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In the present paper we consider the global existence and asymptotic behavior in time
of solutions for the Zakharov equations:

(1) $\dot{\iota}\frac{\partial}{\partial t}E+\triangle E=nE$ , $t>0$ , $x\in R^{N}$ ,

(2) $\frac{\partial^{2}}{\partial t^{2}}n-\triangle n=\triangle|E|^{2}$ , $t>0$ , $x\in R^{N}$ ,

(3) $E(O, x)=E_{0}(x)$ , $n(O, x)=n_{0}(x)$ , $\frac{\partial}{\partial t}n(0, x)=n_{1}(x)$ , $x\in R^{N}$ ,

where $E$ is a function from $R^{+}\cross R^{N}$ to $C^{N},$ $n$ is a function from $R^{+}\cross R^{N}$ to $R$ and
$1\leq N\leq 3$ . Equations (1)$-(2)$ describe the propagation of Langmuir turbulence in an
unmagnetized, completely ionized hydrogen plasma (see Zakharov [20]). $E(t, x)$ is the
slowly varying complex amplitude of the electric field $\mathcal{E}$ of the Langmuir wave with plasma

frequency $\omega_{p}>0$ :
$\mathcal{E}(t, x)=\Re(E(t, x)\exp(-it\omega_{p}))$ .

$n(t, x)$ is the deviation of the ion density from its equilibrium. The right hand side of (1)

represents the shift of plasmon frequency caused by the slow density variation $n(t, x)$ , and
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the right hand side of (2) represents the driving force caused by the pressure of plasmon

gas.

There are many papers concerning the global existence in time of solutions for (1)$-(3)$ .
In [17] C. Sulem and P.L. Sulem proved by using the Glerkin method that if $N=1$ and
$(E_{0}, n_{0}, n_{1})\in H^{m}\oplus H^{m-1}\oplus(H^{m-2}\cap\dot{H}^{-1}),$ $m\geq 3$ , then (1)$-(3)$ have the unique global

solutions $(E, n)\in L^{\infty}(O, \infty;H^{m})\oplus L^{\infty}$( $0$ , oo; $H^{m-1}$ ) and that if $(E_{0}, n_{0}, n_{1})\in H^{1}\oplus L^{2}\oplus$

$\dot{H}^{-1}$ and the $L^{2}$ norm and the $H^{1}$ norm of $E_{0}$ are small for $N=2$ and $N=3$, respectively,

then (1)$-(3)$ have the global weak solutions $(E, n)\in L^{\infty}(O, \infty;H^{1})\oplus L^{\infty}(0, \infty;L^{2})$ for
$1\leq N\leq 3$ . But the uniqueness of weak solutions in $H^{1}\oplus L^{2}$ is not yet known. Here
$H^{m}$ denotes the standard Sobolev space $H^{m}(R^{N}).\dot{H}^{m}$ denotes the homogeneous Sobolev
space consisting of all tempered distributions $u$ with $|\xi|^{m}\hat{u}\in L^{2}\equiv L^{2}(R^{N})$ , where $\hat{u}$ is
the Fourier transform of $u$ . In [15] Schochet and Weinstein showed a similar result by the

different method. When $N=2$ , H. Added and S. Added [1] improved the global existence
results due to C. Sulem and P.L. Sulem [17] and showed that if $N=2$ , $(E_{0}, n_{0}, n_{1})\in$

$H^{m}\oplus H^{m-1}\oplus(H^{m-2}\cap\dot{H}^{-1}),$ $m\geq 3$ and the $L^{2}$ norm of $E_{0}$ is small, then (1)$-(3)$ have the

unique global solutions $(E, n)\in H^{m}\oplus H^{m-1}$ . Recently in [11] the authors have improved

the local existence and regularity results due to C. Sulem and P.L. Sulem [17] and Schochet
and Weinstein [15] and have brought down the lower bound $m=3$ of regularity of the

solutions to $m=2$ concerning the unique local existence of solutions for (1)$-(3)$ . However,

the uniqueness of the weak solutions’ in $H^{1}\oplus L^{2}$ for $1\leq N\leq 3$ and the global existence
of strong solutions for $N=3$ are still open. On the other hand, it is conjectured that for

$N=2,3$ , there exist solutions blowing up in finite time (see [20]). In the present paper,

for $N=3$ we consider solving (1)$-(2)$ with the final data given at $t=+\infty$ instead of the
initial value problem (1)$-(3)$ . This leads to the construction of the wave operator.

The difficulty of constructing the global solutions of (1)$-(2)$ consists in the quadratic non-
linearity of (1)$-(2)$ . In [9] Klainerman introduced the notion of the null condition to show
the global existence of small amplitude solutions for the wave equation with quadratic non-

linearity in three space dimensions. Recently, Bachelot [3] and Georgiev [6] have improved

the null condition technique to show the global existence of small amplitude solutions for
the Dirac-Klein-Gordon equations and the Maxwell-Dirac equations, respectively. How-

ever, the null condition technique does not seem to be directly applicable to (1)$-(3)$ , because

the null condition thechnique is based on the Lorentz invariance of the equations. But the

Schr\"odinger equation does not necessarily have the same invariance as the wave equation,
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and especially the Schr\"odinger equation is not invariant under the Lorentz transformation.

On the other hand, in [5] Flato, Simon and Taflin study the global existence and asymp-

totic behavior of solutions for the Maxwell-Dirac equations with the final data given at
$t=+\infty$ . This corresponds to the construction of the wave operator, more precisely, the
modified wave operator.

In our problem, the wave operator $W+is$ difined as follows. For the free solutions
$(E_{+}(t),n+(t))$ of the Schr\"odinger and wave equations, we find the solutions $(E(t),n(t))$ of

(1)$-(2)$ such that $(E, n)$ exist on $[0, +\infty$ ) and satisfy

(4) $\Vert E(t)-E_{+}(t)\Vert_{L^{2}}+\Vert\nabla n(t)-\nabla n+(t)\Vert_{L^{2}}$

$+ \Vert\frac{\partial}{\partial t}n(t)-\frac{\partial}{\partial t}n+(t)\Vert_{L^{2}}arrow 0$ $(tarrow+\infty)$ .

Then, we consider the wave operator $W+as$ a mapping from the scattered states $(E_{+}(0)$ ,
$n_{+}(0),$ $\frac{\partial}{\partial t}n+(0))$ to the interacting states $(E(O), n(O),$ $\frac{\partial}{\partial t}n(0))$ . However, all the solutions

of (1)$-(2)$ may not exist globally in time and so we also consider the pseudo wave op-

erator with the reference time $t=0$ of the interacting states replaced by some $T>0$ .
That is, the pseudo wave operator $\overline{W}+is$ defined as a mapping from the scattered states
$(E_{+}(0), n_{+}(0),$ $\frac{\partial}{\partial t}n_{+}(0))$ to the interacting states $(E(T), n(T),$ $\frac{\partial}{\partial t}n(T))$ for some $T>0$ ,

where $(E, n)$ exist on $[T, +\infty$ ) and satisfy (4), and $T$ may change for each scattered states.

In the present paper, we announce that when $N=3$ , we can prove the existence of the
wave operator $W_{+}$ of (1)$-(2)$ for small scattered data and the existence of the pseudo wave

operator $\overline{W}+of(1)-(2)$ for the scattered data (not necessarily small) with the support of
$\hat{E}_{+}(0)$ included in the unit ball centered at the origin. Accordingly, it can be also shown

that for the initial data belonging to the range of $W+or$ the range of $\overline{W}+,$ (1)$-(3)$ have the

unique global solutions.

Before we state the theorems we define several notations. Le $\omega=\sqrt{-\triangle}$ and let $U(t)=$

$e^{\frac{:}{2}t\Delta}$ be the evolution operator of the free Schr\"odinger equation. For nonnegative integers
$m$ and $s$ , we define $H^{m,s}$ as follows:

$H^{m,s}=\{v\in S’(R^{N});\Vert(1+|x|^{2})^{\frac{s}{2}}(1-\triangle)^{\frac{m}{2}}v\Vert_{L^{2}}<+\infty\}$

with the norms

$\Vert v\Vert_{H^{m,*}}=\Vert(1+|x|^{2})^{\frac{s}{2}}(1-\triangle)^{\frac{m}{2}}v\Vert_{L^{2}}$ .
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For a multi-index $\alpha=(\alpha_{1}, \cdots, \alpha_{N})$ with nonnegative integers $\alpha_{j}$ , we put

$|\alpha|=\alpha_{1}+\cdots+\alpha_{N}$ ,

$( \frac{\partial}{\partial x})^{\alpha}=(\frac{\partial}{\partial x_{1}})^{\alpha_{1}}\cdots(\frac{\partial}{\partial x_{1}})^{\alpha_{N}}$ .

For $p\geq 1$ and a nonnegative integer $k$ , we let

$W^{k,p}= \{u\in L^{p}(R^{N});(\frac{\partial}{\partial x})^{\alpha}u\in L^{p}(R^{N}), |\alpha|\leq k\}$

with the norm

$\Vert u\Vert_{W^{k,p}}=\sum_{|\alpha|\leq k}\Vert(\frac{\partial}{\partial x})^{\alpha}u\Vert_{L^{p}}$ .

We now state the theorems.

THEOREM 1. Let $N=3$ . Assume that $E+0\in H^{6,7}$ . We put $E_{+}(t)=U(t)E+0$ . Assume
that $n+0\in H^{5,2}$ and $n+1\in H^{4,2}$ . We put $n_{+}(t)=(\cos\omega t)n+0+(\omega^{-1}\sin\omega t)n_{+1}$ . Then,

there exists $\eta>0$ such that if

(5) $\Vert E+0\Vert_{H^{6,7}}+\Vert n+0\Vert_{H^{5,2}}+\Vert n_{+1}\Vert_{H^{4,2}}\leq\eta$ ,

(1)$-(2)$ have th$e$ unique solutions $(E(t), n(t))$ satisfying

(6) $E(t) \in\bigcap_{j=0}^{1}C^{\dot{J}}([0, \infty);H^{3-2}$り,

(7) $n(t) \in\bigcap_{j=0}^{2}C^{j}([0, \infty);H^{2-j})$, $\frac{\partial}{\partial t}n(t)\in C([0, \infty);\dot{H}^{-1})$ ,

(8) $\Vert E(t)-E_{+}(t)||_{H^{3}}+\Vert n(t)-n_{+}(t)\Vert_{H^{2}}$

$+ \Vert\frac{\partial}{\partial t}n(t)-\frac{\partial}{\partial t}n_{+}(t)\Vert_{H^{1}\cap\dot{H}^{-1}}=O(t^{-1/2})$ $(tarrow+\infty)$ ,

(9) $( \int^{+\infty}\Vert E(s)-E_{+}(s)||_{W^{24}}^{8/3},ds)^{3/8}$
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$+( \int^{+\infty}\Vert n(s)-n+(s)\Vert_{W}^{8/3_{14}},ds)^{3/8}=O(t^{-1/2})$ $(tarrow+\infty)$ ,

Remark 1. (i) For $N=3,$ $H^{1,1}\subset\dot{H}^{-1}$ . Therefor, $n_{+0}$ and $n_{+1}$ belong to $\dot{H}^{-1}$ under
the assumptions in Theorem 1.

(ii) Theorem 1 implies that for any scattered data satisfying the assumptions in The-

orem 1, there exist the solutions of (1)$-(2)$ approaching asymptotically the free solutions
prescribed by those scattered data as $tarrow+\infty$ . This is quite different from the case of the

Maxwell-Schr\"odinger equations, although (1)$-(2)$ are the system of the Schr\"odinger equa-
tion and the wave equation with quadratic nonlinear coupling like the Maxwell-Schr\"odinger

system. In the case of the Maxwell-Schr\"odinger equations, the solutions do not approach
the free solutions in the sense of (8) (see [18]).

THEOREM 2. Let $N=3,$ $\delta>0$ and $0< \epsilon<\frac{1}{41}$ Assume that $E_{+0}\in H^{6,7}$ and $supp\hat{E}_{+0}\subset$

$\{\xi;|\xi|\leq 1-\delta\}$ . We put $E_{+}(t)=U(t)E_{+0}$ . Assume that $n+0\in H^{5,4}$ and $n_{+1}\in H^{4,4}$ . We
put $n_{+}(t)=(\cos\omega t)n+0+(\omega^{-1}\sin\omega t)n+1$ . Then, there exists a $T>0$ such that (1)$-(2)$

$h$ave the unique solutions $(E(t), n(t))$ satisfyin$g$

(10) $E(t) \in\bigcap_{j=0}^{1}C^{j}([T, \infty);H^{3-2j})$ ,

(11) $n(t) \in\bigcap_{j=0}^{2}C^{j}([T, \infty);H^{2-j})$ , $\frac{\partial}{\partial t}n(t)\in C([T, \infty);\dot{H}^{-1})$,

(12) $\Vert E(t)-E_{+}(t)\Vert_{L^{2}}=O(t^{-2+2\epsilon})$ $(tarrow+\infty)$ ,

(13) $\Vert E(t)-E_{+}(t)\Vert_{H^{1}}+\Vert n(t)-n_{+}(t)\Vert_{L^{2}}$

$+ \Vert\frac{\partial}{\partial t}n(t)-\frac{\partial}{\partial t}n_{+}(t)\Vert_{\dot{H}^{-1}}=O(t^{-3/2+\epsilon})$ $(tarrow+\infty)$ ,

(14) $\Vert E(t)-E_{+}(t)\Vert_{H^{2}}+\Vert n(t)-n+(t)\Vert_{H^{1}}$

$+ \Vert\frac{\partial}{\partial t}n(t)-\frac{\partial}{\partial t}n_{\dagger}(t)\Vert_{L^{2}}=O(t^{-2+3\epsilon})$ $(tarrow+\infty)$ ,

(15) $\Vert E(t)-E_{+}(t)\Vert_{H^{3}}+\Vert n(t)-n_{+}(t)\Vert_{H^{2}}$

$+ \Vert\frac{\partial}{\partial t}n(t)-\frac{\partial}{\partial t}n+(t)\Vert_{H^{1}}=O(t^{-2+4\epsilon})$ $(tarrow+\infty)$ ,
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where $T$ depends only on $\delta,$
$\epsilon,$ $\Vert E_{+0}\Vert_{H^{6,7}},$ $\Vert n_{+0}\Vert_{H^{5,4}}$ and $\Vert n_{+1}\Vert_{H^{4,4}}$ .

Remark 2. (i) The support condition on the Fourier transform of $E_{+0}$ is indispensable to

the proof of Theorem 2. However, we can replace this support condition by the following:

$supp\hat{E}+0\subset\{\xi;|\xi|\leq 1-\delta\}\cup\{\xi;|\xi|\geq 1+\delta\}$

(ii) The support condition on the Fourier transform of $E_{+0}$ seems to have some physical

meaning. This condition implies that most part of the Schr\"odinger wave propagates at

speed less than one and so the ion sound speed is faster than that of the Schr\"odinger wave.

This situation seems important from a physical point of view (see Zakharov [20], H. Added

and S. Added [2], Shochet and Weinstein [15] and Ozawa and Tsutsumi [13]).

The following corollary is an immediate consequence of Theorems 1 and 2.

COROLLARY 3. $AssumeN=3$ .
(i) By $D+we$ denote the set of all scattered states $(E, n, n)$ satistying (5). Then,

for (1)$-(2)$ the wave operator $W+:(En, n.)\mapsto(E(0), n(O),$ $\frac{\partial}{\partial t}n(0))$ is well defined
on $D+\cdot$

(ii) Let $\delta>0$ . By $\tilde{D}+we$ denote the set of all scattered states $(E_{+0}, n_{+0}, n_{+1})\in$

$H^{6,7}\oplus H^{5,4}\oplus H^{4,4}$ such that $supp\hat{E}+0\subset\{\xi;|\xi|\leq 1-\delta\}$ . Then, for (1)$-(2)$ the pseudo

wave operator $\overline{W}+:(E_{+0}, n_{+0}, n_{+1})rightarrow(E(T), n(T),$ $\frac{\partial}{\partial t}n(T))$ is well defined on $\tilde{D}+\cdot$

(iii) For any initial data $(E_{0}, n_{0}, n_{1})$ belonging to the range of $W+or$ th$e$ range of $\overline{W}+$ ,

there exist the uniq $ue$ global solutions $(E(t), n(t))$ of (1)$-(3)$ such that

$E(t) \in\bigcap_{j=0}^{1}C^{j}([0, \infty);H^{3-2j})$ ,

$n(t) \in\bigcap_{j=0}^{2}C^{j}([0, \infty);H^{2-j})$, $\frac{\partial}{\partial t}n(t)\in C([0, \infty);\dot{H}^{-1})$ .

Here $W+and\overline{W}+are$ defined in (i) and (ii), respectively.

Remark 3. The range of $\overline{W}+includes$ some large data, while the range of $W+includes$

only small data. Therefore, Corollary 3 (iii) implies that for some large initial data, there
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exist the unique global solutions of (1)$-(3)$ . However, it is not clear what initial data belong
to the range of $\overline{W}+\cdot$

Theorems 1 and 2 follow from the combination of the various energy and decay estimates.
The energy estimates are the standard ones and the decay estimates are crucial. The decay

estimates needed for the proof of Theorem 1 are based on the $L^{p}-L^{q}$ estimate and the

Stricahrtz type estimate (see, e.g., [7] and [19] for the Schr\"odinger equation and [14] for the

wave equation). The decay estimates needed for the proof of Theorem 1 are based on the

special properties of the nonlinear coupling for the Zakharov equations and the propagation
properties of the Schr\"odinger wave and the acoustic wave. The support condition on the

Fourier transform of $E+0$ ensures that the nonlinear coupling term of (1) decays fast enough

as $tarrow+\infty$ (see Ozawa and Tsutsumi [13] and Tsutsumi [18]). The details of the proofs

will appear elsewhere.
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