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Abstract

Steady evaporating flows from a spherical condensed phase into a vacuum are con-
sidered. On the basis of the Boltzmann-Krook-Welander equation, the behavior of the gas
(the velocity distribution function as well as the density, velocity, and temperature) from
the sphere to downstream infinity is analyzed numericaUy in detail for the whole range of
the Knudsen number. An analytic solution is also given for small Knudsen numbers. The
discontinuity of the velocity distribution function in the gas, a typical behavior of the gas
around a convex body, is analyzed $ac$curately. lt extends, with appreciable size, to down-
stream infinity not only for intermediate and large Knudsen numbers but also even for rather
$smaU$ Knudsen numbers. The flow is highly in nonequilibrium over the whole field except
for very small Knudsen numbers. The velocity and temperature at downstream iniinity take
finite values, determined by the Knudsen number, except the temperature at zero Knudsen
number.

I. INTRODUCTION

Considerable kinetic theory studies on gas flows around a condensed phase, where evap-
oration or condensation is taking place, have been carried out in the last twenty years (e.g.,
Refs. 1-34). Most of them are concerned with one-dimensional problems, but various important
and interesting results are presented. The boundary conditions for hydrodynamic equation in
the continuum hmit on a interface between a gas and its condensed phase are derived from the
analysis of a half-space problem of evaporation or condensation, where a semi-infinite expanse of
a gas is considered.10,11,22,29,32 A steady evaporating flow of the half-space problem, determined
by a parameter at downstream infinity in addition to the condition of the condensed phase,
can neither be supersonic nor take a downstream pressure lower than some positive value Pmin
(Ref. 22). In the case where a plane condensed phase is adjacent to a vacuum, a time-dependent
process occurs, and finally the whole field is filled with the gas and approaches a steady evapo-
rating flow that is sonic and takes the pressure Pmin at downstream infinity. The initial vacuum
state disappears.

When a cylindrical or spherical condensed phase is set in an infinite expanse of a vacuum,
its vapor gas expands into a wider region, and finally a steady evaporating flow into a vacuum
will be established. The flow behavior depends on the Knudsen number of the condition on the
condensed phase (the initial Knudsen number, for short). In the flow into a vacuum, as the
gas going downstream, the mean free path increases indefinitely since the density decreases to
zero, but the characteristic length becomes longer indefinitely corresponding to vanishing of the
variation of the variables. According to the es timate by the spherically expanding isentropic flow
in the continuum limit, the effective Knudsen number (the local mean free path divided by the
local characteristic length), which characterizes the variation of the flow, increases indefinitely
with the flow. Thus, various features are expected to be seen along the flow. Unfortunately
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few are known about this interesting flow into a vacuum; some discussions were made about
the deviation from local equilibrium well downstream of an isentropic expanding flow in the
continuum limit.35-38 Recent engineering problems such as isotope separation by a laser beam39
and vacuum vapor deposition require detailed information, at the level of the velocity distribution
function, of the flow. In the present paper, therefore, we investigate a steady evaporating flow
from a spherical condensed phase into a vacuum, mainly numerically, for the entire range of the
initial Knudsen number to obtain the comprehensive information about the flow.

In the numerical analysis of the problem, there are two points to be treated carefully. First,
as discussed in Refs. 34 and 40, the velocity distribution function has discontinuities in a gas
around a convex body. Fortunately, a hybrid difference system (an ordinary difference system
supplemented with a characteristic method) capable of describing the discontinuity accurately
is devised in Ref. 34. This is applied to the present problem. Second, practical numerical
computation has to be carried out over a finite domain. Unfortunately, in the present problem
the flow field approaches a vacuum state at infinity fairly slowly. In order to obtain reliable
results, therefore, we will analyze the problem for many cases of various domain sizes and
examine the results carefully.

II. PROBLEM AND BASIC EQUATION

Consider a steady evaporating flow from a spherical condensed phase (radius: $L$ , temper-
ature: $T_{w}$ , the saturation gas pressure at temperature $T_{w}$ : $p_{w}$ ) into an infinite expanse of a
vacuum. We investigate the behavior of the flow around the sphere for a wide range of the
Knudsen number $Kn_{w}$ (the mean free path at the equilibrium state at rest with temperature
$T_{w}$ and pressure $p_{w}$ divided by the radius of the sphere) under the following assumptions:
(i) the behavior of the gas is described by the Boltzmann-Krook-Welander (BKW or BGK)
$equation$ ; (ii) the gas molecules leaving the condensed phase constitute the corresponding
part of the stationary Maxwellian distribution with pressure $p_{w}$ and temperature $T_{w}$ (the con-
ventional boundary condition for evaporation and condensation). The extension of the result to
a more general boundary condition will be given in Sec. VI.

The Boltzmann-Krook-Welander equation for a spherically symmetric steady flow is given
$as^{44}$

$\xi_{r}\frac{\partial f}{\partial r}+\frac{\xi_{t}^{2}}{r}\frac{\partial f}{\partial\xi_{r}}-\frac{\xi_{r}\xi_{t}}{r}\frac{\partial f}{\partial\xi_{t}}=A_{cd}\rho(f_{e}-f)$ , (1)

$f_{e}= \frac{\rho}{(2\pi RT)^{3/2}}\exp(-\frac{(\xi_{r}-u)^{2}+\xi_{t}^{2}}{2RT}I$ , (2)

$\rho=2\pi\int\int f\xi_{t}d\xi_{r}d\xi_{t}$ , (3a)

$\rho u=2\pi\iint f\xi_{f}\xi_{t}d\xi_{r}d\xi_{t}$ , (3b)

$3 \rho RT=2rr\iint f[(\xi_{r}-u)^{2}+\xi_{t}^{2}]\xi_{t}d\xi_{r}d\xi_{t}$ , (3c)

$p=\rho RT$, (3d)

where $r$ is the radial distance from the center of the sphere; $\xi_{r}$ is the radial component of the
molecular velocity; $\xi_{t}$ is the magnitude of the molecular velocity normal to the radial direction,



226

that is, $(\xi_{r}^{2}+\xi_{t}^{2})^{1/2}$ is the molecular speed, which will be denoted by $\xi$ for short; $f$ is the
velocity distribution function, which is a function of $r,$ $\xi_{r}$ , and $\xi_{t};\rho$ is the density of the gas;
$u$ is the radial component of the flow velocity, which is the only nonvanishing component; $T$

is the temperature of the gas; $p$ is the pressure of the gas; $A_{cd}$ is a constant; $R$ is the specific
gas constant. The integration in Eqs. $(3a)-(3c)$ , and in what follows unless otherwise stated, is
carried out over the range $(-\infty<\xi_{r}<\infty, 0\leq\xi_{t}<\infty)$ . The $A_{col}\rho$ is the colhsion frequency
of a gas molecule, which is independent of molecular velocity for BKW equation. The parallel
and normal temperatures $T_{||}$ and $\tau_{\perp}$ , to the flow, are given by

$\rho RT_{||}=2\pi\iint f(\xi_{r}-u)^{2}\xi_{t}d\xi_{r}d\xi_{t}$ , (4a)

$\rho RT_{\perp}=\pi\int\int f\xi_{t}^{3}d\xi_{r}d\xi_{t}$. (4b)

Thus,
$T=(T_{N}+2T_{\perp})/3$ . (5)

The boundary condition on the condensed phase (at $r=L$ ) is

$f= \frac{\rho_{w}}{(2\pi RT_{w})^{3/2}}\exp(-\frac{\xi_{f}^{2}+\xi_{t}^{2}}{2RT_{w}})$ , $(\xi_{r}>0)$ , (6)

$\rho_{w}=p_{w}/RT_{w}$ . (7)

The condition at infinity $(rarrow\infty)$ is

$f=0$ , $(\xi_{r}<0)$ . (8)

For the convenience of the following analysis, we introduce the following nondimensional
variables:

$r=Lr\wedge$, (9a)

$\xi_{r}=(2RT_{w})^{1/2}\zeta\cos\theta_{\zeta}$ ,
(9b)

$\xi_{t}=(2RT_{w})^{1/2}\zeta\sin\theta_{\zeta}$ ,

$f= \frac{\rho_{w}}{2\pi(2RT_{w})^{3/2}}\hat{f}$, (9c)

$\rho=\rho_{w}\rho\wedge$, $u=(2RT_{w})^{1/2\wedge}u$ ,
(9d)

$p=p_{wP}^{\wedge}$, $T=T_{w}\hat{T}$ .

With these new variables, the BKW equation (1) is reduced to

$D \hat{f}=\frac{2}{\sqrt{\pi}Kn_{w}}\rho\wedge(\hat{f_{e}}-\hat{f})$, (10)

where
$D=( \cos\theta_{\zeta}\frac{\partial}{\partial r\wedge}-\frac{\zeta\sin\theta_{\zeta}\partial}{r\wedge\partial\theta_{\zeta}}$ , (lla)
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$Kn_{w}= \frac{l_{w}}{L}$ , $l_{w}= \frac{(8RT_{w}/\pi)^{1/2}}{A_{col}\rho_{w}}$ , (llb)

$\hat{f_{e}}=\frac{2\rho\wedge}{\pi^{1/2}\hat{T}^{3/2}}\exp(-\frac{\zeta^{2}+\wedge u^{2}-2(u\wedge\cos\theta_{(}}{\hat{T}}I$ . (llc)

The $\ell_{w}$ is the mean free path at the equilibrium state at rest with pressure $p_{w}$ and temperature
$T_{w}$ , and $Kn_{w}$ is the Knudsen number at the state. In the new independent variables $(r\wedge$, $(, \theta_{\zeta})$ ,
the BKW equation contains only the derivatives with respect to $\wedge r$ and $\theta_{\zeta}$ . The nondimensional
macroscopic variables $\rho\wedge,$

$u\wedge,\hat{T}$ , and $p\wedge$ are related to $\hat{f}$ as

$\rho\wedge=\iint\hat{f}\zeta^{2}\sin\theta_{\zeta}d\zeta d\theta_{(}$ , (12a)

$\overline{\rho u}=\iint\hat{f}\zeta^{3}\cos\theta_{(}\sin\theta_{\zeta}d\zeta d\theta_{\zeta}$ , (12b)

$\frac{3}{2}\hat{\rho}\hat{T}=\iint\hat{f}(4\sin\theta_{\zeta}d\zeta d\theta_{\zeta}-\overline{\rho u}^{2},$ (12c)

$\hat{p}=\hat{\rho}\hat{T}$ . (12d)

The double integration with respect to (and $\theta_{\zeta}$ in Eqs. $(12a)-(12c)$ , and in the following
equations unless otherwise stated, is carried out over the domain $(0\leq\zeta<\infty, 0\leq\theta_{\zeta}\leq\pi)$.

The nondimensional forms of the boundary conditions are, at $\wedge r=1$ ,

$\hat{f}=\frac{2}{\sqrt{\pi}}\exp(-\zeta^{2})$ , $(0\leq\theta_{\zeta}<\pi/2)$ , (13)

and, at infinity,
$\hat{f}=0$ , $(\pi/2<\theta_{\zeta}\leq\pi)$ . (14)

The boundary-value problem [Eqs. (10), (13), and (14)] contains only a parameter, the
Knudsen number $Kn_{w}$ (Ref. 45). We will investigate the problem numerically for a wide range
of the Knudsen number and clarify the comprehensive behavior of the evaporating flow from a
spherical condensed phase into a vacuum.

Integrating Eq. (10) multiplied by $\zeta^{2}\sin\theta_{\zeta},$ $(^{3}\cos\theta_{\zeta}\sin\theta_{\zeta}$ , or $\zeta^{4}\sin\theta_{\zeta}$ over the domain $(0\leq$

$\theta_{\zeta}\leq\pi,$ $0\leq\zeta<\infty$ ), we obtain the following conservation equations:

$\overline{\rho u}r^{2}\wedge=Q/4\pi\rho_{w}(2RT_{w})^{1/2}L^{2}$ , (15)

$\frac{d}{dr\wedge}[(u^{2}\wedge+\hat{T}_{||}/2)\overline{\rho r}^{2}]=\rho r’\hat{\tau}_{\perp^{\wedge}}$ , (16)

$\hat{w}r^{2}\wedge=W/4\pi p_{w}(2RT_{w})^{1/2}L^{2}$ , (17)

$\hat{w}=\iint\hat{f}\zeta^{5}\cos\theta_{\zeta}\sin\theta_{\zeta}d\zeta d\theta_{\zeta}$ , (18)

where $Q$ and $W$ are the mass flux and energy flux from the sphere respectively. Equations (15)
and (17) will be used in an accuracy test of our computation.

The saturation gas pressure $p_{w}$ is a function of $T_{w}$ given by the Clausius-Clapeyron relation.46
In the following analysis, however, the relation between $p_{w}$ and $T_{w}$ is never used, and thus $p_{w}$

and $T_{w}$ can be chosen freely in the results. Thus the result has wider application. Sec. VI is one
of the examples.
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III. METHOD OF NUMERICAL ANALYSIS

A. Preliminary remarks

In the numerical analysis of the boundary-value problem, Eqs. (10), (13), and (14), we have
to hmit the domain ( $1\leq r\wedge<\infty,$ $0\leq(<\infty, 0\leq\theta_{\zeta}\leq\pi)$ of our interest to a finite domain
( $1\leq r\wedge\leq\wedge r_{D}$ , $0\leq\zeta\leq(_{D}, 0\leq\theta_{(}\leq\pi)$ . Since $\hat{f}$ is seen to decay rapidly with (from our
numerical tests, accurate computation of the problem can be carried out with a reasonable size of
$\zeta_{D}$ . On the other hand, approach to the state at infinity as $r\wedgearrow\infty$ is rather slow, and therefore
we will carry out detailed tests for various large $\wedge r_{D}$ and confirm the asymptotic behavior for
large $\wedge r$ . This requires rather large computation.

Another difficulty in the numerical computation is the discontinuity of the velocity distribu-
tion function in the gas, which is pointed out and discussed in Refs. 34 and 40. The velocity
distribution function on the condensed phase $(r\wedge=1)$ is discontinuous at $\theta_{\zeta}=\pi/2$ (between
the incoming and leaving molecules), and this discontinuity propagates into the gas along the
characteristic of Eq. (10), i.e., $r\wedge\sin\theta_{\zeta}=1$ . In the following numerical computation by a finite
difference method, we have to take this discontinuity into account. Fortunately, a finite differ-
ence scheme capable of describing the discontinuity is developed in Ref. 34, which will be applied
to the present computation.

B. Difference scheme and process of solution

The boundary-value problem, Eqs. (10), (13), and (14), is considered over a finite domain
(1 $\leq r\wedge\leq\wedge r_{D},$ $0\leq\zeta\leq(D, 0\leq\theta_{(}\leq\pi)$ , where $\wedge r_{D}$ and ($D$ are chosen properly depending
on situations. Let $(^{\triangleleft_{r}:)},$ $(^{(j)}, \theta_{\zeta}^{(k)})$ be the lattice points in the domain, where $i=0,1,$ $\ldots,$

$I$

$(^{\triangleleft_{r}0)}=1, \wedge r^{\langle I)}=\wedge r_{D}),$ $j=0,1,$ $\ldots,$
$J(\zeta^{(0)}=0, \zeta^{(J)}=\zeta_{D})$ , and $k=0,1,$ $\ldots,\overline{K},$

$\ldots,$
$K(\theta_{(}^{(0)}=0$ ,

$\theta_{(}^{(\hat{K})}=\pi/2,$ $\theta_{(}^{(K)}=\pi$ ). For the convenience of analysis, the points $\wedge r^{(t)},$ $\zeta^{(g)}$ , and $\theta_{\zeta}^{(k)}$ are taken
as the values of smooth functions $r\wedge(s),$ ($(s)$ , and $\theta_{\zeta}(s)$ of a continuous variable $s$ evaluated at
integer points $s=i,$ $j$ , and $k$ :

$\wedge(:)\wedge r=r(i)$ , $(^{(j)}=\zeta(j), \theta_{\zeta}^{(k)}=\theta_{\zeta}(k)$ . (19)

The variables $\hat{f},$
$\rho\wedge$, etc. at a lattice point are denoted by the superscripts corresponding to the

lattice point:
$\hat{f}^{(i,j,k)\triangleleft i)}=\hat{f}(r, \zeta^{()}J\theta_{\zeta}^{(k)})$ , $\hat{\rho}^{\langle i)}=\rho\wedge(r^{i)}\triangleleft)$ . (20)

Note that $\hat{f_{e}}^{(\cdot,j,k)}$ depends on $\acute{r}^{\langle\cdot)}$ only through $\hat{\rho}^{\langle t)},$
$u^{(i)}\wedge$ , and $\hat{T}^{(i)}$ [see Eq. (llc)].

We construct the discrete solution $\hat{f}^{(\iota,j,k)}$ of Eqs. (10), (13), and (14) as the limit of the se-
quence $\hat{f}_{(n’)}^{(\dot{t}}\dot{J}^{k)}(n=0,1,2, \ldots)$ obtained by the iteration process described below. Corresponding

to Eq. (10), the following finite difference equation for $\hat{f}_{(n)}^{(i_{\dot{J}},k)}$ is adopted:

$\zeta^{(j)}\cos\theta_{\zeta}^{(k)}\frac{\Delta_{1}^{(i,j,k)}\hat{f_{(n)}}\zeta^{(j)}\sin\theta_{(}^{(k)}\Delta_{2}^{(\cdot,j,k)}\hat{f_{(n)}}}{(dr\wedge/di)r^{\langle i)}\wedge(d\theta_{\zeta}/dk)}$

$= \frac{2}{\sqrt{\pi}Kn_{w}}\rho_{(n-1)}(\hat{f_{e(n-1)}}-\acute{f}_{(n)}^{\langle i,j,k)})\triangleleft\cdot)(i,j,k)$ (21)

where $\triangle_{1}^{(ij,k)}\hat{f_{(n)}}/(dr\wedge/di)$ and $\triangle_{2}^{(\cdot,j,k)}\hat{f_{(n)}}/(d\theta_{(}/dk)$ , given explicitly below, correspond to
$\partial\hat{f_{(n)}}/\partial r\wedge$ and $\partial\hat{f_{(n)}}/\partial\theta_{\zeta}$ , respectively.
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We use the following formulae for the operators $\Delta_{1}$ and $\Delta_{2}$ :

$\triangle_{2^{1}}^{(,j,k)}\hat{f_{(n)}}=-\frac{3}{2}\hat{f}_{(n)}^{(\cdot,j,k)}+2\hat{f}_{(n)}^{(i,j,k+1)}-\frac{1}{2}\hat{f}_{(n)}^{(,j,k+2)}|$ (22d)

$(dr\wedge/di)=(dr\wedge/ds)_{s=:}$ , $(d\theta_{(}/dk)=(d\theta_{\zeta}/ds)_{s=k}$ , (22e)

$\hat{f}_{(n)}^{(i,j,K+1)}=\hat{f}_{(n)}^{(i,j,K-1)}$ , (22f)

and $\hat{f_{e(n-1)}}^{(1j,k)}$ is defined by Eq. (llc) where $\hat{\rho}_{(n-1)}^{(1)},$ $u_{(n-1)}^{(\cdot)}\wedge$ , and $\hat{T}_{(n-1)}^{(i)}$ are substituted for $\rho,$
$u\wedge\wedge$ , and

$\hat{T}$ respectively. Equation (22f) corresponds to the symmetry relation with respect to $\theta_{(}$ around
$\theta_{\zeta}=\pi$ . The variable $f_{(n)}^{XI+1,j,k)}$ outside the domain is specified as a part of boundary conditions

[Eq. (27b) below]. The $\hat{f}_{(n)}^{(i,j,K+2)}$ does not appear since $\sin\theta_{\zeta}^{(K)}=0$ .
As explained in Sec. III $A,\hat{f}$ is discontinuous along $r\wedge\sin\theta_{\zeta}=1(0<\theta_{\zeta}\leq\pi/2)$ . The

difference formulae $(22a)-(22d)$ should be modified when they consist of the data on both sides
of the discontinuity. That is,

$\triangle_{1}^{(l_{J},k)}\hat{f_{(n)}}=\{\begin{array}{l}A_{1}\hat{f}_{(n)}^{\langle i,j,k)}-A_{2}\hat{f}_{(n)}^{(|-1,j,k)}+A_{3}\hat{f}_{(n)}^{(i(k),j,k)+}(\hat{r}^{\langle i-1)}>1/sin\theta_{\zeta}^{(k)}>r^{i-2)}\triangleleft)A_{4}(f_{(n)}^{j,k)}X\cdot,-\hat{f}_{(n)}^{(|(k),j,k)+}),(\acute{r}^{\{i)}>1/sin\theta_{\zeta}^{(k)}>r^{\langle\iota-1)}\wedge)\end{array}$

$(23b)(23a)$

$\triangle_{2}^{(i,j,k)}\hat{f_{(n)}}=\{\begin{array}{l}B_{1}\acute{f}_{(n)}^{(\cdot,j,k)}-B_{2}\hat{f}_{(n)}^{(t,j,k+1)}+B_{3}\hat{f}_{(n)}^{(i,j,k(i))-}[\theta_{\zeta}^{(k+1)}<Arcsin(1/\acute{r}^{\langle i)})<\theta_{\zeta}^{(k+2)}]B_{4}(\acute{f}_{(n)}^{\langle i,j,k)}-\hat{f}_{(n)}^{\langle i,j,k(i))-}),[\theta_{(}^{(k)}<Arcsin(1/r^{i)}\triangleleft)<\theta_{(}^{(k+1)}]\end{array}$

$(23d)(23c)$

where
$\acute{f}_{(n)}^{\langle i(k)_{J},k)\pm}=\hat{f_{(n)}}(1/\sin\theta_{\zeta}^{(k)}\pm 0, \zeta^{(j)}, \theta_{\zeta}^{(k)})$, (23e)

$\hat{f}_{(n)}^{(l,j,k(i))\pm}=\hat{f_{(n)}}(r-()(, Arc\sin(1/r)\pm 0),$ (23f)

and the constants $A_{1},$ $A_{2}$ , and $A_{3}$ ( $B_{1},$ $B_{2}$ , and $B_{3}$ ) are chosen in such a way that
$\triangle_{1}^{(i,j,k)}\hat{f_{(n)}}/(dr\wedge/di)[\Delta_{2}^{(i,j,k)}\hat{f_{(n)}}/(d\theta_{\zeta}/dk)]$ is the difference expression of the second order ac-
curacy for $\partial\hat{f_{(n)}}/\partial_{\Gamma}^{\wedge}(\partial\hat{f_{(n)}}/\partial\theta_{\zeta})$ at $(^{\triangleleft_{r}i)},$ $(^{(j)}, \theta_{\zeta}^{(k)});A_{4}$ and $B_{4}$ give corresponding first order
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formulae. $A_{1},$
$\ldots,$

$A_{4}$ and $B_{1},$
$\ldots,$

$B_{4}$ depend only on $i$ and $k$ . It is noted that $(i(k), j, k)$ and
$(i,j, k(i))$ are not regular lattice points. The $i(k)$ and $k(i)$ represent the intersection of the
characteristic $r\wedge\sin\theta_{(}=1$ with the lattice hnes $\theta_{(}=\theta_{\zeta}^{(k)}$ and $r\wedge=\acute{r}^{\langle i)}$ respectively. That is,

$\triangleleft_{r}i(k))=1/\sin\theta_{\zeta}^{(k)}$ ,
(24)

$\theta_{\zeta}^{(k(:))}=Arc\sin(1/\acute{r}^{\prec i)})$ .

For a discontinuous function on the characteristic, the two hmiting values as in Eqs. (23e) and
(23f) should be considered. The formulae contain $\hat{f_{(n)}}^{(i(k),j,k)+}$ or $\hat{f}_{(n)}^{(i,j,k(t))-}$ , i.e., $\hat{f_{(n)}}$ on either

side of the discontinuity. The sequence $\hat{f}_{(n)}^{(i,j,k(i))\pm}$ corresponding to $\hat{f_{(n)}}$ at $r^{\langle i)}\wedge$ on each side of
the discontinuity, is constructed by the following difference scheme:

$\zeta^{(j)}\cos\theta_{(}^{(k(i))}\Delta_{1}^{(\cdot,j)\pm}\hat{f_{(n)}}=\frac{2}{\sqrt{\pi}Kn_{w}}\rho_{(n-1)}^{(i)}\wedge(\hat{f_{e(n-1)}}^{(i,j,k(i))}-\acute{f}_{(n)}^{\langle i,j,k(i))\pm})$ , (25)

where $\triangle_{1}^{(i,j)\pm}\hat{f_{(n)}}$ corresponds to $\Delta_{1^{t}}^{(,j,k)}\hat{f_{(n)}}(0\leq k\leq\overline{K}-1)$ in Eqs. (22a) and (22b) with $\hat{f}_{(n)}^{(l,j,k)}$

replaced by $\hat{f}_{(n)}^{\langle i,j,k(t))\pm}$ . The $\pm sign$ is absent in $\hat{f_{e(n-1)}}(i,j,k(|))$ since it is continuous.
Corresponding to the boundary condition (13), we impose the condition:

$\hat{f}_{(n)}^{(0_{J)}k)}=\frac{2}{\sqrt{\pi}}\exp(-(\zeta^{(j)})^{2})$ , $(k=0,1, \ldots, \overline{K}-1)$ , (26)

which is independent of $k$ . As the condition at $r\wedge=r_{D}\wedge$ , we assume

$\hat{f}_{(n)}^{(I,j,k)}=0$ , $(k=\overline{K}, \ldots, K)$ , (27a)

$\hat{f}_{(n)}^{(I+1_{d},k)}=0$ , $(k=\overline{K}, \ldots, K)$ . (27b)

Two conditions are required since the second order difference scheme, Eq. (22c), is used in
Eq. (21).

With these preparations of difference formulae, we construct the sequence $\hat{f}_{(n)}^{(i,j,k)}(n=$

$0,1,2,$ $\ldots$ ) by the following process. Let $\hat{f}_{(n-1)}^{(i,j,k)}$ , thus $\rho^{i)}A_{(n-1)}\hat{u}_{(n-1)}^{(l)}$ , and $\hat{T}_{(n-1)}^{(l)}$ , be known.47
(i) For $\overline{K}\leq k\leq K$ , starting from $\hat{f}_{(n)}^{(I-1,j,k)}$ , compute $\hat{f}_{(n)}^{(i,j,k)}$ using Eqs. (21), (22c), (22d), (27a),

and (27b) in descending order of $i$ down to $\hat{f}_{(n)}^{(0,j,k)}$ . The step $i=i+1$ to $i=i$ is as follows.

Let $\hat{f}_{(n)}^{(i’,j,k)}(i’>i)$ be given. Starting from $\hat{f}_{(n)}^{(\cdot,j,K)}$ , compute $\hat{f}_{(n^{t})}^{(,j,k)}$ using Eqs. (21), (22c), and

(22d) [and Eqs. (27a) and (27b) for $i=I-1,$ $I-2$] in descending order of $k$ down to $\hat{f}_{(n)}^{\langle\cdot,j,\hat{K})}$ .
Carry out this step for every $j$ .
(ii) Compute $\hat{f}_{(n)}^{(i,j,k(\cdot))\pm}$ along the discontinuity using Eq. (25): $\hat{f}_{(n)}^{(i,j,k(i))+}$ is constructed from

the initial data $\hat{f}_{(n)}^{(0j,\hat{K})}$ obtained in the preceding step $(i);^{48}\hat{f}_{(n)}^{(l,jk(i))-})$ from the initial data
determined by Eq. (13). The computation is continued until the discontinuity becomes negligibly
small. Then, from a set of $\hat{f}_{(n)}^{(i_{\theta},k(i))+}$ , obtain $\hat{f}_{(n)}^{(i(k),j,k)+}$ by interpolation. [The data on the
discontinuity in Eqs. $(23a)-(23d)$ are now prepared.]
(\"ui) For $0\leq k\leq K-1$ , the computation is carried out in ascending order of $i$ , independently
in the two regions $\wedge r>1/\sin\theta_{(}$ and $r\wedge<1/\sin\theta_{\zeta}$ separated by the discontinuity. The step
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$i=i-1$ to $i=i$ is as follows. Let $\hat{f}_{(n’)}^{(\cdot,j,k)}(i‘ <i)$ be given. (a) For $\wedge r>1/\sin\theta_{\zeta}$ , starting from

$\hat{f}_{(n)}^{(i,j,\hat{K}-1)}$ , compute $\hat{f}_{(n)}^{(c,j,k)}$ using Eqs. (21), (22a), (22d), (23a), (23b), and the data obtained in

steps (i) and (ii) in descending order of $k$ down to $\hat{f}_{(n)}^{(l,j,\overline{k})}$ where $\theta_{\zeta}^{(\overline{k}-1)}<Arc\sin(1/r^{t}\triangleleft))<\theta_{(}^{(\overline{k})}$

(Ref. 49). (b) For $r\wedge<1/\sin\theta_{(}$ , starting from $f_{(n)}^{\triangleleft\cdot j,\overline{k}-1)}$ , compute $\hat{f}_{(n)}^{\langle\cdot,j,k)}$ using Eqs. (21), (22a),
(22b), (22d), (23c), (23d), (26), and the data obtained in step (ii) in descending order of $k$ down$\cdot$

to $\hat{f}_{(n)}^{(\cdot,j,0)}$ . Carry out these steps for every $j$ . For $i>i_{c}$ , where the discontinuity is negligibly

small, neglecting the discontinuity, compute. $\hat{f}_{(n)}^{(\cdot,jk)}$
) from $k=\overline{K}-1$ to $0$ only with the standard

formulae (22a), (22b), and (22d) as in step (i).
(iv) Applying the Simpson formula to Eqs. $(12a)-(12c)$ , compute $\rho_{(n)}^{(l)}\wedge,$ $u_{(n)}^{(i)}\wedge$ , and $\hat{T}_{(n)}^{(i)}$ from $\hat{f}_{(n)}^{\langle i,j,k)}$ .

(v) Repeat the process of $(i)-(iv)$ with shift of the subscript ( $n$ to $n+1$ ) until $\hat{f}_{(n’)}^{(i_{\dot{J}},k)}$ converges.
We take the hmit as the solutibn $\hat{f}^{(;,j,k)}$ .

The order of computation in the preceding process is consistent with the natural course of
integration of Eq. (10) along its characteristics in the direction of molecular velocity.

IV. SOLUTIONS IN THE FREE MOLECULAR AND CONTINUUM LIMITS

Before presenting the result of the numerical analysis, we give the solutions of two extreme
cases: the free molecular and the continuum limits. The general solution of a free molecular
flow around a convex body is well-known.44,45,50 Thus, the solution of the present problem for
$Kn_{w}=\infty$ is easily obtained as

$\hat{f}(r\wedge, \zeta, \theta_{(})=\{\begin{array}{l}\frac{2}{\sqrt{\pi}}exp(-\zeta^{2}),[0\leq\theta_{(}<Arcsin(1/r\wedge)]0,[Arcsin(1/\wedge r)<\theta_{\zeta}\leq\pi]\end{array}$
$(28b)(28a)$

At a given point in the gas, only the molecules whose velocities are inside the circular cone
$\theta_{(}<Arc\sin(1/\wedge r)$ are present. The cone becomes more slender as the distance from the sphere
increases. The height of $\hat{f}$ is invariant with respect to the distance. From Eqs. $(3a)-(3c),$ $(4a)$ ,
and (4b), the macroscopic variables $\rho,$ $u,$ $T,$ $T_{||}$ , and $\tau_{\perp}$ are given by

$\rho/\rho_{w}=\frac{1}{2}(1-\sqrt{1-(L/r)^{2}})$ , (29a)

$u/(2RT_{w})^{1/2}= \frac{1}{\sqrt{\pi}}(1+\sqrt{1-(L/r)^{2}})$ , (29b)

$T/T_{w}=1- \frac{2}{3\pi}(1+\sqrt{1-(L/r)^{2}})^{2}$ , (29c)

$T_{||}/T_{w}=(1- \frac{2}{\pi})(1+\sqrt{1-(L/r)^{2}})^{2}-\sqrt{1-(L/r)^{2}}$ , (29d)

$T \perp/T_{w}=\frac{1}{2}(1+(L/r)^{2}-\sqrt{1-(L/r)^{2}})$ . (29e)

The mass and energy fluxes $Q$ and $W$ are, from Eqs. (15) and (17),

$Q/4 \pi\rho_{w}(2RT_{w})^{1/2}L^{2}=\frac{1}{2\sqrt{\pi}}$ , (30a)
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$W/4 \pi p_{w}(2RT_{w})^{1/2}L^{2}=\frac{1}{\sqrt{\pi}}$ . (30b)

The general behavior of steady flows of a shghtly rarefied gas past its condensed phase, where
(strong) evaporation or condensation is taking place, is studied in Ref. 26. In the limit of the
Knudsen number being zero, the flow field is described by the solution of the Euler system of
equations for an ideal gas under appropriate boundary conditions, with local corrections such
as Knudsen $1ayer^{22,25,32}$ or shock $1ayer^{51,52}$ . According to Ref. 26 the boundary condition to be
satisfied on the condensed phase at rest where evaporation is taking place is given as follows:

$\frac{p}{p_{w}}=h_{1}(M)$ , $\frac{T}{T_{w}}=h_{2}(M)$ , $(M\leq 1)$ , (31)

where $M$ is Mach number $(3u^{2}/5RT)^{1/2}$ and the numerical data of the functions of $M,$ $h_{1}(M)$

and $h_{2}(M)$ , for the BKW equation are shown in Table I. In addition, the tangential velocity
should be zero. Thus, in the present problem with the spherical condensed phase, the conditions
Eq. (31) among $p,$ $T,$ $M,$ $p_{w}$ , and $T_{w}$ are apphed at $r=L$ .

The solution of the Euler system for the evaporating flow from a sphere into a vacuum is
given by the following parametric expression in $M$ :

$\rho/\rho_{*}=8/(3+M^{2})^{3/2}$ , (32a)

$u/(5RT_{*}/3)^{1/2}=2M/(3+M^{2})^{1/2}$ , (32b)

$T/T_{*}=4/(3+M^{2})$ , (32c)

$r/L=(3+M^{2})/4M^{1/2}$ , (32d)

where

$\rho_{*}=h_{1}(1)\rho_{w}/h_{2}(1)$ , (32e)

$T_{*}=h_{2}(1)T_{w}$ . (32f)

Incidentally,
$T_{||}=T_{\perp}=T$ , (32g)

since the Euler system corresponds to the local Maxwellian. For the BKW equation under the
conventional boundary condition,

$h_{1}(1)/h_{2}(1)=0.3225$ , $h_{2}(1)=0.6434$ . (33)

The mass and energy fluxes $Q$ and $W$ from the sphere are given by

$Q/4\pi\rho_{w}(2RT_{w})^{1/2}L^{2}=(5/6)^{1/2}h_{1}(1)/h_{2}(1)^{1/2}$, (34a)

$W/4\pi p_{w}(2RT_{w})^{1/2}L^{2}=4(5/6)^{3/2}h_{1}(1)h_{2}(1)^{1/2}$ . (34b)

Thus, for the BKW equation,

$Q/4\pi\rho_{w}(2RT_{w})^{1/2}L^{2}=0.2361$ , (35a)

$W/4\pi p_{w}(2RT_{w})^{1/2}L^{2}=0.5065$ . (35b)
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For large $r/L$ , Eqs. $(32a)-(32d)$ are reduced to

$\rho/\rho_{*}=\frac{1}{2}(r/L)^{-2}$ , (36a)

$u/(5RT_{*}/3)^{1/2}=2-3(4r/L)^{-4/3}$ , (36b)

$T/T_{*}=4^{-1/3}(r/L)^{-4/3}$ , (36c)

$M=(4r/L)^{2/3}$ . (36d)

There are two unclear points in this isentropic solution. The first point is that $d\rho/dr,$ $du/dr$ ,
etc. are infinite at $r=L$ . This violates the assumption imposed in the derivation of the Euler
system from the Boltzmann or BKW equation. The second point is the behavior of the solution
for large $r/L$ . The mean free path $l$ at the equihibrium at rest with $\rho$ and $T$ is

$l=(8RT/\pi)^{1/2}/A_{cd}\rho$, (37)

and the length scale $L_{r}$ of variation $\rho,$ $u$ , etc. is $O[\rho(d\rho/dr)^{-1}]$ . That is,

$L_{r}=O(r)$ . (38)

The local Knudsen number $Kn_{r}(=l/L_{r})$ for large $r/L$ increases with $r$ as

$Kn_{r}=O[Kn_{w}(r/L)^{1/3}]$ . (39)

The local Knudsen number $Kn_{r}$ , which characterizes the variation of the flow,53 is not uniformly
small for small $Kn_{w}$ . It ranges from $O(Kn_{w})$ to $\infty$ .

When $Kn_{w}$ is very $smaU$ , there is a region where $Kn_{r}$ is small but $M$ is large. Then, the
isentropic solution is valid up to this region, with the reservation of the first unclear point
raised in the preceding paragraph. The behavior downstream of this region can be studied by
the hypersonic approximation, where a simplification is made under the assumption that the
width of the velocity distribution function is much smaller than the flow speed (Refs. 35-38).
According to Refs. 35 and 36, the solution of this approximation of a spherically expanding flow
is expressed by the confluent hypergeometric functions as follows:

$\rho=c_{0}r^{-2}\wedge\wedge$ , (40a)

$u=c_{1}\wedge$ , (40b)

$\hat{T}=\frac{1}{\wedge,r^{2}}[c_{2}U(2/3,3, \alpha/Kn_{w}r\wedge)+c_{3}M(2/3,3, \alpha/Kn_{w}r\wedge)]$ , (40c)

$\alpha=2c_{0}/\sqrt{\pi}c_{1}$ ,

where $c_{0},$ $c_{1},$ $c_{2}$ , and $c_{3}$ are undetermined constants, and $U(a, b, x)$ and $M(a, b, x)$ are Kummer’s
functions (of the same notation as in Ref. 54; don’t confuse with Mach number $M$ ). The inner
expansion $($ for $Kn_{w^{7^{\tau}}}^{\wedge}\ll 1)^{55,56}$ of the solution $(40a)-(40c)$ is

$\rho=c_{0}r^{-2}\wedge\wedge$ , (41a)

$u=c_{1}\wedge$ , (41b)

$\hat{T}=c_{2}(\frac{Kn_{w}}{\alpha})^{2/3}\frac{1}{\wedge,r^{4/3}}+c_{3}\frac{2}{\Gamma(2/3)}(\frac{Kn_{w}}{\alpha})^{7/3}r^{1/3}\exp\wedge(\frac{\alpha}{Kn_{w}r\wedge})$ , (41c)
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where $\Gamma(x)$ is the gamma function54. Matching Eqs. $(4la)-(4lc)$ with the outer expansion,
Eqs. $(36a)-(36c)$ , of the isentropic solution, we have57

$c_{0}=h_{1}(1)/2h_{2}(1)$ , $c_{1}=[10h_{2}(1)/3]^{1/2}$ ,
(42)

$c_{2}=[3h_{1}(1)^{2}/40\pi]^{1/3}Kn_{w}^{-2/3}$ , $c_{3}=0$ .

From Eqs. (40c) and (42), we have, for $rarrow\infty$ ,

$T/T_{w}arrow A_{0}Kn_{w}^{4/3}$ ,
(43)

$A_{0}=( \frac{5\pi}{3})^{2/3}\frac{h_{2}(1)^{3}}{\Gamma(2/3)h_{1}(1)^{4/3}}=4.828$,

which is the frozen temperature for small $Kn_{w}$ . In this approximation the normal temperature
$\tau_{\perp}$ can be shown to decay as

$\tau_{\perp}/\tau_{w}arrow A_{1}Kn_{w}^{1/3}L/r$ ,
as $Kn_{w}(r/L)arrow\infty$ . (44)

$A_{1}=( \frac{5\pi}{24})^{1/6}\frac{h_{2}(1)^{3/2}}{\Gamma(2/3)h_{1}(1)^{1/3}}=0.5999$,

V. RESULT AND DISCUSSION

A. Macroscopic variables

The distributions of the density, flow velocity, temperature, and Mach number, i.e., $\rho/\rho_{w}$ ,
$u/(2RT_{w})^{1/2},$ $T/T_{w}$ , and $M[=u/(5RT/3)^{1/2}]$ , are shown for various Knudsen numbers $Kn_{w}$ in
Figs. 1, 2, and Tables II-IV. Figure 1 shows the behavior near the sphere, and Fig. 2 shows
the long range behavior. The data for $Kn_{w}=0$ are the solution of the Euler system given by
Eqs. $(32a)-(32d)$ . Their Knudsen-layer corrections, which flatten on $r/L=1$ , are also shown
in the figures. In Fig. 2(c), the temperature profiles of the hypersonic approximation for small
$Kn_{w}$ are also shown by dashed lines. The reason of their deviation from the numerical solutions
is given in connection with the behavior of the velocity distribution function. The data for
$Kn_{w}=\infty$ are the free molecular solution given by Eqs. $(29a)-(29c)$ . The behavior of the gas
varies very sharply near the sphere (Fig. 1) but approaches a vacuum state at infinity slowly
(Fig. 2). The density vanishes as fast as $r^{-a}$ , where $\alpha=2.00$ for all Knudsen numbers. The flow
velocity and temperature approach nonzero values (except for $T$ at $Kn_{w}=0$ ), which depend
on the Knudsen number. The hmiting values $u_{\infty}/(2RT_{w})^{1/2}$ and $\tau_{\infty}/T_{w}$ of $u/(2RT_{w})^{1/2}$ and
$T/T_{w}$ as $rarrow\infty$ , the latter of which is called frozen temperature, are shown in Fig. 3 and
Table V. These data were determined by close examination of the behavior of variation of
$\rho,$ $u$ , and $T$ for large $r$ . The data $\ln\rho,$ $\ln du/dr$ , and $\ln dT/dr$ versus $\ln r$ are found to be
hnear, with high accuracy, for large $r$ , from which the asymptotic forms of $\rho,$ $u$ , and $T$ are
determined. The $u_{\infty}/(2RT_{w})^{1/2}$ and $\tau_{\infty}/T_{w}$ in Fig. 3 and Table V are the extrapolated values
$hom$ the asymptotic forms. In Fig. 3, the frozen temperature (43) for small $Kn_{w}$ obtained by
the hypersonic approximation is also shown.
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The profiles of parallel and normal temperatures $T_{||}$ and $\tau_{\perp}$ [cf. Eqs. (4a) and $(4b)$ ] and
their ratio $\tau_{\perp}/T_{||}$ , which are often referred to in experimental studies of nonequihibrium flows, are
shown in Fig. 4. The parallel temperature $T_{||}$ for moderate and large $Kn_{w}$ first decreases sharply
and increases slowly to the value at infinity as $r$ increases. This behavior is easily understood
for the free molecular flow $(Kn_{w}=\infty)$ by kinematic consideration. For the free molecular flow
[Eqs. (28a), $(28b)$] the velocities of the molecules on the sphere range $0\leq\xi_{r}<\infty(0\leq\theta_{\zeta}<\pi/2)$

and their speeds are practically hmited to a region of the order of $(2RT_{w})^{1/2}$ . With the distance
from the sphere the molecules for Arcsin(L/r) $\leq\theta_{\zeta}\leq\pi/2$ , where $\xi_{r}/(2RT_{w})^{1/2}$ is small for
small $(r/L-1)$ , disappears. Therefore the standard deviation of $f$ with respect to $\xi_{r}$ , which
corresponds to $T_{||}$ , decreases for $smaU(r/L-1)$ . With the decrease of the molecules of the
central part of $\xi_{r}$ for moderate and large $(r/L-1)$ , the temperature $T_{||}$ increases in this region.
For small $Kn_{w}$ , on the other hand, the shrink of $f$ with respect to $\xi_{t}$ , or the decrease of $\tau_{\perp}$ , with
the distance from the sphere induces the decrease of $T_{||}$ owing to frequent molecular collisions.
From Figs. 4(b) and 4(c), as $rarrow\infty$ ,

$T_{1}arrow 0$ , (45)

and the slopes of the curves $\tau_{\perp}$ ( $Kn_{w}\neq 0$ or $\infty$ ) in Figs. 4(b) and 4(c), corresponding to the
speed of decay, approach $-1$ as $rarrow\infty$ (Ref. 58), but the speed of convergence is much slower
than that of the case of $\rho$ in Fig. 2. The corresponding slopes for $Kn_{w}=0$ and $\infty$ approach
$-4/3$ and $-2$ respectively [Eqs. (29e), (32g), and $(36c)$]. From Eqs. (5) and (45),

$T_{||}arrow 3T$, (as $rarrow\infty$ ). (46)

The ratio $\tau_{\perp}/T_{||}$ is a measure of anisotropy of the velocity distribution function around the flow
velocity ( $\tau_{\perp}/T_{||}=1$ when it is isotropic). Except for very small Knudsen numbers, the velocity
distribution function shows strong anisotropy over the whole flow field (Fig. 4(d); see Sec. III $C$

for more details).

B. Mass and energy fluxes

The nondimensional mass and energy fluxes $Q/4\pi\rho_{w}(2RT_{w})^{1/2}L^{2}$ and $W/4\pi p_{w}(2RT_{w})^{1/2}L^{2}$

( $\hat{Q}$ and $\overline{W}$ for short) versus the Knudsen number $Kn_{w}$ are shown in Fig. 5 and Table V. They
increase monotonically from the values at $Kn_{w}=0$ [Eqs. (35a) and $(35b)$] to those at $Kn_{w}=\infty$

[Eqs. (30a) $and,(\sim 30b)$]. The contributions to $\hat{Q}$ and $W$ of the molecules leaving the sphere are
equal to $\hat{Q}$ and $W$ at $Kn_{w}=\infty$ , respectively. Therefore, the differences from the free molecular
values, which are negative, are the contributions of the molecules arriving on the sphere. For
example, at $Kn_{w}=0$ , where $\hat{Q}/\hat{Q}(Kn_{w}=\infty)=0.8370$ and $\overline{W}/\overline{W}(Kn_{w}=\infty)=0.8977$ , the
16.30% of the molecules leaving the sphere return to the sphere, but only 10.23% of the energy
leaving the sphere return. This is because the returning molecules, on the average, have less
energy than the leaving molecules.

The rate (16.30%) of the returning molecules at $Kn_{w}=0$ is equal to that in the evaporating
flow from a plane condensed phase that reaches sonic speed at infinity. This is obvious from the
following structure of the isentropic solution [Eqs. $(32a)-(32d)$] of the evaporating flow from the
sphere at $Kn_{w}=0$ . The boundary condition (31) for the Euler system corresponds to connection
of an isentropic flow to an evaporating flow from a plane condensed phase.26 The latter cannot
be supersonic, but an isentropic expanding flow into a vacuum cannot be subsonic. Therefore,
the connection of the two flows, which makes up the evaporating flow [Eqs. $(32a)-(32d)$] from
the sphere, is made at sonic speed.
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C. Velocity distribution function

The velocity distribution function $\hat{f}[=2\pi\rho_{w}^{-1}(2RT_{w})^{3/2}f]$ at several points in the gas, ob-
tained by the numerical method in Sec. IV, are shown for $Kn_{w}=0.01,0.1,1$ , and 10 in Figs. 6-
11. The free molecular flow solution, Eqs. (28a) and (28b), is given in Fig. 12 for reference.
At $Kn_{w}=\infty$ , the molecular velocity is locahzed. That is, at a point $(r)$ , the molecules with
velocity $0\leq\theta_{\zeta}\leq$ Arcsin(L/r) come directly from the sphere and there are no molecules with
the other velocity. The height of the velocity distribution function remains unchanged along the
flow. At $Kn_{w}=10$ (a large Knudsen number, Fig. 11), these features are well preserved and
only local correction in $(\xi_{r}, \xi_{t})$ space is seen. The effect of coUision is more eminent for smaller
molecular speed because of smaller free path. The height of the distribution decreases only very
slowly.

At $Kn_{w}=0.01$ (Figs. 6 and 7), the behavior is quite different. The discontinuity of the
velocity distribution function on the sphere decays in a very short distance (much shorter than
the mean free path $1_{w}$ ) [Fig. $6(a)arrow Fig$ . $6(c)$]. The distribution is transformed into a distri-
bution fairly close to the Maxwelhan distribution with the corresponding density, velocity, and
temperature (the local MaxweUian $f_{e}$ ) in a distance of the several mean free paths [Fig. 6(a)
$arrow Fig$ . $6(d)arrow Fig$ . $7(a)$ ; see Figs. 13(a) and 14(a) for comparison with the local Maxwellian].
This is a kinetic transition process to a continuum region [Fig. $7(a)$]. The transition region is
the Knudsen layer and the region with discontinuity at the bottom of the Knudsen layer is the
$S$ layer, discussed in Refs. 34, 40, and 59. Along the flow, the density of the gas decreases and
the collision effect becomes less important. Therefore the velocity distribution function begins
to deviate from the Maxwellian, i.e., its width normal to the flow shrinks [Fig. $7(a)arrow Fig$ . $7(b)$

$arrow Fig$ . $7(c)$]. In this stage, the collision is still appreciable and the height of the distribution
decreases considerably. Further away from the sphere, the density of the gas is so small that
molecular collisions are rare. Thus, the flow is nearly free molecular and the height of the distri-
bution decreases only very slowly [Fig. $7(c)arrow Fig$ . $7(d)$]. If the Mach number in the continuum
region is sufficiently large, the downstream flow can be well expressed by the hypersonic approx-
imation. In the present case $(Kn_{w}=0.01),$ $M\sim 1.8$ in this region. This is not sufficiently large
for the solution of the hypersonic approximation to be very good approximation at $Kn_{w}=0.01$

or larger values as is seen in Fig. 2(c).
At $Kn_{w}=0.1$ , the discontinuity decays in the several mean free paths from the sphere

[Fig. $8(a)arrow Fig$ . $8(c)$]. The distribution function there is of a shape with $\tau_{\perp}/T_{||}<1$ [Fig. 8(c);
see Figs. 13(b) and 14(b) for comparison with the local MaxweUian], and this ratio decreases
with the flow [Fig. $8(c)arrow Fig$ . $9(a)$]. That is, it is in a transition region that corresponds to
the transition region in the downstream of the continuum region in the case $Kn_{w}=0.01$ . The
behavior of further downstream is similar to the case $Kn_{w}=0.01$ , i.e., a transition region is
followed by a free molecular region [Fig. $9(a)arrow Fig$ . $9(b)arrow Fig$ . $9(c)$]. There is no continuum
region in the flow. At $Kn_{w}=1$ , a transition region with large discontinuity [Fig. $10(a)arrow$

Fig. $10(c)$] is followed by a free molecular region with large discontinuity [Fig. $10(c)arrow Fig$ . $10(d)$].

In Fig. 15, $\delta=\rho^{-1}\iint|f-f_{e}|\xi_{t}d\xi_{r}d\xi_{t}$ versus $r/L$ is shown for various $Kn_{w}$ . If $f=f_{e},$ $\delta=0$ ,
and if $f$ and $f_{e}$ are disjoint, $\delta=2$ . The $\delta$ is a measure of deviation from the corresponding
equilibrium distribution $f_{e}$ . Figures 13(a) and 13(b), where comparison with the Maxwellian is
made, are, respectively, the distributions marked with $\bullet$ and $0$ in Fig. 15. They are the points
with nearly the smallest $\delta$ in the flows at $Kn_{w}=0.01$ and 0.1. From Fig. 15, the flow is seen to
be highly nonequilibrium everywhere except for very small Knudsen numbers.

The transition to a free molecular flow region can clearly be seen from the profiles of $\hat{f}$ at
some (versus $\wedge r\sin\theta_{(}$ for various $\wedge r$ , which are shown in Fig. 16 for $Kn_{w}=0.01,0.2,1$ , and 10.
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Since the characteristics of Eq. (10) are given by $\wedge r\sin\theta_{\zeta}=const,\hat{f}$ at a given $\zeta$ is expressed by
a single curve if the flow is free molecular. The flow approaches a free molecular condition for
large $r/L$ even for $Kn_{w}=0.01$ . From Fig. 16 it is also seen that the discontinuity of the velocity
distribution function remains appreciable at $r/L=2000$ even for $Kn_{w}=0.2$ . By extrapolation
it is found to be appreciable at downstream infinity. Since $A_{cot}\rho$ is the collision frequency of a
molecule, the integral $\int_{r_{0}}^{\infty}A_{col}\rho\xi_{r}^{-1}dr$ may be considered as the number of collision of a molecule

with radial velocity $\xi_{r}$ while it proceeds from $r_{0}$ to infinity. $6$ The integral takes a finite value
because $\rho\sim r^{-2}$ for large $r$ . A molecule $(\xi_{r}\neq 0)$ experiences only a finite number of coUision
before it reaches infinity. In other words, for large $r_{0}$ a molecule has rare chance of collision
while proceeding from $r_{0}$ to infinity. This corresponds to our numerical results showing the free
molecular behavior (resulting in the persistence of discontinuity) in the far field.

According to the free molecular feature of $f$ (Fig. 16), the flow velocity and temperature
are nearly constant (or their leading terms are constants that depend on $Kn_{w}$ ) in the far field
(large $r$ ). On the other hand, $\tau_{\perp}$ is proportional to (nearly) $r^{-1}$ for $Kn_{w}\neq 0$ or $\infty$ but to
$r^{-2}$ for $Kn_{w}=\infty$ there $[$Figs. 4(b), 4(c), Eq. (44), and Eq. $(29e)]^{61}$ This difference due to
molecular collisions is a microstructure, and therefore more detailed consideration is required to
understand this behavior. For large $r$ , as we have seen, the width of the distribution $f$ in the
direction normal to the flow (or in $\xi_{t}$ for short) is narrow. The gain term $A_{co\mathfrak{l}}\rho f_{e}$ of the collision
term in Eq. (1) has the same width in $\xi_{t}$ as in $\xi_{r}^{62}$ Thus, the contribution of the gain term to the
$\xi_{t}$-tail part of $f$ is of the same order as that to the central part. The effect of molecular collisions
relative to the local magnitude of $f$ in $\xi_{t}$ is much stronger on the tail. The contribution of the
tail part to the normal temperature $\tau_{\perp}$ is not negligible and plays an important role because
the factor $\xi_{t}^{3}$ in Eq. (4b) significantly reduces the contribution of the central part of $f$ . Thus,
the effect of coUisions is amplified and the difference appears.

D. Lattice system and accuracy tests

Since the behavior of the gas depends considerably on $Kn_{w}\underline{t},he$ lattice system [the lattice
functions $r\wedge(s),$ $\zeta(s)$ , and $\theta_{\zeta}(s)$ defined in Eq. (19); $I,$ $J,$ $K$ , and $K;r_{D}\wedge$ and $\zeta_{D}$ ] is chosen appro-
priately depending on $Kn_{w}$ . Various tests have been carried out before the final computation.
Here, the data of the lattice system that was used to obtain the results in Sec. V $A,$ $B$ , and $C$

are summarized. (i) The lattice function $\wedge r(s)$ is given by

$\frac{dr\wedge}{ds}=f_{1}(r\wedge)f_{2}(r\wedge)$ , $\wedge r(0)=1$ ,

$fi=d_{2}+(d_{1}-d_{2})\exp(-d_{3}(r\wedge-1))$ , (47)

$f_{2}=1+(d_{4}-1)\exp(-d_{5}(r\wedge-1))$ ,

where $d_{1},$ $d_{2},$
$\ldots,$

$d_{5}$ are constants chosen properly in each case. The fundamental lattice mod-
erately widening from the sphere is expressed by $f_{1}$ ; a finer lattice in the neighborhood of the
sphere is expressed by $f_{2}$ . Examples of the lattice data are given in Table VI. The size $\wedge r_{D}$ of the
$\wedge r$ domain is chosen as: $r_{D}\wedge\sim 100$ for $Kn_{w}=10,$ $r_{D}\wedge\sim 1000$ for $0.5\leq Kn_{w}<10$ , and $r_{D}\wedge\sim 2000$

for $Kn_{w}<0.5$ . (ii) For $\zeta^{(j)}$ lattice, $\zeta(s)=\alpha s^{3}$ ( $\alpha$ : a constant), ($D=8$ , and $J=192$ for
$Kn_{w}<0.1$ and $J=96$ for $Kn_{w}\geq 0.1$ . (iii) A fine lattice of $\theta_{(}$ is required $nea\underline{r}\theta_{\zeta}=0$ since $\hat{f}$ is
locahzed there for large $r\wedge$. The number of the lattice points are chosen as: $(K, K)=(2560, 2464)$
for $Kn_{w}<0.05$ and $(5760, 5568)$ for $Kn_{w}\geq 0.05$ . Typical data of $\theta_{\zeta}^{(k)}$ are shown in Table VII.
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Most of the lattice points are in $0<\theta_{\zeta}<\pi/2$ . (iv) The criterion of convergence of the sequence
$\hat{f}_{(n)}^{(l,j,k)}$ is that the variations of the macroscopic variables $\rho^{i)}A_{(n)}$ $u_{(n)}^{(i)}\wedge$ , and $\hat{T}_{(n)}^{(i)}$ over all lattice
points on $1\leq r\wedge\leq\wedge r_{D}$ in an iteration are less than $10^{-12}$ .

Here we summarize the accuracy test of our computation.
(i) The distribution function $\hat{f}$ at ( $\geq 5.36(\zeta_{D}=8)$ is bounded by $4x10^{-12}$ . Further, the
differences of the macroscopic variables $\rho\wedge,\hat{u}$ , and $\hat{T}$ for ($D=8$ and $\zeta_{D}=10.2$ at $Kn_{w}=0.1$ are
bounded by $2\cross 10^{-14}$ over $1\leq r\wedge\leq\wedge r_{D}$ . Thus, the size $\zeta_{D}=8$ adopted in our main computation
may be considered sufficiently large.
(ii) Typical data of the maximum variations of the macroscopic variables $\rho\wedge,$

$u\wedge$ , and $\hat{T}$ over the
whole lattice points on $1\leq\wedge r\leq r_{D}\wedge$ for different choices of $r_{D}\wedge$ are given in Table VIII. The
variation of $\rho\wedge$ is much smaller than the others in some cases. These data are also shown in the
table. The $u_{\infty}/(2RT_{w})^{1/2}$ and $T_{\infty}/T_{w}$ are extrapolated from the data of $|du\wedge/dr\wedge|$ and $|d\hat{T}/dr\wedge|$

for large $r\wedge$. These data for different values $r_{D}\wedge$ are shown in Table IX.
(i\"u) Typical data of the maximum variations of $\rho\wedge,\hat{u}$ , and $\hat{T}$ over the whole lattice points on
$1\leq r\wedge\leq r_{D}\wedge$ for different numbers $J$ of the lattice points $(^{(j)}$ are given in Table X. The maximum
variation of $p\wedge$ is shown separately when it is much smaJler than that of the others.
(iv) Typical data of the maximum variation of $(\rho\wedge, \wedge u,\hat{T})$ over the whole lattice points on $1\leq\wedge r\leq$

$\wedge r_{D}$ for different numbers $I$ and $(K,\overline{K})$ of the lattice points of $(r\wedge, \theta_{\zeta})$ are shown in Fig. 17.
(v) The mass and energy fluxes $Q$ and $W$ are computed at all the lattice points $r^{\langle)}\wedge$ on $1\leq r\wedge\leq r_{D}\wedge$ ,
and the accuracies of the conservation relations (15) and (17) are examined. Their maximum
variations $(Q_{\max}-Q_{\min})/Q_{\min}$ and $(W_{\max}-W_{\min})/W_{\min}$ are shown in Table XI. The $r\wedge\theta_{\zeta}$ lattice
dependence of these variations is shown in Fig. 17.
(vi) For the conservation relation (15) to hold with a given accuracy, $\rho\wedge$ and $u\wedge$ should be computed
with the same relative accuracy for all $r^{\langle i)}\wedge$ . Then, the absolute error of $\rho\wedge$ for large $r\wedge$ should be very
small since $\rho\wedge$ tends to zero as $r\wedgearrow\infty$ . The test (v) in Table XI suggests that the computation
of $\rho\wedge$ is very accurate for large $r\wedge$. Typical examples of the variation of $\rho\wedge$ at large $r\wedge$ in the tests
corresponding to (ii), (iii), and (iv) are shown in Table XII for further evidence of the accuracy.
The height of $\hat{f}$ is almost invariant for large $r\wedge$, and the domain where $\hat{f}$ is appreciable shrinks as
$\wedge rarrow\infty$ according as shrink of the view angle of the sphere. Thanks to this behavior of $\hat{f}$, with
sufficient lattice points $\theta_{\zeta}^{(k)}$ in this region $(\theta_{\zeta}\sim 0)$ , we can compute $\hat{f}$ without losing its relative
accuracy much. Thus accurate $\rho\wedge$ for large $\wedge r$ is obtained.
(vii) For some of $Kn_{w}$ , the hmiting solution $\hat{f}^{(i,j,k)}$ of the sequence $\hat{f}_{(n’)}^{(1j,k)}$ is examined to be

independent of various choices of the initial function $\hat{f}_{(0)}^{(i,j,k)}$ of the iteration.
The computation was carried out by IIP 9000730 and MIPS RS 3230 computers at our

laboratory.

VI. EFFECT OF CONDENSATION FACTOR IN KINETIC BOUNDARY CON-
DITION

As in most works on a gas flow with evaporation and condensation, we considered the prob-
lem under the conventional boundary condition [the assumption (ii) in Sec. II]. A generalization
of the conventional boundary condition is reported in Ref. 12, where the effect of condensa-
tion factor is introduced and the conversion formula of the solution of the hnearized half-space
problem under the conventional condition to that under the generalized one is also given. The
conversion relation is generalized to the two surface, the non hnear half-space, and the cylin-
drical problems in Refs. 22, 26, 29, and 34. The generahzed boundary condition introduced in
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Ref. 12 is obtained by simply replacing the $\rho_{w}$ in Eq. (7) by the following quantity:

$\alpha_{c}\frac{p_{w}}{RT_{w}}-(1-\alpha_{c})(2\pi)^{3/2}(RT_{w})^{-1/2}\int\int_{\xi_{\Gamma}<0}\xi_{r}\xi_{t}fd\xi_{r}d\xi_{t}$ , (48)

where $\alpha_{c}$ is a constant $(0\leq\alpha_{c}\leq 1)$ called the condensation factor of the boundary. The
case $\alpha_{c}=1$ corresponds to the conventional condition. The two problems differ only in the
boundary condition (6) by a factor. We can, therefore, derive a simple conversion formula
between the two classes of solutions. Only the result is given here. Let the nondimensional
solution $(\hat{f}, u\wedge, \rho\wedge,p\wedge,\hat{T},\hat{Q}\{=Q/[4\pi\rho_{w}(2RT_{w})^{1/2}L^{2}]\},\overline{W}\{=W/[4\pi p_{w}(2RT_{w})^{1/2}L^{2}]\})$ under the
conventional boundary condition for $Kn_{w}=K_{C}$ be denoted by the subscript $C$ , and let the
solution under the generahzed boundary condition for $Kn_{w}=K_{G}$ be denoted by the subscript
$G$ . The following one-to-one correspondence holds between the two classes of solutions:

$(\hat{f}_{G}, K_{G})=\Gamma(\hat{f}_{C}, K_{C})$ , (49)

where
$\Gamma=[1+2\sqrt{\pi}(1-\alpha_{c})\alpha_{c}^{-1}\hat{Q}_{C}]^{-1}$ . (50)

Then,

$(p_{G}\wedge,p\wedge c,\hat{Q}_{G},\overline{W}_{G})=\Gamma(\rho\wedge c,\hat{p}_{C},\hat{Q}_{C},\overline{W}_{C})$ , (51a)

$(u_{G}\wedge,\hat{T}_{G}, M_{G})=(u_{C}\wedge,\hat{T}_{C}, M_{C})$. (51b)

It is noted that all the $\rho_{w}$ in Eqs. (9c), (9d), (llb), etc. [except in Eq. (7)] is the original $\rho_{w}$

defined by $\rho_{w}=p_{w}/RT_{w}$ but not the quantity (48).

VII. CONCLUDING REMARKS

We have considered evaporating flows of a rarefied gas from its spherical condensed phase
into a vacuum and analyzed the problem on the basis of the BKW equation numerically with a
specially devised difference scheme capable of describing the discontinuity of the velocity distri-
bution function. The velocity distribution function together with various important macroscopic
variables is obtained accurately over the whole flow field for the entire range of the Knudsen
number. The result is supplemented with an analytic solution for $smaU$ Knudsen numbers,
which is given by the solution of the Euler system of equations under the boundary condition
(31) matched with the solution of hypersonic approximation for the far field. The distribution
function shows strong anisotropy over the entire flow field even for small Knudsen numbers, and
its discontinuity extends to downstream infinity for intermediate and large Knudsen numbers
(and even for rather small Knudsen numbers). Even for $Kn_{w}=0.1$ , the velocity distribution
function deviates considerably from the local Maxwelhan distribution over the whole flow field.
In most cases the velocity distribution function is far from an ellipsoidal distribution. The $S$ layer
at the bottom of the Knudsen layer are shown clearly. The velocity and temperature at down-
stream infinity take finite values, determined by the Knudsen number, except the temperature
at zero Knudsen number. A simple formula deriving the solution for an arbitrary condensation
factor in the kinetic boundary condition from that under the conventional boundary condition
is also presented. In order to confirm the accuracy of computation, various tests are carried
out. Especially, since the approach to the state at infinity is fairly slow, extensive tests are done
by changing the size of the domain of $\wedge r$ and examining not only quantities under consideration
themselves but also the rate of their variations.
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TABLE I. Functions $h_{1}(M)$ and $h_{2}(M)$ in Eq. (31).

$\overline{\overline{\frac{Mh_{1}h_{2}Mh_{1}h_{2}Mh_{1}h_{2}}{0.00001.00001.00000.40000.49000.84700.80000.269507088}}}$

0.04999 0.9083 0.9798 0.4400 0.4593 0.8326 0.8400 0.2553 0.6956
0.07998 0.8582 0.9679 0.4800 0.4310 0.8184 0.8800 0.2420 0.6824
0.1200 0.7966 0.9521 0.5200 0.4050 0.8043 0.9200 0.2297 0.6693
0.1600 0.7404 0.9365 0.5600 0.3809 0.7904 0.9600 0.2182 0.6563
0.2000 0.6891 0.9212 0.6000 0.3586 0.7765 0.9700 0.2155 0.6530
0.2400 0.6421 0.9060 0.6400 0.3380 0.7628 0.9800 0.2128 $0$ 6498
0.2800 0.5991 0.8910 0.6800 0.3189 0.7492 $0$ 9900 0.2101 $0$ 6466
0.3200 0.5596 0.8761 0.7200 0.3012 0.7356 1.0000 0.2075 0.6434
0.3600 0.5233 0.8615 0.7600 0.2848 0.7222

TABLE II. The nondimensional density $\rho/\rho_{w}$ versus $r/L$ for various Knudsen numbers $Kn_{w}$ .

$P/\rho_{w}$

$\ovalbox{\tt\small REJECT} r/_{10.32250^{0}.6^{0}1^{0}4^{5}30^{0.0I0.1110\infty}}LK-..\ovalbox{\tt\small REJECT}_{60320.54270.50680.50070.5000}$

1.0001 0.3186 0.6002 0.5936 0.5368 0.5000 0.4936 0.4931
1.0002 0.3170 0.5908 0.5874 0.5339 0.4971 0.4908 0.4901
1.001 0.3099 0.5473 0.5565 0.5207 0.4849 0.4784 0.4777
1.002 0.3046 0.5154 0.5320 0.5100 0.4756 0.4692 0.4684
1.01 0.2820 0.4111 0.4397 0.4617 0.4364 0.4306 0.4298
1.02 0.2650 0.3581 0.3862 0.4252 0.4072 0.4021 0.4015
1.05 0.2318 0.2857 0.3075 0.3572 0.3515 0.3480 0.3475
1.1 0.1961 0.2290 0.2442 0.2908 0.2937 0.2920 0.2917
1.2 0.1514 0.1700 0.1792 0.2152 0.2237 0.2237 0.2236
1.4 0.1019 0.1114 0.1163 0.1393 0.1489 0.1500 0.1501
1.6 0.07433 0.08047 0.08365 0.09976 0.1082 0.1095 0.1097
1.8 0.05694 0.06129 0.06357 0.07562 0.08279 0.08410 0.08426
2 0.04513 0.04841 0.05013 0.05953 0.06561 0.06683 0.06699
5 0.06640 0.07040 0.07255 0.08572 0.09734 0.01006 0.01010
10 0.01631 0.01724 0.01775 0.02096 0.02402 0.02493 0.02506
20 $4.05x10^{-4}$ $4.28x10^{-4}$ $4.40x10^{-4}$ $5.19x10^{-4}$ $5.98x10^{-4}$ $6.22x10^{-4}$ $6.25x10^{-4}$

50 $6.46\cross 10^{-5}$ $6.81\cross 10^{-5}$ $7.01\cross 10^{-5}$ 8. $27x10^{-5}$ 9 $54xl0^{-5}$ $9.94\cross 10^{-5}$ $1.00x10^{-4}$

100 $1.61xI0^{-5}$ $1.70\cross 10^{-5}$ $1.75\cross 10^{-5}$ $2.07\cross 10^{-5}$ $2.38x10^{-5}$ $2.49\cross 10^{-5c}$ $2.50x10^{-5}$

$2^{2}0^{0}0^{0}01000$ $4.03\cross 10403x10^{-7}1.6Ix10_{-8}^{-6}$ $425x10^{-8}4..25x10_{-7}^{-6}170\cross 10$ $4.\cdot 37x10_{-7}437xI0175x10_{-8}^{-6}$ $2.\cdot 06x10516\cross 10_{-8}^{-6}516\cross 10^{-7}$ $2.38x_{-}10^{-6}596x10_{-7}$
$—$

$6..25x10_{-7}^{-6}250x10_{-8}625x10$

a The isentropic solution (32a) and (32d). With the Knudsen-layer coirection, which is flattened on the
sphere, $\rho/Pw=0.6362$ at $r/L=1$ .

$b$ The \’uee molecular flow solution (29a).
$c$ The data at $r/L=99.94$ .
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TABLE III. The nondimensional velocity $u/(2RT_{w})^{1/2}$ versus $r/L$ for various Knudsen numbers $Kn_{w}$ .

$\ovalbox{\tt\small REJECT}\overline{u/(2RT_{w})^{1/2}}$

$\frac{f/-\ovalbox{\tt\small REJECT}_{0.010.1110\infty}}{10.7322040110.41650.50170.55430.56310.5642}$

1.0001 0.7410 0.4105 0.4231 0.5072 0.5616 0.5711 0.5720
1.0002 0.7447 0.4169 0.4275 0.5098 0.5648 0.5742 0.5753
1.001 0.7605 0.4494 0.4505 0.5218 0.5781 0.5882 0.5894
1.002 0.7721 0.4763 0.4704 0.5317 0.5882 0.5985 0.5998
1.01 0.8208 0.5876 0.5601 0.5781 0.6310 0.6420 0.6434
1.02 0.8564 0.6614 0.6252 0.6156 0.6630 0.6739 0.6754
1.05 0.9242 0.7825 0.7411 0.6913 0.7249 0.7349 0.7362
1.1 0.9950 0.8896 0.8503 0.7740 0.7903 0.7981 0.7992
1.2 1.083 1.0071 0.9737 0.8789 0.8719 0.8754 0.8761
1.4 1.183 1.1285 1.1018 0.9975 0.9625 0.9593 0.9590
1.6 1.241 1.1964 1.1731 1.0661 1.0139 1.0055 1.0046
1.8 1.280 1.2410 1.2197 1.1114 1.0471 1.0348 1.0333
21.308 1.2728 1.2528 1.1436 1.0702 1.0547 1.0528
51.423 1.4004 1.3852 1.2706 1.1538 1.1215 1.1170
10 1.448 1.4292 1.4153 1.2988 1.1688 1.1310 1.1256
20 1.458 1.4408 1.4277 1.3106 1.1742 1.1335 1.1277
50 1.463 1.4466 1.4340 1.3168 1.1767 1.1344 1.1283
100 1.464 1.4483 1.4359 1.3187 1.1774 1.1346c 1.1284
200 1.464 1.4491 1.4368 1.3196 1.1778 1.1284

$–$

1000 1.464 1.4497 1.4375 1.3204 1.1780 1.1284
2000 1.464 1.4497 1.4376 1.3205 $-$ $-$ 1.1284

a The isentropic solution (32b) and (32d). With the Knudsen-layer correction, which is flattened on the
sphere, $u/(2RT_{w})^{1/2}=0$ 3712 at $r/L=1$ .

$b$ The free molecular flow solution (29b).
$c$ The data at $r/L=99.94$ .

TABLE IV. The nondimensional temperature $T/T_{w}$ versus $r/L$ for various Knudsen numbers $Kn_{w}$ .

$\ovalbox{\tt\small REJECT} f/n_{w}-10.6434082570.81920.79120.7^{1}8670.78760.7878\ovalbox{\tt\small REJECT} T/T_{w}$.

1.0001 0.6382 0.8215 0.8155 0.7863 0.7808 0.7815 0.7819
1.0002 0.6360 0.8189 0.8135 0.7841 0.7783 0.7791 0.7793
1.001 0.6265 0.8042 0.8031 0.7749 0.7676 0.7683 0.7684
1.002 0.6193 0.7908 0.7935 0.7678 0.7595 0.7600 0.7601
1.01 0.5884 0.7286 0.7448 0.7359 0.7241 0.7240 0.7240
1.02 0.5645 0.6838 0.7057 0.7102 0.69\^o6 0.6959 0.6959
1.05 0.5162 0.6054 0.6307 0.6556 0.6405 0.6388 0.6387
1.1 0.4618 0.5298 0.5537 0.5913 0.5771 0.5744 0.5742
1.2 0.3886 0.4385 0.4583 0.5023 0.4920 0.4887 0.4883
1.4 0.2984 0.3334 0.3485 0.3921 0.3896 0.3872 0.3868
1.6 0.2419 0.2698 0.2823 0.3242 0.3283 0.3273 0.3272
1.8 0.2025 0.2261 0.2371 0. $278I$ 0.2875 0.2881 0.2882
2 0.1734 0.1941 0.2042 0.2447 0.2588 0.2608 0.2611
5. 0.04833 0.05810 0.06491 0.1114 0.1547 0.1666 0.1682
10 0.01895 0.02614 0.03220 0.08298 0.1376 0.1532 0.1554
20 0.00749 0.01333 0.01894 0.07184 0.1323 0.1497 0.1522
50 0.00220 0.00704 0.01228 0.06622 0.1301 0.1487 0.1513
100 $8.73x10^{-4}$ 0.00527 0.01035 0.06455 0.1295 0.1485c 0.1512
200 $3.47\cross 10^{-4}$ 0.00447 0.00946 0.06375 0.1293 –0.1512
1000 4.05 $x10^{-5}$ $0$ 00389 0.00879 $0$ 06314 0.1291 $-$ 0.1512
2000 $1.61\cross 10^{-5}$ 0.00382 0.00871 0.06307 $-$ $-$ 0.1512

a The isentropic solution (32c) and (32d). With the Knudsen-layer correction, which is flattened on the
sphere, $T/T_{w}=0.8386$ at $r/L=1$ .

$b$ The free molecular flow solution (29c).
$c$ The data at $r/L=99.94$ .
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TABLE V. Nondimensional velocity $u_{\infty}/(2K_{w})^{1/2}$ at inlinity, frozen temperature $T_{\infty}/T_{w}$ , terminal Mach number $M_{\infty}[=u_{\infty}/(5RT_{\infty}/3)^{1/2}]$ ,
mass flux $Q/4\pi\rho_{w}(2\Pi_{w})^{1/2}L^{2}$ , and energy flux $W/4\pi p_{w}(2RT_{w})^{1/2}L^{2}$ for various Knudsen numbers $Kn_{v}$ .

$\ovalbox{\tt\small REJECT}_{0.236^{w}1^{c}0.5065^{d}}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT} Kn_{w}u_{\infty}/(2R_{*}T_{w})^{1/2}T/T_{w}M_{\infty}Q/4\pi\rho(2RT_{w})^{1/2}L^{2}W/4\pi p_{w}(2RT_{w})^{1/2}L^{2}01.4640^{\infty_{b}}\infty$

0.005 1.4499 0.0038 26 0.2465 0.5222
0.01 1.4377 0.0086 17 0.2512 0.5290
0.02 1.4162 0.0183 11.5 0.2573 0.5374
0.05 1.3686 0.0406 7.44 0.2663 0.5487
0.1 1.3206 0.0630 5.76 0.2723 0.5554
0.2 1.2700 0.0867 4.72 0.2765 0.5596
0.5 1.2108 0.1141 3.927 0.2793 0.5616
1 1.1781 0.1290 3.593 0.2806 0.5628
2 1.1564 0.1388 3.400 0.2813 0.5634
5 1.1407 0.1458 3.273 0.2817 0.5637

10 1.1347 0.1484 3.227 0.2819 0.$5uo$

$\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\infty$1.1284c0.1512i3.179 $0.2821^{g}$ 0.5642h

a From Eqs. (32b) and (32d). $d$ Eq. (35b). $g$ Eq. (30a).
$b$ From Eqs. (32c) and (32d). $e$ From Eq. (29b). $h$ Eq. (30b).
$c$ Eq. (35a). $f$ From Eq. (29C).

TABLE VI. Typical data of the lattice of $\wedge r$.

$\frac{\frac{Kn_{w}=0.01}{;\hat{r}^{\langle:)}dr\wedge/di}}{016.250x10^{-9}}$ $\frac{\frac{0.1}{i\hat{r}^{\langle j)}d_{\Gamma/}^{\wedge}di}}{011.563x10^{-7}}$ $\frac{\frac{1}{i\hat{r}^{\langle j)}dr\wedge/di}}{013.125x10^{-6}}$ $\frac{\frac{10}{i\hat{r}^{\langle:)}d_{\Gamma/di}^{\wedge}}}{016.250x10^{-5}}$

$277$ 1.001 $2.677x10^{-5}$ 523 1.001 $6.858x10^{-6}$

397 1.010 $1.241x10^{-4}$ 1000 1.010 $3.103x10^{-5}$ $767-$ $1.010-$ $3.434x10^{-5}-$ $–$ $–$

$-$

669 1.099 $6.833x10^{-4}$ 2091 1.100 $1.717x10^{-4}$ 1476 1.100 $3.148x10^{-4}$ 383 1.100 $6.847x10^{-4}$

$915$ 1.499 $3.179x10^{-3}$ 3073 1.500 $7.962x10^{-4}$ 1989 1.500 $1.564x10^{-3}$ 629 1.500 $3.186x10^{-s}$

1245 4.988 $2.496x10^{-2}$ 4394 5.001 $6.261x10^{-3}$ 2654 4.997 $1.249x10^{-2}$ 959 4.999 $2.506x10^{-2}$

1762 99.80 0.6025 6462 100.1 0.1511 3682 100.1 0.3089 1472 99.94 0.6183
2328 $20I8$ 7.940 8720 2010 1.981 4432 1010 3.075 $(=r_{D}\wedge)$

$(=r_{D}\wedge)$ $(=r_{D}\wedge)$ $(=r_{D}\wedge)$

TABLE V1I. Typical data of the lattice of $\theta_{(}$ .

$\frac{Kn_{w}<0.05}{\frac k\theta_{p}^{(k\prime}d\theta/dk,001.750^{(}x10^{-5}}$ $\frac{Kn_{w}\geq 0.05}{\frac{k\theta_{t}^{(k|}d\theta_{(}/dk}{003.734x10^{-6}}}$

57 $1.005x10^{-3}$ $1.788x10^{-5}$ 253 $1.000x10^{-3}$ $4.393x10^{-6}$

412 $1.001x10^{-2}$ $3.811x10^{-5}$ 1172 $1.001x10^{-2}$ $1.836x10^{-5}$

1208 0.1000 $2.310x10^{-4}$ 2837 0.1000 $1.077x10^{-\ell}$

2200 0.7845 $1.715x10^{-3}$ 4995 0.7848 $7.S53xlO^{-4}$

2464 $\pi/2$ $5.698x10^{-3}$ $556S$ $\pi/2$ $2.663x10^{-3}$

$\frac{2560\pi 8.608x10^{-2}}{\ovalbox{\tt\small REJECT}(K,K)=(2560,2464)}\frac{5760\pi 7.966x10^{-2}}{\ovalbox{\tt\small REJECT}(5760,5568)}$
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FIG. 1. The profiles of the macroscopic variables $p/p_{w},$ $u/(2RT_{w})^{1/2},$ $T/T_{w}$ , and $M$ in the
neighborhood of the sphere for various Knudsen numbers $Kn_{w}$ . $(a)Kn_{w}=0-0.05$ and (b) 0.05-
$\infty$ . The value on the sphere are marked with $E$ for $Kn_{w}=0,$ $O$ for 0.005, $\blacksquare$ for 0.01, $\triangle$ for
0.02, V for 0.05, $O$ for 0.1, ’ for 0.2, $\nabla$ for 0.5, A for 1, $O$ for 2, $\bullet$ for 5, $\square$ for 10, and $O$ for
$\infty$ .
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FIG. 14. The contour of $2\pi p_{w}^{-1}(2RT_{w})^{3/2}f=0.2$ for various points $r/L$ . (a) $Kn_{w}=0.01$ and (b) $Kn_{w}=0.1$ . The contour of the local
MaxweUian is shown by:– $[r/L=1.035(Kn_{w}=0.01)]$ , –$[r/L=1.101(Kn_{w}=0.01), 1.314 (Kn_{w}=0.1)]$ , –$[r/L=1.264(Kn_{w}=0.01)$ ,
1.627 $(Kn_{w}=0.1)$], and –$[r/L=2.218(Kn_{w}=0.01), 2.067 (Kn_{w}=0.1)]$. The dashed line —corresponds to Figs. 7(a) and 13(a)
$(Kn_{w}=0.01)$ or Figs. 8(c) and 13(b) $(Kn_{w}=0.1)$ . The flow deviates considerably from the local MaxweUian over the whole field when
$IKn_{w}=0.1$ .
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FIG. 17. The $r\wedge\theta_{(}$ lattice dependence of $(\rho\wedge, u\wedge,)\wedge,$ $(Q_{R}-Q_{\dot{m}})/Q_{\dot{m}n}$

and $(W_{mu}-W_{\dot{m}n})/W_{\dot{r}}$ . The $ma$]$\dot{\alpha}mum$ variation ot $(\rho\wedge,\hat{u},\hat{T})$ over
the whole lattice points on $1\leq r\wedge\leq r_{D}\wedge$ for different numbers $I$ and
$(K,\overline{K})$ of the $r\wedge\theta_{(}$ lattice points are marked with hoUow symbols. The $r\wedge\theta_{(}$

lattice dependence of $\max$ [(Qエー $Q$可$n)/Q$面$n’(W$一 $-W_{\dot{m}})/W_{\dot{m}n}$ ] is
$in^{arkedwithb1acksymb\circ 1s.LetLSbether_{A_{theresu1tsinSec.VA}}}thefirstparagraphinSec.VD,$$withwh^{\wedge}i^{\theta 1atticesystem,described}m$
$B$ , and $C$ are obtained (Note that it depends on $Kn_{w}$ ). $M_{0}$ is the same
lattice system as IS for $Kn$. $=0.01,0.1$ , and 10, and $M_{0}$ is that wlth
double $(K,\overline{K})$ of $IS$ for $Kn_{w}=1$ . M. is a test lattice system with double
$I$ and $(K,\overline{K})$ of those of $M_{n-1}$ . The $\nabla$ indicates the mlxtmum variation
of $(\rho, u\wedge\wedge, \wedge)$ between $M-3$ and $M_{-2}$ lattices; $\Delta$ between $M-2$ and $M_{-1;}$

$O$ between $M_{-1}$ and $M_{0};O$ between $M_{0}$ and $M_{1}$ . The. indicates
$\max[$( $Q_{m}$エー $Q_{\dot{m}})/Q$可$n’(W\infty-W_{\dot{r}n})/W_{\dot{n}n}]$ for $M_{-3},\cdot$ ▼ for $M_{-2},\cdot$

▲ for $M-1;\blacksquare$ for $M0$ ; ◆ for $M_{1}$ . From separate tests, the results 口 and
$\blacksquare$ are not infiuenced if $IS$ is taken as $M_{0}$ for $Kn_{w}=1$ .


