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A global weak solution of the nonstationary two-phase Navier-Stokes flow is

constructed for arbitrary given initial phase configuration. Our solution tracks the

evolution of the interface after it develops singularities. The theory of viscosity

solutions is adapted to solves the interface equation. Surface tension effects are

ignored here.

1. Introduction

This paper studies the dynamics of the interface (free boundary) of two immisci-

ble incompressible viscous fluids with same constant density, say one, in a smoothly

bounded domain. Each fluid velocity satisfies the Navier-Stokes equations with dif-

ferent viscosities. The interface is assumed to move with the fluid velocities. No

surface tension on the interface is considered in this paper. The interface is also as-

sumed to intersect the boundary of the domain perpendicularly. We impose nonzero

fluid velocity on the boundary to consider the dynamics of the interface not only

in the interior of the domain but also up to the boundary.

Let $\iota\nearrow\pm be$ the viscosities of each fluid. Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}(n\geq 2)$

with smooth boundary $\partial\Omega$ (at least $\partial\Omega\in C^{2+\mu},$ $0<\mu<$ 1) and let $\Omega_{\pm}(t)\subset$

$\Omega$ be the disjoint open sets occupied with the fluids of viscosities $\iota/\pm at$ time $t$ ,
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respectively. The velocities $u\pm=u\pm(t, x)$ and the pressures $\pi\pm=\pi\pm(t, x)$ of fluids

of viscosities $\nu\pm are$ assumed to satisfy the incompressible Navier-Stokes system:

(1.1)
$\partial_{t\pm}\triangle u+(u\pm\cdot\nabla)u\pm+\nabla\pi\pm=0$ , in $(0, T)\cross\Omega_{\pm}(t)$ ,

(1.2)
$\nabla\cdot u\pm=0$ , in $(0, T)\cross\Omega_{\pm}(t)$ .

The complement of the union of $\Omega_{+}(t)$ and $\Omega_{-}(t)$ is called the interface and denoted

by $\Gamma(t)$ . To write down the interface equation we assume that the interface $\Gamma(t)$ is

a smooth hypersurface so that $\Gamma(t)$ is the boundary between $\Omega_{+}(t)$ and $\Omega_{-}(t)$ . We

first impose on the interface

(1.3) $u+=u_{-}$ , on $\Gamma(t)$ ,

(1.4) $T_{+}(u+, \pi_{+})\cdot n=T_{-}(u_{-}, \pi_{-})\cdot n$ , on $\Gamma(t)$ ,

where $n$ denotes the unit normal vector from $\Omega_{+}(t)$ to $\Omega_{-}(t)$ and $T_{\pm}(u\pm, \pi\pm)$ $:=$

$\iota/\pm D(u\pm)-\pi\pm I$ denote the stress tensors with the strain tensor

$D(u)=(D_{kf}(u)):= \frac{\partial u^{k}}{\partial u^{\ell}}+\frac{\partial u^{\ell}}{\partial u^{k}}$.

The dynamics of the interface is assumed to be determined by the motion of the

fluids with prependicular cross condition on the boundary $\partial\Omega$ . Let $V=V(t, x)$

denote the speed of $\Gamma(t)$ at $x\in\Gamma(t)$ in the direction $n$ . Let $\gamma$ be the unit normal

vector field on the boundary $\partial\Omega$ . We consider the interface equations for $\Gamma(t)$ :

(1.5) $V=u+\cdot n$ on $\Gamma(t)$ with initial data $\Omega_{\pm}(0)=\Omega\pm 0$ ,

(1.6) $\gamma\cdot n=0$ , on $\partial\Omega\cap\overline{\Gamma(t)}$ .

The above equations $(1.5)-(1.6)$ imply that the interface on the boundary $\partial\Omega$ is

transported only by the tangential component of the velocity on $\partial\Omega$ . Since we
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consider the motion of the interface also on the boundary, we impose nonzero

Dirichlet condition:

(1.7) $u\pm=h\pm$ on $\partial\Omega_{\pm}(t)\cap\partial\Omega$ .

The initial velocities are assumed to be zero for simlicity:

(1.8) $u\pm(0, x)=0$ in $\Omega_{\pm}(0)$ .

Here $0<\nu_{-}<\nu+<\infty$ and $0<T\leq\infty$ .

Our goal is to construct global weak solutions of $(1.1)-(1.8)$ for arbitrary given

initial phase configuration $\Omega\pm 0$ when $\nu+and$ u-are close and $h\pm is$ smooth and

small. To construct global solutions we have to overcome an intrinsic difficulty that

the interface may develops singularities in a finite time. Giga and Takahashi [GT]

first constructed a global solution for the two-phase Stokes system with periodic

boundary conditions when $\nu+and_{\ddagger}/$-are close. We improve their arguments.

We first introduce a weak formulation of the transport equation $(1.5)-(1.6)$ . Since

the interface $\Gamma(t)$ may not be regular, we consider a generalized evolution of $(1.5)-$

(1.6) through a level set of an auxiliary function. Although such a generalized

evolution for (1.5) is constructed on a torus by [GT], we consider also the boundary

condition (1.4). Since our velocity field $u$ is merely continuous, one cannot expect

the uniqueness of transpotation. Also the Lebesgue measure of the zero-level set

may be positive, so our interface may be thick.

We next introduce a step function $\nu$ to give a weak formulation of $(1.1)-(1.4)$ with

$(1.7)-(1.8)$ . The region occupied with high (resp. low) viscous fluid corresponds to

the phace where $\nu$ takes the value $\nu+$ (resp. $\iota/-$ ). The interface corresponds to

the jump discontinuity of $\nu$ . The velocity $u$ is defined by $u=u\pm on\Omega\pm and$ the

pressure $\pi$ is defined in the same manner. The system (1.1) and (1.4) is formally

equivalent to

(1.9) $u_{t}-\nabla\cdot(\nu D(u))+u\cdot\nabla u+\nabla\pi=0$ , in $(0, T)\cross\Omega$
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(cf. [GT, Introduction]).

To construct a solution we seek a fixed point of the mapping difined as follows.

For a continuous function $v$ we solve $(1.5)-(1.6)$ with $u+=v$ and construct gener-

alized evolutions $\Omega_{\pm}^{v}$ . Let $\nu=\nu_{v}$ be a step function defined by $\nu=\nu\pm on\Omega_{\pm}^{v}$ and

$\nu=(\nu++\nu_{-})/2$ outside $\Omega_{\pm}^{v}$ . We next solve (1.9) with $\nabla\cdot u=0,$ $u|_{\partial\Omega}=h$ and

$u|_{t=0}=0$ , and obtain a mapping $S:vrightarrow u$ . Since $S$ may not be continuous, unfor-

tunately, Leray-Schauder’s fixed point theory does not apply. We extend mapping

$S$ to a set-valued mapping introduced by [GT] so that we can apply Kakutani’s

fixed point theory. Although a solution obtained in such a way no longer satisfies

(1.9) in the whole of $(0, T)\cross\Omega$ , we can verify it satisfies (1.9) outside the interface.

To apply Kakutani’s theory we need a compactness which follows from a priori $L^{p}$

estimates. We first vanish the boundary value $u|_{\partial\Omega}=h$ with preserving divergence

free. We next apply a priori estimates of the Stokes system obtained by M. Giga,

Y. Giga and H. Sohr.

2. Interface Equations

This section establishes a (global-in-time) generalized evolution of interface equa-

tions. Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}(n\geq 2)$ with $\partial\Omega\in C^{2}$ . Let $\Omega\pm be$ disjoint

open sets in $M=[0, \infty$ ) $\cross\Omega$ and let $\Gamma$ denote the complement of the union of

$\Omega+and\Omega_{-}$ in $M$ . Physically, $\Gamma(t)$ is called an interface at time $t$ bounding two

phases $\Omega_{\pm}(t)$ . Here $W(t)$ denotes the cross-section of $W\subset M$ at time $t$ , i.e.,

$W(t)=\{x\in\Omega;(t, x)\in W\}$ . Suppose that $\Gamma(t)$ is a smooth hypersurface, $n$ is the

unit normal vector field from $\Omega_{+}(t)$ to $\Omega_{-}(t)$ and that $\gamma$ is the unit inner normal

vector field on the boundary $\partial\Omega$ of $\Omega$ . Let $V=V(t, x)$ denote the speed of $\Gamma(t)$ at

$x\in\Gamma(t)$ in the direction $n$ . Suppose that $u$ : $\overline{Q}arrow \mathbb{R}^{n}$ is a continuous vector field,

i.e., $u\in C(\overline{Q})$ where $Q=(O, T)\cross\Omega(0<T\leq\infty)$ and that $\overline{Q}$ denotes the closure

of $Q$ in $M$ . Here and hereafter we do not distinguish the space of real, vector or
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tensor valued functions. The equation for $\Gamma(t)$ we consider here is

(2.1) $V=u\cdot n$ , on $\Gamma(t)$ ,

(2.2) $n\cdot\gamma=0$ , on $\overline{\Gamma(t)}\cap\partial\Omega$,

where denotes the standard inner product in $\mathbb{R}^{n}$ and $\overline{\Gamma(t)}$ denotes the closure of

$\Gamma(t)$ in $\mathbb{R}^{n}$ .

Classical solutions of $(2.1)-(2.2)$ may not exist even for a short time for merely

continuous vector field $u$ and they are not uniquely determined by initial data even

if they exist. So we consider largest and smallest solutions and show uniqueness of

them.

Let $u\in C(\overline{Q})$ and $a\in C(\overline{\Omega})$ . We say $\psi$ : $Qarrow \mathbb{R}$ is a subsolution of

(2.3) $\psi_{t}+(u\cdot\nabla)\psi=0$ , in $Q$ ,

(2.4) $\partial\psi/\partial\gamma=0$ , on $\partial\Omega$

(2.5) $\psi(0, x)=a(x)$ ,

if $\psi$ is a viscosity subsolution of $(2.3)-(2.4)$ on $Q$ and $\psi_{*}(0, x)=a(x)$ , where $\psi_{*}$

denotes the lower semicontinuous envelope of $\psi$ . We say $\psi$ is a supersolution of

(2.3)$-(2.5)$ if $-\psi$ is a subsolution of $(2.3)-(2.4)$ and $(-\psi)_{*}(0, x)=-a(x)$ . We

simply say $\psi$ is a solution of $(2.3)-(2.5)$ if $\psi$ is both super- and subsolution. For

general theory of viscosity solution see [CIL].

Lions [L] and Giga and Sato [GS] established comparison theorems on solutions of

the Neumann problem $(2.3)-(2.5)$ provided that $u$ is uniformly Lipschitz continuous.

However, for general $u\in C(\overline{Q})$ there is no uniqueness of solutions of $(2.3)-(2.5)$ .

Lions [L] and Sato [ $S$ , Proposition 3.10] constructed the existence of solutions

of the Neumann problem $(2.3)-(2.5)$ even on a nonconvex domain. The following

lemmas and theorems are parallel results to those in [GT] and can be proved in the

same manner with applying the above results in [L], [GS] and [S]. To prove them we

note that for viscosity sub-(super)solution $\psi$ of $(2.3)-(2.4)$ there exists $\zeta\in C^{2}(Q)$
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satisfying

(2.6) $\max_{Q}(\psi-\zeta)=(\psi-\zeta)(t_{0}, x_{0})$ for some $(t_{0}, x_{0})\in Q$ ,

(2.7) $\zeta_{t}+(u\cdot\nabla)\zeta\leq 0$ at $(t_{0}, x_{0})$ ,

(resp. $\geq$ )

(2.8) $\gamma(x)\cdot\nabla\zeta(x)\leq 0$ for $x\in\partial\Omega$ ,
(resp. $\geq$ )

while $\zeta$ does not have to satisfy (2.8) in order that $\psi$ is a sub-(super)solution of

only (2.3).

So we state the followings without proofs. We say solution $\lambda$ (resp. $\gamma$ ) of $(2.3)-$

(2.5) is largest (resp. smallest) if $\lambda\geq\psi$ (resp. $\sigma\leq\psi$ ) for all other solutions $\psi$ of

$(2.3)-(2.5)$ .

Lemma. 2.1. Suppose that $u\in C(\overline{Q})$ and $a\in C(\overline{\Omega})$ . There are unique largest

and smallest solutions $\lambda$ and $\sigma$ of $(2.3)-(2.5)$ which are boun$ded$ on every compact

set in $\overline{Q}$ . Moreover, A an $d\sigma$ are expressed as

(2.9) $\lambda(t, x)=\sup$ { $\psi(t,$ $x)$ ; is a $su$bsolution of $(2.3)-(2.5)$ },

(2.10) $\sigma(t, x)=\inf$ { $\psi(t,$ $x);\psi$ is a supersol $u$ tion of $(2.3)-(2.5)$}.

Lemma. 2.2 (Uniqueness of level sets). The set

(2.11) $\Omega+=\{(t, x)\in[0, T)\cross\overline{\Omega};\sigma_{*}(t, x)>0\}$

(2.12) (resp. $\Omega_{-}=\{(t,$ $x)\in[0,$ $T$ ) $\cross\overline{\Omega};\lambda^{*}(t, x)<0$ })

is completely $det$ermined by the initi$al$ data $\Omega_{+}(0)$ (resp. $\Omega_{-}(0)$ ) and $u$ , and $is$

independent of choice $ofa$ defining $\Omega_{\pm}(0)=\{x\in\Omega;a(x)\gtrless 0\}$ . Here $\lambda^{*}=-(-\lambda)_{*}$ .

For the proof of Lemma 2.2 see [GT, Lemma 2.3] and [$S$ , Proposition 3.6]. We

call $\Omega+$ (resp. $\Omega_{-}$ ) $+(resp. -)generalized$ evolution with speed $u\in C(\overline{Q})$ and

initial data $\Omega_{+}(0)$ (resp. $\Omega_{-}(0)$ ) on $[0, T$). For any open set $\Omega+0$ (resp. $\Omega_{-0}$ ) in

$\Omega$ and any $u\in C(\overline{Q})$ , there exists a $unique+(resp. -)$ generalized evolution with

speed $u$ and initial data $\Omega_{\pm}(0)=\Omega\pm 0$ .
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Theorem. 2.3 ($S$tability). Suppose that $T<\infty$ and $u_{j}arrow u$ in $C(\overline{Q})$ as $jarrow\infty$ .

Let $\Omega_{+J}$ be the $+generalized$ evolution with speed $u_{j}\in C(\overline{Q})$ and initial data

$\Omega_{+J}(0)=\Omega+0$ on $[0, T$) for $j=1,2,$ $\cdots$ . Let $\Omega+bethe+generalized$ evolution on

$[0, T)$ with $u$ and $\Omega_{+}(0)=\Omega+0$ . Let $K$ be a compact set in $\Omega+\cdot$ Then $K$ is also

contained in $\Omega_{+j}$ for sufFcien$tly$ large $j$ . The same holds for - evolution.

Remark 2.4. If we can construst a global solution of (2.3) with nonzero Neumann

condition $\partial\psi/\partial\gamma=b(t, x)$ for some givenfunction $b$ , we can consider the motion of

the interface on the boundary with the non-slip condition.

3. Global Existence of Weak Solutions

We introduce a weak formulation of the problem $(1.1)-(1.4)$ with (1.7). Let

$\Omega\pm be$ two disjoint open sets in $[0, T$ ) $\cross\Omega$ . Let $\nu$ be a step function such that

$\nu=\nu\pm in\Omega\pm and\nu=(\nu++\nu_{-})/2$ outside $\Omega+\cup\Omega_{-}$ , where $0<\nu_{-}<\nu+\cdot$ Let

$h\in C([0, T]\cross\partial\Omega)$ satisfy $h=h_{\pm}$ in $\overline{\Omega\pm}\cap\partial\Omega$ and

(3.1) $h(O, x)=0$ on $\partial\Omega,$ $h(t, x)\cdot\gamma(x)=0$ on $[0, T]\cross\partial\Omega$ .

Here $\gamma$ is the inner unit normal vector on the boundary $\partial\Omega$ . We say $u$ is a weak

solution of $(1.1)-(1.4)$ with (1.7) for $\Omega\pm inQ=(0, T)\cross\Omega$ if $u\in C(\overline{Q})$ with

$\nabla u\in L^{q}(Q)$ (for some $1<q<\infty$ ) and it solves

(3.2) $\{\nabla^{t_{\partial\Omega}}\cdot u=0,inQ$ ,

in $Q$ ,

in the sense of distribution with some $\pi$ and some tensor field $\zeta$ whose support spt

$\zeta$ is contained in $\Gamma=\overline{Q}\backslash (\Omega+\cup\Omega_{-})$ .

If the Lebesgue measure of the interface $\Gamma$ is zero, then (3.2) yields $(1.1)-(1.2)$

and (1.7) by interpreting $u=u\pm in\Omega\pm\cdot$ If $\{\Gamma(t)\}_{t0}$ is a smooth family of smooth

hypersufaces, (1.4) is contained in (3.2). The condition (1.3) is automatic since

$u\in C(\overline{Q})$ .

We now state our main result in this paper.
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Theorem. 3.1. Let $p>2(n+1)$ . Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}(n\geq 2)$

with $\partial\Omega\in C^{2+\mu}(0<\mu<1)$ . $Ass$ume that $\Omega_{\pm 0}$ are two disjoint open sets in $\Omega$

and that $h\in C([0, T]\cross\partial\Omega)$ satisfies (3.1). Then there exists a positi $vee$ constant

$\epsilon=\epsilon(n,p, \Omega)$ such that if

(3.3) $\frac{1}{\nu+}\{\frac{||\nabla h_{t}+h_{t}||_{r_{0}}}{\nu+}+||(\nabla^{2}+\nabla)h||_{\frac{n+2}{2}}+||\nabla h+h||_{n+2}+(\nu_{+}-\nu_{-})\}<\epsilon$

with $\frac{1}{r_{0}}=\frac{1}{n}+\frac{2}{n+2}$ then there exist $u\in C(\overline{Q})$ with $\nabla u\in L^{p}(Q)$ and $\Omega\pm\subset\overline{Q}$

such that $u$ is a weak solution of $(1.1)-(1.4)$ with $(1.7)-(1.8)$ for $\Omega\pm and$ that $\Omega\pm$

are generalized evolutions with the $speedu$ and initial data $\Omega\pm 0$ . Moreover, $\zeta$ in

(3.2) can be taken as an element of $L^{p}((0, T_{0})\cross\Omega)$ for all finite $T_{0}\leq T$ . Here $T$ is

allowed to be infinite.

Here we simply denote I $||_{p}=||||_{L^{p}(Q)}$ .
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