0,0}=H^{1}(S, V_{Z})^{0,0}\otimes z$ Q.

Under these notations, we can state the following theorem which gives a very natural
description of $MW(A/S)$ . (Cf. [Zl, Cor. 10.2].)

(2.14) Theorem. $Assume$ that $S$ is compact. Then
(i) $A_{const}$ in (2.11) is an abelian varie$ty$ over $C$ , and
(ii) we have a natu$ral$ exact sequence of abelian group

(2.15) $0arrow A_{const}arrow MW(A/S)arrow H^{1}(S, V_{Z})^{0,0}arrow 0$ .
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(2.16) Corollary. If $S$ is compact, th$e$ followings are equivalent.

(i) $H^{0}(S, V_{C})=0$ .
(ii) $H^{0}(S, R^{1}f_{*}\mathcal{O}_{S}^{an})=0$ .
(iii) $K/C$-trace $A_{const}$ is zero.
(iv) $MW(A/S)\simeq H^{1}(S, V_{Z})^{0,0}$ , so it is a fnitely generated abelian group.

If moreover $H^{1}(S, V_{Q})^{0,0}=0$ , then $MW(A/S)$ is a ffite $gro$up.

\S 3 Mordell-Weil groups of Kuga flber spaces.

Let $G_{Q}$ be a semisimple Q-algebraic group such that $D:=G_{R}/K$ becomes a hermit-
ian symmetric domain. A Q-symmplectic representation of $G_{Q}$ is, roughly speaking, a
homomorphism $\rho$ : $G_{Q}arrow Sp(2g, Q)$ which induces an equivariant holomorphic map

$h:\mathcal{D}arrow Tt_{g}=Sp(2g, R)/K’$ .

Pulling back the universal family $\tilde{A}_{g}arrow?t_{g}$ via $h$ , we obtain a family of abelian
varieties $Aarrow \mathcal{D}$ . Taking a torsion free discrete group $\Gamma\subset\rho^{-1}(Sp(2g, Z))$ , one can
obtain an abelian scheme $f$ : $A_{\Gamma}arrow S_{\Gamma}=\Gamma\backslash \mathcal{D}$, which we call a Kuga fiber space of
abelian varieties associated a symplectic replesentation $\rho$ .

Shioda [Sdl] proved that Mordell-Weil groups of elliptic modular surfaces are finite.
Silverberg [Sil, 2&3] showed the finiteness of Mordell-Weil groups of Kuga fiber spaces
which are characterized by endomorphism algebras and polarizations, introduced by
Shimura [Shl], [Sh2].

By using the result in \S 2, Borel-Wallach vanishing theorem [B-W] for $L^{2}$ cohomology
groups and also (Mixed) Hodge theory, the author proved the following

(3.2) Theorem. (cf. [Sa. $MH$, 1991]). For a $Kuga$ fiber space associated to a standard
Q-symplectic representation, the Mordell-Weil $gro$up is finite except possibly for on$e$

case.

On the other hand, Mok and To obtained the following theorem independently.

(3.3) Theorem. ($[Mo,$ $1990J$, [Mo-T, 1991]). For any Kuga fiber space witha trivial
$K/C$-trace, the Mordell-Weil group is finite.

Mok announced the above result in [Mo], but in the first version of full paper
[Mo-T], there was a misunderstanding about Kuga fiber spaces, that is, they tacitly
assumed that the R-valued points $G_{R}$ has no compact factor, which is not true in
many important cases.
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\S 4 Mordell-Weil groups of Elliptic surfaces.

Let $f$ : $Aarrow S$ be an abelian scheme of relative dimension $g$ . In this section we
assume that $\dim S=1$ . If $S$ is not compact, in order to have a similar description
as in Theorem (2.14), we have to introduce some compactification of both abelian
schemes and VHSs. The canonical “compactification” (or extension in precise) of an
abelian scheme is given by “N\’eron model” due to N\’eron (cf. [A], [B-L-R]), and the
canonical extension of local system was given by Deligne [D1], and Zucker [Z1] extend
the Hodge theory for this extension.

In order to illustrate this, we will explain about elliptic surfaces. Hence we also
assume that $g$ ( $=$ the relative dimension of f) is equal to 1. Denote by $\overline{S}$ the com-
pactification of $S$ , and set $\Sigma=\overline{S}-S$ . Then we have the following diagram:

$Y$ – $\overline{A}$
$rightarrow$ $A$

(4.1)
$\Sigma^{\downarrow}$

$arrow$

$\frac{\downarrow\overline{f}}{S}$

$\sim j$

$\downarrow S^{f}$

Here $\overline{A}$ is a smooth projective surface which has no exceptional curve of the first kind
in fibers and we set $Y=\overline{A}-A$ . The fiber space $\overline{f}$ : $\overline{A}arrow\overline{S}$ is called an elliptic
surface. If we denote by $\overline{A}^{\#}\subset\overline{A}$ the smooth part of $\overline{f}$ , and by $\overline{A}_{0}^{\#}\subset\overline{A}^{\#}$ the connected
component in which the zero section is passing. Then $\overline{A}^{\#}$ is a smooth commutative
group scheme over $S$ which has the Neron’s universal property, so we call $\overline{A}^{\#}$ N\’eron

model. In this case, we have the following isomorphism:

(4.2) $MW(A/S)\simeq$ { $s:\overline{S}arrow\overline{A}^{\#}$ , a holomorphic section $of\overline{f}$ }.

Moreover we define the narrow Mordell-Weil group by

(4.3) $MW_{0}(A/S)\simeq$ { $s:\overline{S}arrow\overline{A}_{0}^{\#}$ , a holomorphic section $of\overline{f}$ }.

Setting $V_{Z}=R_{1}f_{*}Z_{A}$ , we have the following exact sequence due to Kodaira

(4.4) $0arrow j_{*}V_{Z}arrow R^{1}\overline{f}_{*}\mathcal{O}_{A}arrow \mathcal{O}_{\overline{S}}(\overline{A}_{0}^{\#})arrow 0$ .

Zucker [Z1] showed that $j_{*}V_{Z}$ underlies a cohomological Hodge complex or a Hodge
module in the sense of Mo. Saito [Sa.Mol, 2]. In particular, the cohomology group
$H^{q}(\overline{S},j_{*}V_{Z})$ has a pure Hodge structure of weight $q-1$ . Let $\overline{V_{\mathcal{O}}}$ denote a Deligne’s
quasi-canonical extension of $V_{\mathcal{O}}$ . Then the Gauss-Manin connection $\nabla$ : $V_{\mathcal{O}}arrow V_{\mathcal{O}}\otimes\Omega_{S}^{1}$

extends to

(4.5) $\nabla$ : $\overline{V_{\mathcal{O}}}arrow\overline{V_{\mathcal{O}}}\otimes\Omega\frac{1}{s}(log\Sigma)$.
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Let us set $\overline{\mathcal{F}^{p}}=j_{*}\mathcal{F}^{p}\cap\overline{V_{\mathcal{O}}}$. Then $\overline{\mathcal{F}^{p}}$ is a locally free extension of 1‘ to $\overline{S}$. Then we
have the following isomorphism:

(4.6) $\overline{Gr_{\mathcal{F}}^{-1}}:=\overline{\mathcal{F}^{-1}}/\overline{\mathcal{F}^{0}}\simeq R^{1}\overline{f}_{*}\mathcal{O}_{A}$ .

We set, as in (2.11) and (2.12),

(4.7) $A_{const}$ $:=H^{0}(\overline{S}, \overline{Gr_{F}^{-1}})/H^{0}(\overline{S},j_{*}V_{Z})$

(4.8) $H^{1}(\overline{S},j_{*}V_{Z})^{0,0}$ $:=ker\{H^{1}(\overline{S},j_{*}V_{Z})arrow H^{1}(\overline{S},\overline{Gr_{\mathcal{F}}^{-1}})\}$ .

From Zucker’s results, one can see that $A_{const}$ is an abelian variety defined over $C$

and

(4.9) $H^{1}(\overline{S},j_{*}V_{Z})^{0,0}\otimes Q\simeq H^{1}(\overline{S}, j_{*}V_{Q})\cap H^{0,0}$ ,

where $H^{0,0}$ is the Hodge component of type $(0,0)$ of $H^{1}(\overline{S},j_{*}V_{C})$ and

(4.10) $H^{0,0} \simeq H^{1}(\nabla : \overline{\mathcal{F}^{0}}arrow\overline{Gr_{\mathcal{F}}^{-1}}\otimes\Omega\frac{1}{s}(log\Sigma))$ .

As in Theorem (2.14), we have the following proposition from the exact sequence
(4.4).

Proposition (4.11). Under the above notation, we have the following exact se-
quence:

$0arrow A_{const}arrow MW_{0}(A/S)arrow H^{1}(j_{*}V_{Z})^{0,0}arrow 0$

Corollary (4.12). Under the above notation, the followings are equivalent.

(i) $H^{0}(\overline{S},j_{*}V_{C})=0$ .
(ii) $H^{0}(\overline{S}, R^{1}\overline{f}_{*}\mathcal{O}_{\overline{S}^{an}})=0$ .
(iii) K/C-trace $A_{const}$ is zero.
(iv) $MW_{0}(A/S)\simeq H^{1}(\overline{S},j_{*}V_{Z})^{0,0}$ , so it $is$ a finitely generated abelian $gro$up.

Ifmoreover $H^{1}(\overline{S},j_{*}V_{Q})^{0,0}=0$ , then $MW_{0}(A/S)$ and $MW(A/S)$ are finite groups.

Remark $(4\cdot 13)$ . Since $\overline{f}$ : $\overline{A}arrow\overline{S}$ is an elliptic surface, if $\overline{f}$ is not trivial, then we
have

$H^{0}(\overline{S}, R^{1}\overline{f}_{*}\mathcal{O}_{\overline{S}^{an}})=0$ .
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Hence if $\overline{f}$ is not trivial, we have an isomorphism $MW_{0}(A/S)\simeq H^{1}(\overline{S},j_{*}V_{Z})^{0,0}$ .
In this case, Shioda [Sdl] showed that the full Mordell-Weil group $MW(A/S)$ is
isomorphic to

$NS(\overline{A})/T$

where $T$ is a subgroup of the N\’eron-Severi group $NS(\overline{A})$ generated by the zero section
and all components of fibers. Note that we have an isomorphism $H^{2}(\overline{A}, Z)^{0,0}\simeq NS(\overline{A})$

and the Leray spectral sequence for $\overline{f}$ respects Hodge structure (cf. [Z1]). In our
situation, we have a homomorphism ([Sd2], [C-Z])

$\delta$ : $MW(A/S)arrow H^{1}(\overline{S},j_{*}V_{Z})^{0,0}\otimes Q$

and the narrow Mordell-Weil group is given by $\delta^{-1}(H^{1}(\overline{S},j_{*}V_{Z})^{0,0})$ . On $H^{1}(\overline{S},j_{*}V_{Z})^{0,0}\otimes$

$Q$ , one has a bilinear form induced by that on $H^{2}(\overline{A}, Z)^{0,0}$ , and hence we can define
a paring on the Mordell-Weil group $MW(A/S)$ which makes $MW(A/S)$ a lattice.
Shioda called this the Mordell-Weil lattice of $\overline{A}/\overline{S}$ which has been deeply studied in
[Sd 2].

\S 5 A sketch of a proof of Theorem (3.2).

We will give a sketch of a proof of Theorem (3.2). We may assume that a Q-
algebraic group $G_{Q}$ is simple and a Q-symplectic representation is primary i.e. sum
of irreducible representations which are mutually isomorphic.

Denote by $f$ : $A_{\Gamma}arrow S_{\Gamma}=\Gamma\backslash \mathcal{D}$ a corresponding Kuga fiber space associated to a
torsion free discrete subgroup $\Gamma\subset G_{Q}$ . Set $V_{Z}$ $:=R_{1}f_{*}Z_{A}$ . Assume that $\dim S_{\Gamma}\geq 2$ .
In this case, if we can show that

$H^{q}(S_{\Gamma}, V_{C})=0$ for $q=0,1$ ,

we obtain the finiteness of the Mordell-Weil group $MW(A/S)$ .
Let $\overline{S_{\Gamma}}$ be the Baily-Borel-Satake compactification of $S_{\Gamma}$ . Since codim $(\overline{S_{\Gamma}}/S_{\Gamma})\geq 2$ ,

we have isomorphisms

$H^{q}(S_{\Gamma}, V_{C})\simeq IH^{q}(\overline{S_{\Gamma}}, V_{C})$ for $q=0,1$ ,

where $IH(\overline{S_{\Gamma}}, V_{C})$ denote intersection cohomology groups. On the other hand, by
Zucker conjecture [L], [Sa-St], one has isomorphisms between intersection cohomology
groups and $L_{2}$ -cohomology groups, which are calculated by some representation theory
[B-W]. In fact, by using that, we can show that

$H_{(2)}^{q}(S_{\Gamma}, V_{C})=0$ for $q<R$-rank of $G_{R}$ .
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Therefore, we have done if R-rank is greater than one. And if R-rank is one, we have
the isomorphism

$G_{R}\simeq SU(n, 1)\cross K$

where $K$ is compact. In this case we can not expect the vanishing of $H^{1}$ , hence for
example in case that $S_{\Gamma}$ is compact, we have to use sharper criterion like

$H^{1}(S_{\Gamma}, V_{Q})^{0,0}=0$ .
This is done by a careful study of the $(0,0)$-component and for detail see [Sa.MH].
(The same argument goes through even if $\dim S_{\Gamma}=1$ but $S_{\Gamma}$ is compact.)

Next, we have to deal with the case when $S_{\Gamma}$ is not compact and R-rank of $G_{R}$ is
one, that is, the case when $G_{Q}=SU(n, 1, Q)$ .

We will only give a sketch of the proof when $G_{Q}=SL_{2}(Q)$ i.e. when $f$ : $A_{\Gamma}arrow S_{\Gamma}$

is an elliptic modular surface. The proofs of other cases are a little bit tricky, but the
key idea is the same as in the following.

We only have to show that the narrow Mordell-Weil group $MW_{0}(A_{\Gamma}/S_{\Gamma})$ is finite.
Here we put $A:=A_{\Gamma}$ and $S=S_{\Gamma}$ . Thanks to (4.10) and (4.12), this will be proved if

$H^{0.0} \simeq H^{1}(\overline{\nabla} : \overline{\mathcal{F}^{0}}arrow\overline{Gr_{F}^{-1}}\otimes\Omega\frac{1}{s}(log\Sigma))=0$.

Note that the sheaves $\overline{\mathcal{F}^{0}}$ and $\overline{Gr_{F}^{-1}}\otimes\Omega\frac{1}{s}(log\Sigma)$ are invertible. Since the Gauss-Manin
complex over $S$

V : $\mathcal{F}^{0}arrow Gr_{F}^{-1}\otimes\Omega_{S}^{1}$

is induced by a non-trivial homogeneous variation, $\nabla$ must induce an isomorphism.
On the other hand, by the uniqueness of the canonical extension, $\nabla$ has to extend to
an isomorphism V, therefore we have

$H^{1}(\overline{\nabla})=0$

as desired.

Remark (5.1). The above argument for elliptic modular surfaces implies that the
Hodge decomposition on $H^{1}(\overline{S},j_{*}V_{C})$ are given by

$H^{1}(\overline{S},j_{*}V_{C})=H^{1,-1}\oplus H^{-1,1}$ .

The space $H^{1,-1}$ is isomorphic to the space of holomorphic cusp forms. This is the
easiest case of Eichler-Shimura isomorphism which was reformulated by Zucker [Z1]
in this form.
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\S 6 N\’eron models of Jacobians of curves over function flelds.

In this section, we will discuss N\’eron models of Jacobians of curves over function
fields. A typical examples are given by elliptic surfaces as in \S 4, but we will deal with
curves with arbitrary genus.

As before, let $S$ be a connected smooth curve, $\overline{S}$ its smooth compactification, and
set $\Sigma=\overline{S}-S$ . We denote by $K$ the function field $C(S)$ of $S$ (or S).

Consider a projective smooth morphism $f$ : $Xarrow S$ whose geometric fibers are
smooth connected curves with genus $g\geq 1$ . Moreover we always consider the following
diagram;

$Y$ $rightarrow$
$\overline{X}$

$rightarrow$ $X$

(6.1)
$\Sigma^{\downarrow}$

$arrow$

$\frac{\downarrow\overline{f}}{S}$

$rightarrow j$

$\downarrow S^{f}$

Here $\overline{X}$ is a smooth projective surface without exceptional curves of the first kind in
fibers of $\overline{f},$ $\overline{f}$ is a compactification of $f$ , which is a projective flat morphism. The
generic fiber $X_{K}$ of $f$ : $Xarrow S$ (or $\overline{f}$ : $\overline{X}arrow\overline{S}$) is a proper smooth curve defined
over the field $K$ . The Jacobian of curve $X_{K}$ is defined to be

$J_{X_{K}}$ $:=Pic_{X_{K}/K}^{0}$

which is an abelian variety of dimension $g$ over $K$ . Let $Pic_{X/S}$ (resp. $Pic_{\overline{X}/\overline{S}}$ ) denote
the relative Picard functor for $f$ (resp. $\overline{f}$) (cf. [B-L-R, 8.1]). Then since $f$ : $Xarrow S$ is
a projetive smooth morphism, the functor $Pic_{X/S}$ is represented by a smooth separated
S-scheme which is also denoted by $Pic_{X/S}$ (cf. [B-L-R, 9-3]).

Moreover one has a decomposition

$Pi_{C_{X/s=\square Pic_{X/s}^{n}}}n\in Z$

where $Pic_{X/S}^{n}$ denote the open and closed subscheme of $Pic_{X/S}$ consisting of all line
bundles of degree $n$ . The subscheme $Pic_{X/S}^{0}$ becomes an abelian scheme over $S$ , which
is denoted by $J_{X/S}$ ([B-L-R, 9-4]), and moreover $S$ has a canonical S-ample rigidified
line bundle $L$ on $J$ . The abelian scheme $\pi$ : $J_{X/S}arrow S$ is the N\’eron model of $J_{X_{K}}/K$

over $S$ ([B-L-R, 9.5, Th.1]). In particular, we have a canonical isomorhpism

M$W(J_{X_{K}}/K)=J_{X_{K}}(K)arrow\sim J_{X/S}(S)$

where $J_{X/S}(S)$ denote the grcup of regular sections of $f$ .
In order to obtain the N\’eron model over $\overline{S}$, we have to extend the abelian scheme

$\pi$ : $J_{X/S}arrow S$ to some group scheme over $\overline{S}$.
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For each $s\in\Sigma$ , let $X_{s}=\Sigma_{i=1}^{l}m_{i}X_{i}$ denote the scheme theoretic fiber of $s$ with the
decomposition into irreducible components. We assume that for all $s\in\Sigma,$ $g.c.d(m_{i})=$

1. This condition is satisfied if e.g. $f$ : $Xarrow S$ has a section. In this case by using a
result due to Raynaud theorem (cf. [B-L-R, 9.4, Th. 2]) $Pi_{\overline{X}/\overline{S}}$ is an algebraic space
over $\overline{S}$ and $Pic \frac{0}{X}/\overline{s}$ is a separated $\overline{S}$-scheme. Consder a subfunctor $\overline{P}$ of $Pic_{\overline{X}/\overline{S}}$

which is defined as the kernel of the degree morphism $deg:Pic_{\overline{X}/\overline{S}}arrow Z$ . Then $\overline{P}$ can
be locally considered as a scheme theoretic closure of $Pic_{X/S}^{0}$ in $Pic_{\overline{X}/\overline{S}}$ . Moreover let
$\overline{E}$ denote the scheme theoretic closure of zero section $\epsilon:Sarrow Pic_{X/S}^{0}$ in $\overline{P}$.

Now we can state the fundamental result.

Theorem6.2. ([B-L-R, 9.5, Th.4]) Under the above notation$s$ and $ass$umptions, $we$

have the followin$g$:

(i) The quotient $\overline{J}=\overline{P}/\overline{E}$ exists as a separated S-group scheme and is the N\’eron

model of $J_{X_{K}}$ over $\overline{S}$ .

(ii) $Pic \frac{0}{X}/\overline{s}$ is a separated S-scheme and coincides with the identi$ty$ componen $t\overline{J}^{0}$

of the N\’eron model $\overline{J}$ of $J_{X_{K}}$ .

The group of connected components of N\’eron model.

In [B-L-R, 9.6], they calculated the group of connected component of the singular
fiber of N\’eron model $\overline{J}/\overline{J}^{0}by$ using the intersection number of the singular fiber $X_{s}$

We will show that there exists another approach by using the monodoromy on a
nearby fiber. This approach seems to be very hopeful for general abelian scheme which
is not neccesarily a Jacobian.

Under the same notations and assumptions as in Theorem 6.2, we have the following
exact sequence of the sheaf on $S^{an}$ .

(6.3) $0arrow R^{1}f_{*}Zarrow R^{1}f_{*}\mathcal{O}_{X}^{an}arrow \mathcal{O}_{S}^{an}(J_{X/S})arrow 0$.

It is easy to show that the identity component $\overline{J}^{0}$ of the N\’eron model $\overline{J}$ fits into the
following exact sequence on $\overline{S}^{an}$ :

(6.4) $0arrow j_{*}R^{1}f_{*}Zarrow R^{1}\overline{f}_{*}\mathcal{O}_{X}^{an}arrow \mathcal{O}_{S}^{an}(\overline{J}_{X/S}^{0})arrow 0$.

Moreover one can define $Tor=\oplus_{s\in\Sigma}Tor_{s}$ by

(6.5) $0arrow\overline{J}_{X/S}^{0}arrow\overline{J}_{X/S}arrow Torarrow 0$ .
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Let $\Delta$ denote the small nbd of a critical value $s\in\Sigma$ with coordinate $t$ . Fix a
point $t\in\Delta-\{0\}$ and consider the monodromy transformation $T=T_{s}$ : $H^{1}(X_{t}, Z)arrow$

$H^{1}(X_{t}, Z)$ . Note that $H^{1}(X_{\ell}, Z)$ is a free Z-module of rank $2g$ . Consider the following
homomorphism

$N$ $:=T-I_{2g}$ : $H^{1}(X_{t}, Z)arrow H^{1}(X_{t}, Z)$ .
Then one has isomorphisms

(6.6) $KerN\simeq(j_{*}R^{1}f_{*}Z_{X})_{s}$ , $CokerN\simeq(R^{1}j_{*}(R^{1}f_{*}Z_{X}))_{s}$ .

From the above sequence, one has the following theorem.

Theorem 6.7. Under the above notation$s$ and aesumptions, we have an isomorph$ism$

(6.8) $Tor_{s}\simeq Torsion$ part of $CokerN$

Remark 6.9. A degenerate elliptic curve of type $I_{b}^{*}$ has a local monodromy

$T=(\begin{array}{ll}-1 -b0 -1\end{array})$ ,

while the $g_{\vee}\overline{|}roup$ of connected compnents is one of

$Z/2\oplus Z/2$ , or $Z/4$

depending on the parity $of-b$. Ueno and Namikawa classified all degenerate curves
of genus 2 with explicit equations and local monodromy. One can try to calculate the
$Tor$ for the stable curve of genus 2

with the local monodromy

$T–(\begin{array}{llll}1 0 2 -l0 1 -1 20 0 1 00 0 0 1\end{array})$ .

$\Rightarrow$

$T\circ r_{s}$
$\cong$ $Z/3Z$ .
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