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Rigidity Theorems on Spheres and Complex Projective Spaces

RYOICHI KOBAYASHI
Department of Mathematics, Nagoya University

ABSTRACr. This is a short report on two rigidity theorems concerning spheres. One is
characterizing Euclidean spheres in terms of the lower bound of the sectional curvature and the
length of the shortest closed geodesics. The other is a characterization of complex projective
spaces as a smooth Kahler compactification of complex homology cells (which was proved by Van
de Ven in dimension $\leq 5$ and was conjectured by Brenton and Morrow in general dimensions).

0. Two Rigidity Theorems Concerning Spheres. This note is a report on two
rigidity theorems in differential geometry recently obtained by Itokawa and the author
[IK] and by the author [K2]:

THEOREM 1 ([IK]). Let $M$ be an n-dimensional complete Riemannian manifoTd whose
sectional curvature $K$ is bounded below by $k^{2}$ with $k>0$ and the length of the shortest
closed geodesics is equal to $\underline{2}\pi F$ . Then $M$ is isometric to the Euclidean sphere $S_{k}^{n}$ of radius
$\frac{1}{k}$ in $R^{n+1}$ .
THEOREM 2 ([K2]). Let (X, $D$ ) be a pair of an n-dimensional compact complex manifold
$X$ and a smooth hypersurface $D$ in X. Assume that $X$ is Kahler, or, $D$ is Kahler and $X$

contains no exceptional subvarieties ($i.e.$ , subvarieties blown down to a point). Suppose
$X-D$ is biholomorphic to a complex homology n-cell. Then (X, $D$ ) is biholomorphic to
the hyperplane section $(P_{n}(C), P_{n-1}(C))$ .

Here a (noncompact) complex manifold $Y$ is a complex homology n-cell iff $H_{2n-i}(Y, Z)(=$

$H_{c}^{i}(Y, Z))=0$ for $0\leq\forall i\leq 2n-1$ , where $H_{c}^{*}$ denotes the cohomology groups with
compact support.

Theorem 1 is completely Riemannian geometric and Theorem 2 is completely complex
analytic. There are no logical relationship between two rigidity theorems. But the author
wishes to report these results at the same time because he investigated these rigidity
phenomena almost at the same time and, which is mathematically more important, both
theorems are concerned with characterizations of spheres (with additional structures).
Indeed, Theorem 1 characterizes spheres with a canonical metric structure in terms of
the lower bound of sectional curvatures and the length of the shortest closed geodesics.
It has a flavor similar to Obata’s theorem (see [BGM]) which characterizes Euclidean
spheres in terms of the lower bound of Ricci curvatures and the first eigenvalue of the
Laplacian. Spheres are not apparent in Theorem 2. However, to prove Theorem 2,
we will show that the tubular neighborhood $S$ of $D$ in $X$ together with the standard
$S^{1}$-action $S^{1}xSarrow S$ is isotopic to the sphere of dimension $2n-1$ with the usual
$S^{1}$ -action. Therefore in the proof of Theorem 2 we will characterize odd dimensional
spheres with the standard $S^{1}$ -action, i.e., the Hopf fibration $S^{2n-1}arrow P_{n-1}(C)$ , from the
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complex analytical conditions given in Theorem 2. The conditions in Theorem 2 contain
no explicit information on curvature and are completely complex analytical. Compare
our conditions with curvature conditions in Siu-Yau’s theorem [SY] (the positivity of the
bisectional curvature on a compact K\"ahler manifold $X$ implies that $X\cong P_{n}(C)$ complex
analytically).

In this note we explain two examples of the (hopefully new) ideas characterizing spheres
in Riemannian geometry and complex algebraic geometry.

1. On Theorem 1. Some related rigidity phenomena were known previously.
Tsukamoto [Ts] and Sugimoto [Su] proved:

Suppose that $M^{n}$ satisfies $4k^{2}\geq K\geq k^{2}$ . If $n$ is odd, assume that $M$ is simply connected.
Then if $M$ has a closed geodesic of length $\frac{2\pi}{k}$ it is isometric to $S_{k}^{n}$ .
It follows from Klingenberg’s injectivity radius theorem (see [CE] and [Sa2]) that the
curvature assumption in the above result and the simple connectivity of $M$ implies that
all closed geodesics on $M$ have length $\geq F\pi$ . On the other hand, Fet [F] proved that
the curvature assumption in Theorem 1 implies that there exists a closed geodesic on $M$

whose length is $\leq\frac{2\pi}{k}$ and index $\leq n-1$ . Note that the condition in the above result
on closed geodesics is not the one on the shortest closed geodesics. Moreover the upper
bound of the sectional curvature is not so natural from the point of view of rigidity
theorems in Riemannian geometry. Indeed, for any given $k$ and $\delta$ , there is a Riemannian
metric on $S^{2}$ with $K\geq k^{2}$ and the length of the shortest closed geodesics $\delta$-close to $\frac{2\pi}{k}$

but whose maximum curvature grows arbitrarily large. In the special case of dimension
2, Toponogov [T] proved

Suppose that $M$ is an abstract surface satisfying $K\geq k^{2}$ . If there exists on $M$ a closed
geodesic without sef-intersections whose length is $\frac{2\pi}{k}$ then $M$ is isometric to $S_{k}^{2}$ .
The condition that the closed geodesics have no self-intersections is not removed. Indeed,
for any $k>0$ there exists an ellipsoid in $R^{3}$ which possesses a prime closed geodesic of
length $\frac{2\pi}{k}$ and whose curvature is $>k^{2}$ . On the other hand, we assume nothing on the self-
intersections of the shortest closed geodesics. As a result, they have no self-intersections.
The direct higher dimensional analogue of Toponogov’s result does not hold. Indeed,
there are lens spaces of constant curvature $k^{2}$ so that all geodesics are closed, the prime
ones have no self-intersections and they are either homotopic to $0$ and have length $\frac{2\pi}{k}$

or, homotopically nontrivial and can be arbitrarily short (see [Sal]). Of course we have
an equivariant version of Theorem 1:

COROLLARY. If $K\geq k^{2}$ and the short est closed geodesics that are homotopic to $0$ in $M$

have the length $\frac{2\pi}{k}$ then the universal covering of $M$ must be isometric to $S_{k}^{n}$ .
Under a Ricci curvature assumption, Itokawa [I1,2] proved

If the Ricci curvature $ofM$ $is\geq(n-1)k^{2}$ and if the shortest closed geodesics on $M$ have
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the length $\geq F\pi$ then either $M$ is simply conn.ected or else $M$ is-isometric with the real
projective space all of whose prime closed geodesics have length $F\pi$ .
PROBLEM. Does Theorem 1 remain true when the assumption on the sectional curvature
is weakened to that on the Ricci curvature Ricci $\geq(n-1)k^{2}q$

This seems to be very difficult. In fact, Itokawa [I1,2] constructed examples so that, for
the Ricci curvature assumption, the shortest closed geodesics may have length arbitrarily
close to $T2\pi$ without manifold’s even homeomorphic to $S^{n}$ .

Next we outline the idea of the proof of Theorem 1. For details, see [IK]. We apply
the Morse theory to the loop space $\Omega$ of $M$ (see [M]). Set $k=2\pi$ and we characterize
$S_{2\pi}^{n}$ . Let $E(\gamma)$ (resp. $L(\gamma)$ ) be the energy functional (resp. the length functional). Then
$L(\gamma)^{2}\leq E(\gamma)$ with equality iff $\gamma$ is parametrized proportional to arclength. Then the
critical points of $E$ on $\Omega$ are closed geodesics and the constant curves $(\cong M)$ . Let $\iota(\gamma)$

be the index of the closed geodesic $\gamma$ . Put

$C:=$ { $c\in\Omega;c$ , is a closed geodesic of length 1 and $\iota(c)=n-1$ }

and

C’ $:=\{c\in C$ ; an unstable simplex of $E$ at $c$ represents
a nontrivial element in $\pi_{n-1}(\Omega, M)$ }

Fet’s theorem and the Morse-Shoenberg index comparison [CE] imply that $C\neq\emptyset$ . In fact
we have a stronger assertion:

LEMMA 1.1. Under the assumption of Theorem 1, $C^{*}$ is nonempty and is a closed set in
$\Omega$ .
For the proof of Lemma 1.1, we remark that the Morse-Shoenberg index comparison
with $S_{2\pi}^{n}$ implies that $M$ has the homotopy type of the sphere. Then we consider a
finite dimensional approximation ${}^{t}\Omega\leq r$ ( $r$ sufficiently large) of the loop space $\Omega\leq r$ and
construct a sequence of functionals $\{E_{i}\}$ s.t. (i) $E_{i}$ has only nondegenerate critical points
in $\Omega^{1-\epsilon<r<1+e}$ and (ii) $\lim_{iarrow\infty}E_{i}=E$ in the $C^{2}$-topology. Applying the standard Morse
theory to $(^{/}\Omega\leq rE;)$ and taking the limit $iarrow\infty$ , we get Lemma 1.1.

Now the main step in the proof of Theorem 1 is to show

LEMMA 1.2. Let $c\in C^{*}$ . Then the set

$\mathcal{U}^{*}:=\{u\in UT_{c(0)}M;c_{u}\in C^{*}\}$

is an open set in $UT_{c(0)}M$ .
Here $UTM$ denotes the unit tangent bundle of $M$ and $c_{u}$ denotes the geodesic with $u$

the initial vector. The continuity method then implies that $\mathcal{U}^{*}=UT_{c(0)}M$ and so we
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get a family in C’ of the shortest closed geodesics in $M$ . The Morse.Shoenberg index
comparison implies

LEMMA 1.3. If $c\in C$ then for any $s\in R$ and any $v\in T_{c(s)}^{\perp}c$ we have $K(c^{/}(s)\wedge v)=(2\pi)^{2}$ .
Thus we get a family of the shortest closed geodesics along which the curvature is equal
to $(2\pi)^{2}$ which is sufficiently large to construct an explicit isometry of $M$ to $S_{2\pi}^{n}$ as in
Toponogov’s maximum diameter theorem ([CE],[Sa2]).

We prove Lemma 1.2 by the Morse theory on $\Omega$ . Let $c\in C^{*}$ . Then as in Lemma 1.3 we
have

LEMMA 1.4. Orthogonal Jacobi fields along $c$ is of the $form$

const. $\sin(2\pi s)V(s)$ $(0\leq s\leq 1)$

where $V(s)$ is any parallel vector field of elements in $U(T^{\perp}c|_{[0,1]})$ .
Let $\{V\cdot(s)\}_{i=1}^{n-1}$ be parallel vector fields of orthonormal elements in $U(\perp c|_{[0,1]})$ . These
may not close up at $s=1$ because the holonomy may not be trivial (in fact, the holonomy
turns out to be trivial as we shall see later). Define $2(n-1)$ (discontinuous) vector fields
along $c$ :

$X_{i}(s)=\{\begin{array}{l}V_{i}(s)if0\leq s\leq\frac{1}{2}0if\frac{1}{2}\leq s\leq 1\end{array}$

and
$Y_{i}(s)=\{\begin{array}{l}0if0\leq s\leq\frac{1}{2}V_{i}(s)if\frac{1}{2}\leq s\leq 1\end{array}$

Let $(x, y)=(x_{1}, \cdots , x_{n-1}, y_{1}, \cdots , y_{n-1})\in R^{2(n-1)}$ run over a small interval $I$ $xI\in$
$R^{2(n-1)}$ with center $0\in R^{2(n-1)}$ . Set

$\tilde{\sigma}(x, y)=\exp_{c(s)}\{sin(2\pi s)(\sum_{i=1}^{n-1}(x;X_{i}(s)+y_{i}Y_{i}(s)))\}$ .

Note that the vector field inside $\exp$ is continuous. So this will form a $2(n-1)$-simplex
in $\Omega$ .
REMARK. If we consider this construction on the model space $S_{2\pi}^{n}$ , we get a family of
broken geodesics (with corners possibly at $s=0$ and $s= \frac{1}{2}$) and these geodesics are
smooth iff $x=y$ .
We construct a new $2(n-1)$-parameter family $\sigma(x, y)$ of loops by performing a short cut
modification to loops with corners (and reparametrizing these by the arclength). Define
an $(n-1)$-simplices $\tau_{u}$ and $\tau_{0}$ by setting

$\tau_{u}(x)=\sigma(x, -x)=\exp_{c(s)}\{\sin(2\pi s)(\sum_{i=1}^{n-1}(x;X_{i}(s)-x;Y_{i}(s)))\}$
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and

$\tau_{0}(x)=\tau_{0}(x, x)=\exp_{c(’)}\{\sin(2\pi s)(\sum_{i=1}^{n-1}x;V_{i}(s))\}$ .

These two simplices are transversal at the image of $x=y=0$ in $\Omega$ . Every loop in $\tau_{u}$

has corner$s$ at $s=0$ and $s= \frac{1}{2}$ and a loop in $\tau_{0}$ has a corner at $s=0$ if the holonomy
is nontrivial. Applying Rauch’s $s$econd comparison ([CE],[Sa2]), we infer that there is a
neighborhood $W$ of $c\in C^{*}$ in $\Omega$ and a positive number $\epsilon$ so that the $2(n-1)$-simplex
$\sigma\cap W$ is contained in the sublevel set $\Omega\leq 1$ and the $(n-1)$-simplex $\tau_{u}\cap W$ represents a
nontrivial element in $\pi_{n-1}(W, W\cap\Omega\leq 1-e)$ , i.e., $\tau_{u}$ is strictly unstable (this is the effect
of the presence of nontrivial corners for loops in $\tau_{u}$ ). In particular $\tau\cap W$ cannot be
deformed into $\Omega^{<1}$ . Now it may be intuitively clear that the holonomy along $c$ must be
trivial on $T_{c(0)}^{\perp}c$ , every $\tau_{0}(x)$ has no corners and the $(n-1)$-simplex $\tau_{0}$ rides on the level
set $\Omega^{=1}$ . Otherwise $\tau_{u}$ may be deformed in $W$ into $\Omega^{<1}$ , which is a contradiction. It
is now easy to get Lemma 1.2. The new idea in this argument may be the use of the
simplex $\tilde{\sigma}(x, y)$ (consisting of “broken geodesics”). Such a simplex was first introduced
by Araki in [A] when $M$ is a symmetric space.

2. On Theorem 2. Van de Ven [V] proved Theorem 2 when $\dim X\leq 5$ . Van de Ven’s
method is based on the Riemann-Roch theorem. Brenton and Morrow [BM] conjectured
Theorem 2 in general dimensions (see also [PS]). From our point of view, Theorem 2 is
a consequence of a general existence theorem for complete Ricci-flat K\"ahler metrics on
certain class of affine algebraic manifolds. This motivates the study in [BK] but we could
prove the existence theorem only under an additional condition, i.e., the K\"ahler-Einstein

condition on the divisor at infinity. The existence theorem and its proof in [BK] found
some applications ([B], [K1] and [Ye]) but it is too restrictive to be applied to problems
in algebraic geometry. Generalizing previous results of [BK] and [TY] by removing the
K\"ahler-Einstein condition at infinity, the author showed the following existence theorem:

EXISTENCE THEOREM ([K2]). Let $X$ be a Fano manifold and $D$ a smooth hypersurface
in $X$ such that $c_{1}(X)=\alpha[D]$ with $\alpha>1$ . Then $X-D$ admits a complete Ricci-flat
Kahler metric.

To apply this existence theorem to problems in algebraic geometry, we need to know the
analytical properties of the resulting metric. This may be described as follows. In the
following argument, we always assume that $\dim_{C}X=n>1$ . As $c_{1}(X)>0$ , there exists
a Hermitian metric for $O_{X}(D)$ with positive curvature form $\theta>0$ . Let $\sigma$ be a defining
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section of $O_{X}(D)$ . Then $\theta=\sqrt{-1}\partial\overline{\partial}t$ with $t= \log\frac{1}{||\sigma||}\tau$ and

$\omega=\frac{n}{\alpha-1}\sqrt{-1}\partial\overline{\partial}(\frac{1}{||\sigma||^{2}}I^{\frac{\alpha-1}{l}}$

$=( \frac{1}{||\sigma||^{2}})^{\frac{\alpha-1}{*}}(\theta+\frac{\alpha-1}{n}\sqrt{-1}\partial t$ A $\overline{\partial}t)$

defines a complete K\"ahler metric on $X-D$. Then the K\"ahler metric di in Theorem 2 is
obtained by the deformation of $\omega$ as follows:

$\tilde{\omega}=\omega+\sqrt{-1}\partial\overline{\partial}u$

where $u$ satisfies the a priori estimates:

$|| \nabla_{v}^{k}u||\leq C_{k}\{(\frac{1}{||\sigma||^{2}})^{\frac{a-1}{2_{l}}}\}^{2-k}$

for $Z\ni\forall k\geq 0$ , where $\nabla_{\omega}$ is the Levi-Civita connection of $\omega$ . In particular, $|u||\sigma||^{2^{\underline{\alpha-1}}}\cdot|$

is bounded above by an a priori constant, or in other words, $u$ is at most of quadratic
growth relative to the distance function for $\omega$ and $||\nabla_{\omega}^{k}u||$ decays like dist $(0, *)^{2-k}$ . Hence
the K\"ahler metrics $\tilde{\omega}$ and $\omega$ are equivalent:

$C\omega<\tilde{\omega}<C^{-1}\omega$

holds with $C>0$ an a priori constant and geometric properties of $\omega$ (at infinity) approx-
imates those of $\tilde{\omega}$ . Set

$\tilde{u}=\frac{n}{\alpha-1}(\frac{1}{||\sigma||^{2}})^{\frac{\alpha-1}{l}}+u$ .

Then $\tilde{u}$ is a K\"ahler potential for a complete Ricci-flat K\"ahler metric on $X-D$ which is
equivalent to the squared distance function from a fixed point in $X-D$ .

Now let (X, $D$ ) be as in Theorem 2. Then Brenton-Morrow [BM] proved the following

LEMMA 2.1. Let (X, $D$ ) be as in Theorem 2. Then $X$ is a Fano manifold (hence projective
algebraic) and $c_{1}(X)=\alpha[D]$ with $\alpha>1$ . Moreover there is a smooth map $\psi$ : $Xarrow P_{n}(C)$

taking $D$ into a hyperplane $P_{n-1}(C)$ which induces ring isomorphisms

$\psi^{*}:$ $H^{*}(P_{n}(C), Z)arrow H^{*}(X, Z)$

$\psi_{D}^{*}$ : $H^{*}(P_{n-1}(C), Z)arrow H^{*}(D, Z)$ .
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Hence (X, $D$ ) in Theorem 2 satisfies the conditions in the Existence Theorem. Therefore
$X-D$ admits a complete Ricci-flat K\"ahler metric $\tilde{\omega}=\sqrt{-1}\partial\overline{\partial}\tilde{u}$ which has properties
described above. Write $c;(\omega)$ (resp. $p;(\omega)$ ) for the i-th Chern form (resp. the i-th
Pontrjagin form) computed from the K\"ahler metric $\omega$ . Now we look at the following
“equality” (both sides may diverge):

$\int_{X-D}c_{2}(\tilde{\omega})\wedge\tilde{\omega}^{n-2}=\int_{X-D}c_{2}(\theta)\wedge\tilde{\omega}^{n-2}+\int_{X-D}(c_{2}(\tilde{\omega})-c_{2}(\theta))\wedge\tilde{\omega}^{n-2}$ .

By this equality, we compare the growth of these curvature integrals. We consider the
secondary characteristic class on large geodesic balls in the computation of the second
term in the right side. Since $\tilde{\omega}$ is a Ricci-flat K\"ahler metric, we have

$\int_{X-D}c_{2}(\tilde{\omega})$ A $\tilde{\omega}^{n-2}\geq 0$ .

(Note that this property is used in the proof of the fact that a compact K\"ahler manifold
with $c_{1}=c_{2}=0$ is covered holomorphically by a complex torus.) We can compute (the
growth of) the integrals in the right hand side of the above “equality” explicitly. Since
$\tilde{\omega}$ is a Ricci-flat K\"ahler metric, there occurs no change in the left hand side if we replace
$c_{2}$ by $c_{2}-$ } $c_{1}^{2}=- \frac{1}{2}p_{1}$ . We thus have

$0 \leq-\int_{X-D}p_{1}(\theta)\wedge\tilde{\omega}^{n-2}+\int_{X-D}(-p_{1}(\tilde{\omega})+p_{1}(\theta))\wedge\tilde{\omega}^{n-2}$ .

From Lemma 2.1 and [MS, Lemma 20.2, pp. 232-233] (the theory of the combinatorial
Pontrjagin classes), we infer that the the growth rate of the first integral in the right
side is given by the Pontrjagin number-} $(p_{1}(P_{n}(C))\cup h^{n-2})([P_{n}(C)])$ , where $h$ is the
positive generator of $H^{2}(P_{n}(C))$ . Thus, the above inequality amounts to the following
surprising estimate on $\alpha$ (recall that $c_{1}(X)=\alpha[D]$ ):

$\alpha\geq n+1$ .

Indeed, the first term in the right side is computed on $P_{n}(C)$ and $\alpha$ appears in the second
term with a positive coefficient. Now we recall Kobayashi-Ochiai’s characterization of
complex projective spaces [KO]: If $\alpha\geq n+1$ then $X$ is biholomorphic to $P_{n}(C)$ . We
thus have (X, $D$ ) $=(P_{n}(C), P_{n-1}(C))$ , i.e., the hyperplane section. We can even prove
Kobayashi-Ochiai’s characterization [KO] using complete Ricci-flat K\"ahler metrics [K2].
Indeed, since $\alpha=n+1$ , we can construct $n$ nontrivial holomorphic functions $(z_{1}, -- , z_{n})$

on $X-D$ with at most linear growth (with respect to the distance function of the metric
$\tilde{\omega})$ . These holomorphic functions will give an isomorphism

$z=(z_{1}, \cdots, z_{n}):X-Darrow C^{n}$
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and $|dz_{1}\wedge\cdots$ A $dz_{n}|^{2}$ coincides with the volume form $\tilde{\omega}^{n}$ (after a scale change). We thus
have

LEMMA 2.2. There exists holomorphic functions $z_{1},$ $\cdots$ , $z_{n}$ on $X-D$ which give an
isomorphism $X-D\cong C^{n}$ and the Ricci-flat Kahler potential $\tilde{u}$ grows like $|z_{1}|^{2}+\cdots+|z_{n}|^{2}$ .

Thus $\tilde{u}$ satisfies the equation

$\det(\frac{\partial^{2}\tilde{u}}{\partial z_{i}\partial\overline{z}_{j}})=1$

and $\tilde{u}$ grows like a squared distance function of the standard flat metric on $C^{n}$ . Using
Calabi’s third order estimate [C] (see also [Au]), we infer that $\tilde{u}$ is in fact a quadratic
function and thus $\tilde{\omega}$ turns out to be a flat metric on $C^{n}$ . It follows from this and
the definition of $\tilde{u}$ that any tubular neighborhood $S$ of $D$ in $X$ is diffeomorphic to the
sphere $S^{2n-1}$ and that the natural $S^{1}$ -action (induced from the complex structure) on $S$ is
isotopic to that on the Hopf fibration $S^{2n-1}arrow P_{n-1}(C)$ . It follows that $D$ is diffeomorphic
to $P_{n-1}(C)$ and (X, $D$ ) is diffeomorphic to the hyperplane section $(P_{n}(C), P_{n-1}(C))$ .
Finally, Hirzebruch-Kodaira’s characterization of $P_{n}(C)$ ([HK], see also [Y1]) implies
that (X, $D$ ) is biholomorphic to the hyperplane section $(P_{n}(C), P_{n-1}(C))$ .

We now outline the proof of the Existence Theorem. The $5^{eometric}$ idea is this: We
consider the family $\{\gamma_{\epsilon}\}$ of the Chern forms of $O_{X}(D)=K_{X^{\overline{\alpha}}}^{-}$ such that the support of
$\gamma_{\epsilon}$ concentrates along $D$ in the limit $\epsilonarrow 0$ . Then we solve the complex Monge.Amp\‘ere
equations (the prescribed Ricci form equations) $\{E_{\epsilon}\}$ under suitable scaling conditions.
Yau’s solution to Calabi’s conjecture [Y1] implies that there exists a unique solution at
each stage. We introduce suitable weight functions and derive uniform weighted $C^{0}$ and
$C^{2}$ estimates for solutions of $\{E_{\epsilon}\}$ . Finally we take the limit $\epsilonarrow 0$ to get a complete
Ricci-flat K\"ahler metric $\tilde{\omega}=\omega+\sqrt{-1}\partial\overline{\partial}\tilde{u}$ . The weighted $C^{0}$ estimates and their limit
imply that $\tilde{u}$ is at most of quadratic growth relative to the metric $\omega$ .

We consider the family of smooth K\"ahler metrics on $X$ defined by

$\omega_{\epsilon}=(\frac{1}{||\sigma||^{2}+\epsilon})^{\frac{\alpha-1}{*}}(\theta+\frac{\alpha-1||\sigma||^{2}}{n||\sigma||^{2}+\epsilon}\sqrt{-1}\partial t\wedge\overline{\partial}t)$.

It is easy to see that $[\omega_{\epsilon}]\propto c_{1}(X)$ and $\lim_{\epsilonarrow 0}\omega_{\epsilon}=\omega$ . Let $V$ be a Ricci-flat volume form
on $X-D$ with poles of order $2\alpha$ along $D$ and set

$V_{\epsilon}=( \frac{||\sigma||^{2}}{||\sigma||^{2}+\epsilon})^{\alpha}V$.

By a suitable scale change, we may assume that

$\int_{X}V_{\epsilon}=\int_{X}\omega_{\epsilon}^{n}$.
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Define $f_{\epsilon}$ by $f_{e}=\log^{\omega_{e}}\neq^{\iota}\cdot$ . Then $\lim_{\epsilonarrow 0}f_{\epsilon}=\frac{\omega^{n}}{V}$ . We introduce the following family of the
complex Monge-Amp\‘ere equations on $X$ with weighted normalization conditions:

$(E_{\epsilon})$ $\{\int_{X}\frac{u_{\epsilon}^{\epsilon})}{\phi_{e}}\omega_{e}^{n}=0.=e^{-f_{C}}\omega_{\epsilon}^{n}$

,

Here, $\phi_{\epsilon}$ is a smooth weight function which is approximately a squared distance function
relative to $\omega_{\epsilon}$ from a fixed point (independent of e) in $X-D$ . By Yau’s solution to
Calabi’s conjecture [Y1], the above equation has a unique solution $u_{e}$ for a fixed $e$ . We
want to prove that there is a constant $C>0$ such that

$|| \frac{u_{e}}{\phi_{e}}||_{C^{0}}\leq C$

holds for all sufficiently small $e$ . The existence of the Sobolev inequalities with a uniform
constant is most important in doing so. Set $\gamma=\frac{n}{n-1}$ . We then have

LEMMA 2.3 (CF. [L]). There exists a constant $c>0$ independent of (sufficiently small)
$\epsilon$ such that for each $\epsilon$ the Sobolev inequahty

$( \int_{X}|f|^{2\gamma}\omega_{\epsilon}^{n})^{\frac{1}{\gamma}}\leq c\int_{X}|df|_{\omega_{e}}^{2}\omega_{\epsilon}^{n}+Vol(\omega_{\epsilon})^{-\frac{1}{n}}\int_{X}|f|^{2}\omega_{e}^{n}$

holds for all $C^{1}$ -functions $f$ on $X$ .

Deriving weighted a priori estimates independent of $\epsilon$ is quite complicated. Details can
be found in [K2]. The outline is as follows. We use the continuity meth $od$ in the following
way. Replacing $f_{\epsilon}$ by $rf_{e}$ with $0\leq\tau\leq 1$ , we get a two parameter family of complex
Monge-Amp\‘ere equations $\{E_{\epsilon,\tau}\}$ . Let $C\subset[0,1]$ be a set of $\tau$ such that the solutions $u_{e,r}$

have weighted $C^{0}$ estimates uniform relative to $e$ . Clearly $O\in C$ . Showing the openness
is reduced to a linear problem. Here we only mention the following two remarks: (i) the
$C^{0}$ estimate needed for the proof of the openness is shown by the argument in the $C^{0}$

estimate in the proof of the closedness (cf. [BK]), and (ii) For the $C^{2}$ estimate, we will use
Cheng-Yau’s gradient estimate [CY, Theorem 6] and the standard Schauder estimates.
The main difficulty lies in showing the closedness. We need uniform weighted a priori
estimates for the two-parameter family of Monge-Amp\‘ere equations. In the following
argument, we set $\tau=1$ . Combining the nonlinear equation

$(1-e^{-f}e)\omega_{e}^{n}=(-\sqrt{-1}\partial\overline{\partial}u_{\epsilon})$ A $( \sum_{i=1}^{n-1}\omega_{\epsilon}^{n-1-i}\tilde{\omega}_{e}^{i})$



233

$(\tilde{\omega}_{\epsilon}=\omega_{\epsilon}+\sqrt{-1}\partial\overline{\partial}u_{\epsilon})$ and the Sobolev inequality on (X, $\omega_{\epsilon}$ )

$( \int_{X}|\frac{u_{\epsilon}}{\phi_{\epsilon}}|^{p\gamma})^{\frac{1}{\gamma}}\leq c\int_{X}|\partial|\frac{u_{e}}{\phi_{\epsilon}}|^{\S}|^{2}+Vol(\omega_{\epsilon})^{-\frac{1}{*}}\int_{X}|\frac{u_{\epsilon}}{\phi_{\epsilon}}|^{p}$,

we have

(1) $( \int_{X}|\frac{u_{\epsilon}}{\phi_{\epsilon}}|^{p\gamma})^{\frac{1}{\gamma}}\leq cp\int_{X}|\frac{u_{\epsilon}}{\phi_{\epsilon}}|^{p-1}\frac{|1-e^{-f}e|}{\phi_{\epsilon}}$

$+cpa_{n} \int_{X}|\frac{u_{\epsilon}}{\phi_{\epsilon}}|^{p}\frac{1}{\phi_{e}}+c\int_{X}|\frac{u_{\epsilon}}{\phi_{\epsilon}}|^{p}\frac{1}{\phi_{\epsilon}}$

on (X, $\omega_{\epsilon}$ ). Here $a_{n}=a^{2n(n-1)}$ and $a$ is a constant such that $tr_{\tilde{\omega}}\omega_{\epsilon}\leq a$ . Of course $a$

should be estimated independently. Although the above inequality involves an unknown
constant $a$ , we are able to derive an $a$ $p$ ri $oriC^{0}$ estimate for $f_{e}^{u}$ in the following way. Let
fix an $\epsilon$ . We choose a sequence of weight functions $\{\phi_{\epsilon}(i)\}_{i=0}^{\infty}$ in the following way:

$\phi_{\epsilon}(i)\approx\{\begin{array}{l},ifdist(o,*)\leq\frac{D}{2}\prime\epsilondist(o,*)^{2},ifdist(o,*)\geq\frac{D}{2}|\epsilon\end{array}$

Here $D_{\epsilon}$ denotes the diameter of (X, $\omega_{e}$ ). First of all we let $\phi=\phi_{\epsilon}(0)=D_{\epsilon}$ (constant
weight function). Then we have no second term in the right hand side of (1) (but we
do have the third term). Set $0<v_{n}= \sup_{\epsilon_{Vol(X^{2n}\omega_{e})}}^{D}\sim<\infty$ and $a‘= \sup|\frac{u}{D}9|e$ Then (1)
becomes

(2) $( \int_{X}|\frac{u_{\epsilon}}{\phi_{e}}|^{p\gamma})^{\frac{1}{\gamma}}\leq cp\int_{X}|\frac{u_{e}}{\phi_{\epsilon}}|^{p-1}\frac{|1-e^{-f}\epsilon|}{\phi_{\epsilon}}+c\int_{X}|\frac{u_{\epsilon}}{\phi_{\epsilon}}|^{p}\frac{1}{\phi_{\epsilon}}$

$\leq cp\int_{X}|\frac{u_{e}}{\phi_{\epsilon}}|^{p-1}(^{1}\frac{1-e^{-f}e|}{\phi_{\epsilon}}+\frac{a^{/}}{p}I$

if $\phi=\phi_{\epsilon}(0)$ . We use the following well-known inequality:

(3) $px^{p-1}y\leq\lambda(p-1)x^{p}+\lambda^{1-p}y^{p}$

valid with any positive numbers $x,$ $y$ and $\lambda$ . We will use this inequality to the right hand
side of (2) with

(4) $x=| \frac{u_{\epsilon}}{\phi}|$ , $y= \frac{|1-e^{-f}e|}{\phi}$ and $\lambda=(\frac{D^{\frac{2n}{\epsilon^{p-n}}}}{Kv_{n}cD_{\epsilon}^{2}p\log p})^{\frac{p-n}{p-1}}$
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with $K>0$ sufficiently large (independent of $\epsilon$), where we determine $p$ by setting

(5) $D^{\frac{2n}{\epsilon^{p}}}\approx p\log p$

for a fixed $\epsilon$ (note that $parrow\infty$ as $\epsilonarrow 0$). We then have from (2),(3),(4) and (5) the
folowing estimate:

$( \int|\frac{u_{\epsilon}}{\phi}|^{p\gamma})^{\frac{1}{\gamma}}\leq\frac{1}{2}(\int|\frac{u_{\epsilon}}{\phi}|^{p\gamma})^{\frac{1}{\gamma}}+(\sup|1-e^{-f}e|+\frac{a^{t}}{p})^{p}$

This gives an a priori $L^{p}$ estimate for $\overline{D}^{\div_{e}}u$ for this special $p$ . Moser’s iteration technique
then implies an a priori $C^{0}$ estimate for $\frac{u}{D}\div e$ (see [BK, p.178]). As there exists a uniform
Sobolev constant for Sobolev inequalities on (X, $\omega_{e}$ ) (Lemma 2.3), the above estimate is
independent of sufficiently small $\epsilon$ . This in particular gives an a priori $C^{0}$ estimate for
$\frac{u_{C}}{\phi_{e}(1)}$ in the region dist $( 0, *)\leq\frac{D}{2}L$ Next we set $\phi=\phi_{\epsilon}(1)$ . In the region dist $( 0, *)\geq\frac{D_{e}}{2}$ ,
we already have a good weighted a priori $C^{0}$ estimate. This time we argue as above
and get a good weighted a priori $C^{0}$ estimate in the region dist $( 0, *)\geq\frac{D}{4}$ Iterating
this process about $\log_{2}D_{\epsilon}$-times, we get a desired $C^{0}$ estimate for $\frac{u}{\phi}Le$ (although we have
errors coming from the normalization process with different weight functions, the sum of
all errors remain bounded above by a constant independent of $e$).

We now proceed to showing a priori estimates for $tr_{\tilde{\omega}_{e}}\omega_{e}$ (which impliy the estimates
for the second order derivatives of mixed type). Let $m>0$ be a large integer. If we
put $K=-(m+1)a^{/}<0$ with $a^{t}= \sup|^{u}r_{e}$ , we get $\frac{m+2}{m+1}K\leq\frac{u_{e}+K\phi_{e}}{\phi_{e}}\leq\frac{m}{m+1}K<0$ . Set
$u_{e}^{t}=u_{e}+KG_{e}$ , where $G_{\epsilon}$ is the K\"ahler potential for $\omega_{e}$ defined by

$\int(\frac{1}{e^{-t}+\epsilon})^{\frac{a-1}{n}}dt$

with $t= \log\frac{1}{||\sigma||}\tau$ with a suitable normalization. We then have

$\frac{m+2}{m+1}KG_{e}\leq u_{\epsilon}’\leq\frac{m}{m+1}K\phi_{e}<0$ .

Let $\delta=\frac{1}{2N+1}$ with $N>0$ a large positive integer. Then $u_{e}^{1\delta}<0$ , i.e., the negative
$(2N+1)- st$ root of $u_{e}’<0$ is well defined. Set

$\rho_{0}=(\frac{n}{\alpha-1})^{1}2\exp(\frac{\alpha-1}{2n})$ .
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Then $\psi_{0}=\rho_{0}^{2}$ . Direct computation shows

$\triangle_{\tilde{\omega}_{e}}(\frac{u_{\epsilon}^{t}}{\rho_{0}^{2}})^{\delta}=\delta(\delta-1)(\frac{u_{\epsilon}^{t}}{\rho_{0}^{2}})^{\delta-2}\frac{tr_{\tilde{\omega}_{e}}(\sqrt{-1}\partial u_{\epsilon}^{t}\wedge\overline{\partial}u_{\epsilon}^{/})}{p_{0}^{4}}$

$+4 \delta(\delta-1)(\frac{u_{\epsilon}^{/}}{\phi_{0}}I^{\delta}\frac{tr_{\tilde{\omega}_{e}}(\sqrt{-1}\partial\rho 0\wedge\overline{\partial}\rho_{0})}{p_{0}^{2}}$

$+ \delta(\delta-1)(\frac{u_{\epsilon}^{t}}{\rho_{0}^{2}})^{\delta-1}tr_{\tilde{\omega}_{\epsilon}}(\sqrt{-1}\partial u_{\epsilon}^{t}\wedge\overline{\partial}\frac{1}{\rho_{0}^{2}}+\sqrt{-1}\partial\frac{1}{p_{0}^{2}}$ A $\overline{\partial}u_{e}^{/})$

$+ \delta(\frac{u_{e}^{/}}{p_{0}^{2}})^{\delta-1}\frac{\triangle_{\tilde{\omega}_{C}}u_{\epsilon}’}{\rho_{0}^{2}}$

$+ \delta(\frac{u_{\epsilon}^{/}}{\rho_{0}^{2}})^{\delta-1}tr_{\tilde{\omega}}(\sqrt{-1}\partial u_{e}^{t}\wedge\overline{\partial}\frac{1}{\rho_{0}^{2}}+\sqrt{-1}\partial\frac{1}{\rho_{0}^{2}}\wedge\overline{\partial}u_{\epsilon}^{t})$

$+ \delta(\frac{u_{\epsilon}’}{p_{0}^{2}})^{\delta-1}\frac{u_{\epsilon}^{t}}{p_{0}^{2}}tr_{\tilde{\omega}_{e}}(-\frac{\sqrt{-1}\partial\overline{\partial}\rho_{0}^{2}}{\rho_{0}^{2}}+\frac{8\sqrt{-1}\partial\rho 0\wedge\overline{\partial}p0}{\rho_{0}^{2}})$ .

Let $U_{\epsilon}$ be a region in $X$ defined by the following properties:

$\sqrt{-1}\partial G_{\epsilon}$ A $\overline{\partial}G_{e}\geq(const.)\sqrt{-1}p_{0}^{2}\partial p_{0}\wedge\overline{\partial}p0$ and $\sqrt{-1}\partial\overline{\partial}\rho 0\leq(const.)\omega_{e}$

and
$\phi_{\epsilon}\geq(const.)\rho_{0}^{2}$ .

If $\delta$ is sufficiently small (in fact we let $\deltaarrow 0$ ) $and|K|$ is sufficiently large (but independent
of $\epsilon$), the above equality implies the following:

$\Delta_{\tilde{\omega}_{e}}(\frac{u_{\epsilon}}{\rho_{0}^{2}})^{\delta}\leq\delta(\frac{m|K|}{m+1})^{\delta-1}\frac{(1+c|K|)n-\frac{1}{2}tr_{\tilde{\omega}_{e}}\omega_{\epsilon}-c^{t}n(e^{-f}e-1)}{\rho_{0}^{2}}$

on $U_{\epsilon}$ , where $c$ and $c^{/}$ are positive constants independent of $e$ . Let $A$ be a positive number
such that

$\frac{A\delta}{2}(\frac{m+1}{m|K|})^{1-\delta}=1+\sup_{U_{e}}|p_{0}^{2}$($bisectiona1$ curvature of $\omega_{e}$ ) $|=:1+C$ .

Set $C’=n+n \max\{c, c^{t}\}(1+|1-e^{-f}\epsilon|)$ . Now we recall Chern-Lu’s infinitesimal Schwarz
lemma ([Ch],[Y3]):

$\triangle_{\tilde{\omega}_{e}}\log tr_{\tilde{\omega}_{e}}\omega_{e}\geq-\frac{C}{\phi_{\epsilon}}tr_{\tilde{\omega}_{e}}\omega_{\epsilon}$.

We thus have

(6)
$\triangle_{\tilde{\omega}_{\epsilon}}\{\log tr_{\tilde{\omega}_{e}}\omega_{\epsilon}-A(\frac{u_{\epsilon}^{t}}{\rho_{0}^{2}})^{\delta}\}\geq\frac{tr_{\tilde{\omega}_{e}}\omega_{e}}{\rho_{0}^{2}}-\frac{A\delta(\frac{m+1}{m|K|})^{1-\delta}(n+C’|K|)}{\rho_{0}^{2}}$

.
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Since the function
$-A( \frac{u_{e}’}{\rho_{0}^{2}}I^{\delta}=-A(\frac{u_{\epsilon}^{t}}{\phi_{\epsilon}}\frac{\phi_{\epsilon}}{p_{0}^{2}})^{\delta}>0$

assumes its local minimum along $D$ and its derivative is $\infty$ along $D$ , the function
$\log tr_{\tilde{\omega}}.\omega_{\epsilon}-A(u\rho*_{0}’)^{\delta}$ never takes its local maximum value along $D$ and also near $D$ .
If we take $\epsilon$ sufficiently small then we can apply the maximum principle to the inequality
(6). Finally, letting $\deltaarrow 0$ , we get a desired uniform estimates for $tr_{\tilde{\omega}_{\epsilon}}\omega_{e}$ . This implies
that there exists a constant $c$ such that

$c\omega_{\epsilon}<\tilde{\omega}_{\epsilon}<c^{-1}\omega_{\epsilon}$

holds for all sufficiently small $\epsilon$ . The estimation of higher derivatives $D^{k}u_{\epsilon}$ follows from
the interior Schauder estimates.

We end this note by gathering related problems.

PROBLEM 1. Which compactifications of $C^{n}$ are mtional ?

PROBLEM 2. Suppose that $X$ is a Kahler compactification of $C^{n}$ . Le $tD=\Sigma_{i=1}^{r}D$; be a
divisor at infinity with reduced structure. If $c_{1}(X)=\Sigma_{1=1}^{r}\alpha_{i}[D;]>0$ with $\forall\alpha;>1$ , is $X$

a rational variety $q$

PROBLEM 3. Generalize the Existence Theorem in [$K2J$ to (X, $D$ ) in which $D$ has at
worst normal crossings.

Recently Azad and the author [AK] showed that there exists a complete Ricci-flat
K\"ahler metric on symmetric varieties (in the sense of [DP]). This is a special case of
Problem 3. Indeed, the symmetric variety $G^{C}/K^{C}$ associated to the Riemannian sym-
metric space $G/K$ of compact type is equivariantly compactified to a Fano manifold $X$

and the divisor $D$ at infinity consists of $r=rank(G/K)$ smooth hypersurfaces with normal
crossings (DeConcini-Procesi’s compactification [DP]). In this case $c_{1}(X)= \sum_{i=1}^{r}d;[D;]$

with $d;>1$ .
PROBLEM 4. Find a characterization of $(Q_{n}(C), CQ_{n-1}(C))$ in the spirit of Theorem 2,
where $CQ_{n-1}(C)$ is a quadric cone and $Q_{n}(C)-CQ_{n-1}(C)=C^{n}$ .
PROBLEM 5. Find a characterization of Kahler C-spaces as compactifications of $C^{n}$ .
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